The Corona Problem for Kernel Multiplier Algebras 3

Total Page:16

File Type:pdf, Size:1020Kb

The Corona Problem for Kernel Multiplier Algebras 3 Washington University in St. Louis Washington University Open Scholarship Mathematics Faculty Publications Mathematics and Statistics 12-2016 The orC ona Problem for Kernel Multiplier Algebras Eric T. Sawyer Brett .D Wick Washington University in St. Louis, [email protected] Follow this and additional works at: https://openscholarship.wustl.edu/math_facpubs Part of the Algebra Commons, and the Analysis Commons Recommended Citation Sawyer, Eric T. and Wick, Brett .,D "The orC ona Problem for Kernel Multiplier Algebras" (2016). Mathematics Faculty Publications. 39. https://openscholarship.wustl.edu/math_facpubs/39 This Article is brought to you for free and open access by the Mathematics and Statistics at Washington University Open Scholarship. It has been accepted for inclusion in Mathematics Faculty Publications by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. THE CORONA PROBLEM FOR KERNEL MULTIPLIER ALGEBRAS ERIC T. SAWYER† AND BRETT D. WICK‡ Abstract. We prove an alternate Toeplitz corona theorem for the algebras of pointwise kernel multipliers of Besov-Sobolev spaces on the unit ball in Cn, and for the algebra of bounded analytic functions on certain strictly pseudoconvex domains and polydiscs in higher dimensions as well. This alternate Toeplitz corona theorem extends to more general Hilbert function spaces where it does not require the complete Pick property. Instead, the kernel functions kx (y) of certain Hilbert function spaces H are assumed to be invertible multipliers on H, and then we continue a research thread begun by Agler and McCarthy in 1999, and continued by Amar in 2003, and most recently by Trent and Wick in 2009. In dimension n = 1 we prove the corona theorem for the kernel multiplier algebras of Besov-Sobolev Banach spaces in the unit disk, ∞ extending the result for Hilbert spaces H ∩ Qp by A. Nicolau and J. Xiao. Contents 1. Introduction 1 1.1. Organization of the paper 3 2. Preliminaries 4 2.1. Hilbert function spaces 4 2.2. Interpolation by rescalings 8 2.3. A characterization of rescaling 10 3. The Bezout kernel multiplier characterization 12 3.1. Kernel multiplier solutions 12 4. The alternate Toeplitz corona theorem 15 4.1. Corona Properties 15 4.2. Convex shifted spaces 16 4.3. Formulation and proof 18 5. The alternate Toeplitz corona theorem for Bergman and Hardy spaces in Cn 19 5.1. The Bergman and Hardy space on the unit ball 20 5.2. The Hardy and Bergman space on the unit polydisc 20 5.3. General domains 21 6. Invertible Multiplier Property for Hardy spaces 22 7. Smoothness spaces and nonholomorphic spaces 25 7.1. The kernel multiplier algebras for Besov-Sobolev spaces 25 arXiv:1410.8862v4 [math.CA] 10 Oct 2016 7.2. The Corona Property for kernel multiplier algebras on the disk 31 7.3. Bergman spaces of solutions to generalized Cauchy-Riemann equations 33 References 33 1. Introduction In 1962 L. Carleson [Car] proved the corona theorem for the algebra of bounded analytic functions on the unit disk. The proof used a beautiful ‘corona construction’ together with properties of Blaschke products. While there is a large literature on corona theorems for domains in one complex dimension (see e.g. [Nik]), progress in higher dimensions prior to 2011 had been limited to the Hp corona theorem on various bounded domains in Cn, and weaker results restricting N to 2 generators. In fact, apart from the simple cases in Date: October 11, 2016. † Research supported in part by a grant from the National Science and Engineering Research Council of Canada. ‡ Research supported in part by National Science Foundation DMS grant # 1603246 and #1560955. 1 2 E. T. SAWYER AND B. D. WICK which the maximal ideal space of the algebra can be identified with a compact subset of Cn, no complete corona theorem was proved in higher dimensions until the 2011 results of S. Costea and the authors in 2 which the corona theorem was established for the multiplier algebras MHn and MDn of the Drury-Arveson 2 Hardy space Hn and the Dirichlet space n on the ball in n dimensions. These latter results used the abstract Toeplitz corona theorem for HilbertD function spaces with a complete Pick kernel, see Ball, Trent and Vinnikov [BaTrVi] and Ambrosie and Timotin [AmTi]. The unresolved corona question for the algebra of bounded analytic functions on the ball in higher dimensions has remained a tantalizing problem for over half a century now (see e.g. [CoSaWi2] and [DoKrSaTrWi] for a more detailed history of this problem to date). We note in particular that Varopoulos [Var] gave an example of Carleson measure data in dimension n = 2 for which there is no bounded solution to the ∂ equation. This poses a significant obstacle to using the ∂ equation for the multiplier problem, and suggests a more operator theoretic approach akin to the Toeplitz corona theorem in order to solve the corona problem in higher dimensions. In this paper we prove in particular an alternate Toeplitz corona theorem for all of the algebras of σ B ∞ B kernel multipliers of Besov-Sobolev spaces B2 ( n) on the ball. These spaces include H ( n), and the alternate Toeplitz corona theorem also extends to the algebra H∞ (Ω) of bounded analytic functions on Ω, n n ∞ where Ω is either the unit polydisc D in C , a sufficiently small C perturbation of the unit ball Bn, or a bounded strictly pseudoconvex homogeneous complete circular domain in Cn. Moreover, this alternate Toeplitz corona theorem extends to the kernel multiplier space of certain Hilbert function spaces without assuming the complete Pick property. This essentially shows that whenever a Hilbert space has one of these special kernels, then the Corona Property for its kernel multiplier algebra reduces to what we call the Convex Poisson Property, a property which can be addressed by methods involving solution of the ∂ problem. To illustrate in a very special case, we show that for Ω as above, the algebra H∞ (Ω) has the Corona Property if and only if the Bergman space A2 (Ω) has the Convex Poisson Property if and only if the Hardy space H2 (Ω) has the Convex Poisson Property (in order to define the Hardy space we need to assume that ∂Ω is C2). The Corona Property for H∞ (Ω) is this: given ϕ ,...,ϕ H∞ (Ω) satisfying 1 N ∈ 1 max ϕ (z) 2 ,..., ϕ (z) 2 c2 > 0, z Ω, ≥ | 1 | | N | ≥ ∈ n ∞ o there are a positive constant C and f ,...,fN H (Ω) satisfying 1 ∈ 2 2 2 max f (z) ,..., fN (z) C , z Ω, | 1 | | | ≤ ∈ ϕ (z) f n(z)+ + ϕ (z) fN (zo) = 1, z Ω. 1 1 ··· N ∈ M M+1 2 2 For points a = (a ,...,aM ) Ω and θ = θ ,...,θM [0, 1] , and for h = A (Ω) or H (Ω), where 1 ∈ 0 ∈ ∈ H Ω is as above, set ka 1 by convention. Then we have 0 ≡ M 2 f 2 2 h Ha,θ θm h kam dv < . k k ≡ Ω | | ∞ m=0 Z X The Convex Poisson Property for the Hilbert space (either g Bergman or Hardy) is then this: given ϕ ,...,ϕ H∞ (Ω) satisfying H 1 N ∈ 1 max ϕ (z) 2 ,..., ϕ (z) 2 c2 > 0, z Ω, ≥ | 1 | | N | ≥ ∈ n o M there is a positive constant C such that for all points a = (a1,...,aM ) Ω and all θ = θ0,...,θM M+1 M ∈ ∈ [0, 1] with θm = 1, there are f ,...,fN satisfying m=0 1 ∈ H N P 2 2 fℓ a,θ C , k kH ≤ ℓ X=1 ϕ (z) f (z)+ + ϕ (z) fN (z) = 1, z Ω. 1 1 ··· N ∈ More generally we prove an alternate Toeplitz corona theorem for the kernel multiplier space KH of a Hilbert function space whose reproducing kernel k need not be a complete Pick kernel, but must have H the property (among others) that the kernel functions ka are invertible multipliers on . Here the Banach H kϕkakH space KH of kernel multipliers consists of those functions ϕ such that supa∈Ω kk k < . The roots ∈ H a H ∞ of this abstract result can be traced back to a research thread begun by Agler and McCarthy [AgMc] in THE CORONA PROBLEM FOR KERNEL MULTIPLIER ALGEBRAS 3 the bidisc using Ando’s theorem to reduce the corona problem to estimates on weighted Hardy spaces (see also [AgMc2, Chapters 11 and 13] for a nice survey of related prior work), and continued by work of Amar [Amar] who introduced the use of the von Neumann minimax theorem to circumvent Ando’s theorem and go beyond the bidisc, and more recently by work of Trent and the second author [TrWi] who further reduced matters to checking weights whose densities are the modulus squared of nonvanishing H∞ functions whose boundary values have bounded reciprocals. In this paper we extend and refine this approach to more general Hilbert function spaces and reduce matters to solving the Bezout equation ϕ f = 1 with solutions f in an analogue of a weighted L2 space - e.g. the method applies to Besov-Sobolev spaces· on the ball whose norms cannot be given as an L2 norm with respect to some measure. In dimension n = 1 we can prove new Corona theorems for the kernel multiplier algebras of the Besov- σ Sobolev spaces Bp of the unit disk (See Section 7 for definitions of these spaces). In the special case of σ D ∞ B2 ( ), the kernel multiplier algebra coincides with the Hilbert spaces H Q2σ, see Nicolau and Xiao [NiXi], Ess´en and Xiao [EsXi], Aulaskari, Stegenga and Xiao [AuStXi], or Xiao∩ [Xia, Xia3] for the definitions of these spaces.
Recommended publications
  • Corona Problem
    数理解析研究所講究録 1487 巻 2006 年 13-26 13 Geometry of Banach Spaces Predual to $H^{\infty}$ and Corona Problem Alexander Brudnyi* Department of Mathematics and Statistics University of Calgary, Calgary Canada Abstract In this paper we present a new general approach to the multi-dimensional corona problem for the ball and polydisk. We also describe some properties of the Banach spaces predual to the spaces $H^{\infty}$ defined on these domains. 1. Corona Problem 1.1. In the present paper we discuss one of the fundamental problems in the theory of uniform algebras known as the corona problem. Such a problem was originally raised by S. Kakutani in 1941 and asked whether the open unit disk $\mathrm{D}\subset \mathbb{C}$ is dense in the maximal ideal space of the algebra $H^{\infty}(\mathrm{D})$ of bounded holomorphic functions on $\mathrm{D}$ with the supremum norm. This problem was answered affirmatively by L. Carleson in 1962 [C1]. Let us recall that for a uniform algebra $A$ of continuous functions defined on a Hausdorff topological space $X$ , the maximal ideal space $\mathcal{M}(A)$ is the set of all nonzero homomorphisms $Aarrow \mathbb{C}$ equipped with the weak*-topology of the dual space $A^{*}$ , known as the Gelfand topology. Then $\mathcal{M}(A)$ is a compact Hausdorff space. Any function $f\in A$ can be considered as a function on $\mathcal{M}(A)$ by means of the Celfand transform: $\hat{f}(m):=m(f)$ , $m\in \mathcal{M}(A)$ . If $A$ separates points on $X$ , then $X$ is naturally embedded into $\mathcal{M}(A),$ $xrightarrow\delta_{x}$ , $\delta_{x}$ $X$ $x\in X$ , where is the evaluation functional at $x$ .
    [Show full text]
  • RAPORT DE AUTOEVALUARE Perioada: 1.01.2003 – 30.11.2007
    RAPORT DE AUTOEVALUARE perioada: 1.01.2003 – 30.11.2007 1. Datele de autentificare al unitatii de cercetare – dezvoltare: 1.1 Institutul de Matematica “Simion Stoilow” al Academiei Romane 1.2 Institutie de stat cu personalitate juridica in subordinea Academiei Romane. 1.3 Infiintata prin HG. 255 / 8.03.1990 (publicata in MO p.I nr. 220/1992) 1.4 Numarul de inregistrare in Registrul Potentialilor Contractori: 2685 1.5 Director: CSI. Dr. Vasile Brinzanescu 1.6 Adresa: Calea Grivitei, nr. 21, Sector 1, Bucuresti 1.7 Tel. 319.65.06 Fax. 319.65.05 Web. http:www.imar.ro e-mail [email protected] 2. Domeniul de specialitate: 2.1 Conform clasificarii UNESCO: 1100 2.2 Conform clasificarii CAEN: 7310 3. Starea Unitatii de cercetare – dezvoltare: ● Misiunea unitatii de cercetare – dezvoltare: cercetare stiintifica pe probleme de matematica pura si aplicata, precum si pe probleme de matematica in cadrul unor cercetari interdisciplinare ● Modul de valorificare al rezultatelor: articole stiintifice in reviste de specialitate sau in volume comunicari in cadrul unor manifestari stiintifice nationale si internationale monografii si tratate stiintifice ● Situatia financiara: nu are datorii la bugetul de stat. 1 4. Indeplinirea criteriilor primare de performanta: (Detalii in Anexa la raport.) Criteriul Factor de Numar TOTAL importanta A1 CRITERII PRIMARE DE PERFORMANTA 27555.55 1 Lucrări ştiinţifice/tehnice in reviste de specialitate cotate ISI . 30 494 14820 2 Factor de impact cumulat al lucrărilor cotate ISI. 5 341.11 1705.55 3 Citări in reviste de specialitate cotate ISI. 5 2200 11000 4 Brevete de invenţie. 30 1 30 5 Citari in sitemul ISI ale cercetarilor brevetate.
    [Show full text]
  • Banach Algebras
    Banach Algebras Yurii Khomskii Bachelor Thesis Department of Mathematics, Leiden University Supervisor: Dr. Marcel de Jeu April 18, 2005 i Contents Foreword iv 1. Algebraic Concepts 1 1.1. Preliminaries . 1 1.2. Regular Ideals . 3 1.3. Adjoining an Identity . 4 1.4. Quasi-inverses . 8 2. Banach Algebras 10 2.1. Preliminaries of Normed and Banach Algebras . 10 2.2. Inversion and Quasi-inversion in Banach Algebras . 14 3. Spectra 18 3.1. Preliminaries . 18 3.2. Polynomial Spectral Mapping Theorem and the Spectral Radius Formula . 22 4. Gelfand Representation Theory 25 4.1. Multiplicative Linear Functionals and the Maximal Ideal Space . 25 4.2. The Gelfand Topology . 30 4.3. The Gelfand Representation . 31 4.4. The Radical and Semi-simplicity . 33 4.5. Generators of Banach algebras . 34 5. Examples of Gelfand Representations 36 5.1. C (X ) for X compact and Hausdorff . 36 5.2. C 0(X ) for X locally compact and Hausdorff. 41 5.3. Stone-Cecˇ h compactification . 42 5.4. A(D) . 44 5.5. AC (Γ) . 46 5.6. H 1 . 47 ii iii Foreword The study of Banach algebras began in the twentieth century and originated from the observation that some Banach spaces show interesting properties when they can be supplied with an extra multiplication operation. A standard exam- ple was the space of bounded linear operators on a Banach space, but another important one was function spaces (of continuous, bounded, vanishing at infin- ity etc. functions as well as functions with absolutely convergent Fourier series). Nowadays Banach algebras is a wide discipline with a variety of specializations and applications.
    [Show full text]
  • Corona and Cluster Value Problems in Infinite-Dimensional Spaces
    Corona and cluster value problems in infinite-dimensional spaces Sofía Ortega Castillo Department of Mathematics Texas A& M University April 13, 2014 Informal Analysis Seminar, Universality Weekend Department of Mathematical Sciences at Kent State University S. Ortega Castillo (TAMU) Corona and cluster value p. in 1-dim. spaces 04/13/2014 1 / 22 Outline Introduction: Main Concepts Our Cluster Value Theorems Open Cluster Value Problems and Related Questions References S. Ortega Castillo (TAMU) Corona and cluster value p. in 1-dim. spaces 04/13/2014 2 / 22 Outline Introduction: Main Concepts Our Cluster Value Theorems Open Cluster Value Problems and Related Questions References S. Ortega Castillo (TAMU) Corona and cluster value p. in 1-dim. spaces 04/13/2014 2 / 22 Outline Introduction: Main Concepts Our Cluster Value Theorems Open Cluster Value Problems and Related Questions References S. Ortega Castillo (TAMU) Corona and cluster value p. in 1-dim. spaces 04/13/2014 2 / 22 Outline Introduction: Main Concepts Our Cluster Value Theorems Open Cluster Value Problems and Related Questions References S. Ortega Castillo (TAMU) Corona and cluster value p. in 1-dim. spaces 04/13/2014 2 / 22 Outline Introduction: Main Concepts Our Cluster Value Theorems Open Cluster Value Problems and Related Questions References S. Ortega Castillo (TAMU) Corona and cluster value p. in 1-dim. spaces 04/13/2014 2 / 22 Introduction: Main Concepts Given a Banach space X with B its open unit ball, we are interested in studying certain Banach algebras of bounded analytic functions on B, that contain X∗ (the continuous linear functionals on X) and 1.
    [Show full text]
  • Abstracts of Expository Lectures
    (A) Independence and L´evyprocesses in quantum prob- ability Uwe Franz, University of Franche-Comte, Besanon, France. Abstract: Quantum probability describes the probabilistic foundations of quantum physics. Many concepts from classical probability have their counterpart in quantum probability. In these lectures we will study the notions of independence and independent increment pro- cesses. One surprising feature of quantum probability is the existence of several different notions of (stochastic) independence, as, e.g., tensor independence (which generalizes the notion of stochastic independence in classical probability), freeness, Boolean independence, or monotone independence. These lectures will give an introduction to the most common notions of independence and their basic theory, including the description of their convolu- tions and infinitely divisible measures. Then we will study the axiomatic approach due to Speicher, Ben Ghorbal, Sch¨urmann,and Muraki, and the classification of the five universal notions of independence. Finally, we will study the relations between these notions and the theory of independent increment processes. Lectures • Lecture 1: Introduction to quantum probability, tensor independence, freeness, boolean and monotone independence • Lecture 2: Fourier and Cauchy transform, infinite divisibility and continous convolution semigroups • Lecture 3: Products of quantum probability spaces and of GNS representations, Fock spaces and constructions of independent increment processes • Lecture 4: Independence and universal
    [Show full text]
  • The Corona Problem with Two Pieces of Data
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 10, October 2010, Pages 3651–3655 S 0002-9939(10)10462-6 Article electronically published on May 10, 2010 THE CORONA PROBLEM WITH TWO PIECES OF DATA STEVEN G. KRANTZ (Communicated by Mei-Chi Shaw) Abstract. We study the corona problem on the unit ball in Cn,andmore generally on strongly pseudoconvex domains in Cn. When the corona problem has just two pieces of data, and an extra geometric hypothesis is satisfied, then we are able to solve it. 0. Introduction Banach algebras were created in the thesis of I. M. Gelfand in 1938. Some of the key ideas in the subject are recorded in [9] and [10]. In 1942, S. Kakutani formulated the following fundamental question (known as the corona problem)in the subject: Suppose that f1,...,fk are bounded, holomorphic functions on the unit disc D with the property that |f1(ζ)| + |f2(ζ)| + ···+ |fk(ζ)| >δ>0 for some positive constant δ and all ζ ∈ D.[Wecallf1,...,fk aset of corona data on the disc.] Do there exist bounded, holomorphic gj , j =1,...,k,onD such that f1(ζ) · g1(ζ)+f2(ζ) · g2(ζ)+···+ fk(ζ) · gk(ζ) ≡ 1 for all ζ ∈ D? It turns out that this question is equivalent to asking whether the point evalu- ation functionals are weak-∗ dense in the space of multiplicative linear functionals on the Banach algebra H∞(D). This equivalence is explained in some detail in [14]. An authoritative treatment of the corona problem on the disc appears in [7].
    [Show full text]
  • Lower Bounds in the Matrix Corona Theorem and the Codimension One Conjecture
    LOWER BOUNDS IN THE MATRIX CORONA THEOREM AND THE CODIMENSION ONE CONJECTURE. SERGEI TREIL Abstract. Main result of this paper is the following theorem: given δ, 0 <δ<1/3 and n ∈ N there exists an (n +1)× n inner matrix function ∈ ∞ F H(n+1)×n such that ∗ I ≥ F (z)F (z) ≥ δ2I ∀z ∈ D, but the norm of any left inverse for F is at least [δ/(1 − δ)]−n ≥ 3 −n ( 2 δ) . This gives a lower boundfor the solution of the Matrix Corona Problem, which is pretty close to the best known upper bound C · δ−n−1 log δ−2n obtainedrecently by T. Trent [16]. In particular, both estimates grow exponentially in n; the (only) previously known lower bound Cδ−2 log(δ2n + 1) (obtainedby the author [13]) grew logarith- mically in n. Also, the lower boundis obtainedfor ( n +1)× n matri- ces, thus giving the negative answer to the so-called“codimensionone conjecture.” Another important result is Theorem 2.4 connecting left invertiblity in H∞ andco-analytic orthogonal complements. Contents Notation 1 0. Introduction 2 1. Main results 4 2. Co-analytic complements and their role in the Corona Problem 5 3. Main construction and the proofofTheorem 1.1. 10 4. ProofofTheorem 1.2. 12 5. Some open problems. 14 References 14 Notation D Open unit disk in the complex plane C, D := {z ∈ C : |z| < 1}; T Unit circle, T := ∂D = {z ∈ C : |z| =1}; Date: March, 2003. S. Treil is partially supportedby the NSF grant DMS-0200584. 1 2 SERGEI TREIL H2, H∞ Hardy classes ofanalytic functions, − |dz| Hp := f ∈ Lp(T):fˆ(k):= f(z)z k = 0 for k<0 .
    [Show full text]
  • On the Spectra of Algebras of Analytic Functions
    On the spectra of algebras of analytic functions Daniel Carando, Domingo Garc´ıa,Manuel Maestre, and Pablo Sevilla-Peris Abstract. In this paper we survey the most relevant recent developments on the research of the spectra of algebras of analytic functions. We concen- trate mainly in three algebras, the Banach algebra H1(B) of all bounded holomorphic functions on the unit ball B of a complex Banach space X, the Banach algebra of the ball Au(B), and the Fr´echet algebra Hb(X) of all entire functions bounded on bounded sets. 1. Introduction Complex analysis permeates almost any aspect of mathematics since the early nineteenth century when it was first developed by Cauchy. But it appears that, around 1955, S. Kakutani was the first one to study the space H1(D) of all bounded holomorphic functions on D, the open unit disk of the complex plane, as a Banach algebra. In the immediately following years a group of mathematicians (Singer, Wermer, Kakutani, Buck, Royden, Gleason, Arens and Hoffman) under a joint pseudonym (I. J. Schark [62]) and in individual papers used this functional analytic point of view to develop the study of many aspects of the theory. If we consider the space H1(D) as a Banach algebra, a key element is to describe the spectrum M(H1(D)), i.e. the set of all multiplicative linear functionals on H1(D) which is a compact set when endowed with the weak-star topology. The biggest milestone of this early period is the Corona Theorem, given by Newman (in a weak form) and Carleson [26] in 1962, that states that the evaluations at points of D form a dense subset of the spectrum of H1(D).
    [Show full text]
  • A New Estimate for the Vector Valued Corona Problem
    Journal of Functional Analysis 189, 267–282 (2002) doi:10.1006/jfan.2001.3842, available online at http://www.idealibrary.comon A New Estimate for the Vector Valued Corona Problem Tavan T. Trent1 Department of Mathematics, The University of Alabama, Box 870350, Tuscaloosa, Alabama 35487 E-mail: [email protected] Communicated by D. Sarason Received May 5, 2001; accepted June 18, 2001 We improve an estimate of Fuhrmann and Vasyunin in the vector valued corona theorem. © 2002 Elsevier Science (USA) Key Words: Hilbert space; vector valued corona theorem; ideals of operators; Carleson; Tolokonnikov; Vasyunin. View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector In this paper we will give an improved estimate in the vector valued corona theorem for the unit disk. Our proof will be split into two parts: first, we will resurrect the operator corona theorem from the 1970s, and then we will use a Hilbert space argument, based on a version of Wolff’s ideas. Since we use Hilbert space methods, the Riesz representation theorem replaces the usual “¯-techniques. In 1962 Carleson determined when a finitely generated ideal in H.(D) is actually all of H.(D), by giving a function theory condition on the . generators. Namely, I(f1 , ..., fm )=H (D) if and only if there exists an ;m 2 2 e >0, so that i=1 |fi (z)| \ e for all z ¥ D. Actually, more was shown, as m a bound for the size of solutions was given. More precisely, if {fi }i=1 … .
    [Show full text]
  • Cluster Values for Algebras of Analytic Functions
    Advances in Mathematics 329 (2018) 157–173 Contents lists available at ScienceDirect Advances in Mathematics www.elsevier.com/locate/aim ✩ Cluster values for algebras of analytic functions Daniel Carando a,b, Daniel Galicer a,b,∗, Santiago Muro a,b, Pablo Sevilla-Peris c a Departamento de Matemática - PAB I, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires, (1428) Buenos Aires, Argentina b Instituto de Investigaciones Matemáticas Luis A. Santaló (IMAS) -CONICET UBA, Argentina c Instituto Universitario de Matemática Pura y Aplicada, Universitat Politècnica de de València, Cmno Vera s/n, 46022, Valencia, Spain a r t i c l e i n f o a b s t r a c t Article history: The Cluster Value Theorem is known for being a weak version Received 19 September 2016 of the classical Corona Theorem. Given a Banach space X, we Received in revised form 11 August study the Cluster Value Problem for the ball algebra Au(BX ), 2017 the Banach algebra of all uniformly continuous holomorphic Accepted 15 August 2017 functions on the unit ball BX ; and also for the Fréchet Available online xxxx algebra Hb(X)of holomorphic functions of bounded type on Communicated by C. Fefferman X (more generally, for Hb(U), the algebra of holomorphic MSC: functions of bounded type on a given balanced open subset 46J15 U ⊂ X). We show that Cluster Value Theorems hold for all 46E50 of these algebras whenever the dual of X has the bounded 30H05 approximation property. These results are an important advance in this problem, since the validity of these theorems Keywords: was known only for trivial cases (where the spectrum is Cluster value problem formed only by evaluation functionals) and for the infinite Corona Theorem dimensional Hilbert space.
    [Show full text]
  • The Space of Bounded Analytic Functions on a Region Annales De L’Institut Fourier, Tome 16, No 1 (1966), P
    ANNALES DE L’INSTITUT FOURIER LEE A. RUBEL A. L. SHIELDS The space of bounded analytic functions on a region Annales de l’institut Fourier, tome 16, no 1 (1966), p. 235-277 <http://www.numdam.org/item?id=AIF_1966__16_1_235_0> © Annales de l’institut Fourier, 1966, tous droits réservés. L’accès aux archives de la revue « Annales de l’institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier. Grenoble 16, 1 (1966). 235-277. THE SPACE OF BOUNDED ANALYTIC FUNCTIONS ON A REGION by L.A. RUBEL and A.L. SHIELDS Dedicated to the memory of David Loy^denslager The work of the first author was supported in part by the United States Air Force Office of Scientific Research Grant AF OSR 460-63. The work of the second author was supported in part by the National Science Foundation. CONTENTS 1. INTRODUCTION ...................................... 238 2. DEFINITIONS AND PRELIMINARIES ........................ 241 2.1. G, G-, 9G ................................... 241 2.2. 3 non-constant /.............................. 241 2.3. 3 interpolating / .............................. 242 2.4 Bn(G): H»(G) ............................... 242 2.5. M(G), ||^ ), (f, [X) ............................ 242 2.6. [J7d[x[ ^J / djpJ ^ [ (AN : cases of equality ...... 242 2.7. Proposition. |/[| === ||/| ........................ 242 2.8 (A - v : N(G) ................................
    [Show full text]
  • Operator Theory a Comprehensive Course in Analysis, Part 4
    Operator Theory A Comprehensive Course in Analysis, Part 4 Barry Simon Operator Theory A Comprehensive Course in Analysis, Part 4 http://dx.doi.org/10.1090/simon/004 Operator Theory A Comprehensive Course in Analysis, Part 4 Barry Simon Providence, Rhode Island 2010 Mathematics Subject Classification. Primary 47-01, 34-01, 46-01; Secondary 81Q10, 34L05, 35P05, 42C05, 46H05, 22B05. For additional information and updates on this book, visit www.ams.org/bookpages/simon Library of Congress Cataloging-in-Publication Data Simon, Barry, 1946– Operator theory / Barry Simon. pages cm. — (A comprehensive course in analysis ; part 4) Includes bibliographical references and indexes. ISBN 978-1-4704-1103-9 (alk. paper) 1. Mathematical analysis—Textbooks. 2. Operator theory. I. Title. QA300.S5285 2015 515.724—dc23 2015033104 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service. For more information, please visit: http://www.ams.org/rightslink. Send requests for translation rights and licensed reprints to [email protected]. Excluded from these provisions is material for which the author holds copyright. In such cases, requests for permission to reuse or reprint material should be addressed directly to the author(s).
    [Show full text]