Australian Plants Society South East NSW Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward a Resolution of Campanulid Phylogeny, with Special Reference to the Placement of Dipsacales
TAXON 57 (1) • February 2008: 53–65 Winkworth & al. • Campanulid phylogeny MOLECULAR PHYLOGENETICS Toward a resolution of Campanulid phylogeny, with special reference to the placement of Dipsacales Richard C. Winkworth1,2, Johannes Lundberg3 & Michael J. Donoghue4 1 Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461–CEP 05422-970, São Paulo, SP, Brazil. [email protected] (author for correspondence) 2 Current address: School of Biology, Chemistry, and Environmental Sciences, University of the South Pacific, Private Bag, Laucala Campus, Suva, Fiji 3 Department of Phanerogamic Botany, The Swedish Museum of Natural History, Box 50007, 104 05 Stockholm, Sweden 4 Department of Ecology & Evolutionary Biology and Peabody Museum of Natural History, Yale University, P.O. Box 208106, New Haven, Connecticut 06520-8106, U.S.A. Broad-scale phylogenetic analyses of the angiosperms and of the Asteridae have failed to confidently resolve relationships among the major lineages of the campanulid Asteridae (i.e., the euasterid II of APG II, 2003). To address this problem we assembled presently available sequences for a core set of 50 taxa, representing the diver- sity of the four largest lineages (Apiales, Aquifoliales, Asterales, Dipsacales) as well as the smaller “unplaced” groups (e.g., Bruniaceae, Paracryphiaceae, Columelliaceae). We constructed four data matrices for phylogenetic analysis: a chloroplast coding matrix (atpB, matK, ndhF, rbcL), a chloroplast non-coding matrix (rps16 intron, trnT-F region, trnV-atpE IGS), a combined chloroplast dataset (all seven chloroplast regions), and a combined genome matrix (seven chloroplast regions plus 18S and 26S rDNA). Bayesian analyses of these datasets using mixed substitution models produced often well-resolved and supported trees. -
Newsletter No.67
ISSN 0818 - 335X November, 2003 ASSOCIATION OF SOCIETIES FOR GROWING AUSTRALIAN PLANTS ABN 56 654 053 676 THE AUSTRALIAN DAISY STUDY GROUP NEWSLETTER NO. 67 Esma Salkin Studentship and proposed projects for the studentship Leader's letter and coming events Species or forms new to members Jeanette Closs, Ozotharnnus reflexifolius Judy Barker and Joy Greig Daisies of Croajingolong N. P. (contd.) Joy Greig More about Xerochrysum bracteaturn Barrie Hadlow from Sandy Beach (NSW) A postscript to 'Daisies in the Vineyard' Ros Cornish Leptorhynchos sprfrom-Dimmocks -Judy Barker Lookout Daisies on Lord Howe Island Pat and John Webb Ozothamnus rodwayi Beryl Birch Daisies for the SA Plant Sale on ~7~~128'~Syd and Syl Oats September Report from Pomonal Linda Handscombe ADSG Display at the APS SA Plant Sale Syd and Syl Oats Propagation pages - Ray Purches, Bev Courtney, Margaret Guenzel, Syd Oats, Judy Barker An innovative use for a rabbit's cage Syd and Syd Oats Members' reports - Corinne Hampel, Jeff Irons, Ray Purches, Jan Hall, Ros Cornish, Jeanette Closs, Syd Oats, Gloria Thomlinson June Rogers Podolepis robusta Financial Report, editor's letter, new (illustrated by Gloria Thomlinson) members, seed donors, seed additions and deletions, index for 2003 newsletters OFFICE BEARERS: Leader and ADSG Herbarium Curator -Joy Greig, PO Box 258, Mallacoota, 3892. TellFax: (03) 51 58 0669 (or Unit 1, 1a Buchanan St, Boronia, 31 55. Tel: (03) 9762 7799) Email [email protected] Treasurer - Bev Courtney, 9 Nirvana Close, Langwarrin, 3910. Provenance Seed Co-ordinator - Maureen Schaumann, 88 Albany Drive, Mulgrave, 3170. Tel: (03) 9547 3670 Garden and Commercial Seed Co-ordinator and Interim Newsletter Editor: - Judy Barker, 9 Widford St, East Hawthorn, 3123. -
Pittosporum Angustifolium
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Southern Queensland ePrints University of Southern Queensland An investigation of the ecology and bioactive compounds of Pittosporum angustifolium endophytes A Thesis Submitted by Michael Thompson Bachelor of Science USQ For the Award of Honours in Science 2014 Abstract Endophytes are microorganisms that reside in the internal tissue of living plants without causing any apparent negative effects to the host. Endophytes are known to produce bioactive compounds and are looked upon as a promising source of novel bioactive compounds. There is currently limited knowledge of Australian endophytes regarding the species diversity, ecological roles and their potential as producers of antimicrobial compounds. The plant Pittosporum angustifolium was used medicinally by Indigenous Australians to treat a variety of conditions such as eczema, coughs and colds. In this study the diversity of endophytic species, host-preference of endophytes and antimicrobial potential of the resident endophytes is investigated in P. angustifolium. During this study a total of 54 endophytes were cultured from leaf samples of seven different P. angustifolium plants. Using molecular identification methods, the ITS-rDNA and SSU-rDNA regions of fungal and bacterial endophytes respectively were sequenced and matched to species recorded in GenBank. This approach, however, could not identify all isolates to the species level. Analysing the presence/absence of identified isolates in each of the seven trees found no evidence to indicate any host-specific relationships. Screening of each isolated endophyte against four human pathogens (Staphylococcus aureus, Serratia marcescens, Escherichia coli and Candida albicans) found two species displaying antimicrobial activity. -
Pittosporum Tobira – Mock Orange
Pittosporum tobira – Mock Orange Common Name(s): Japanese pittosporum, Mock Orange, Pittosporum Cultivar(s): Variegata, Mojo, Cream de Mint Categories: Shrub Habit: Evergreen Height/Width: 8 to 12 feet tall and 4 to 8 feet wide; some dwarf varieties available Hardiness: Zones 7 to 10 Foliage: Alternate, simple, leathery, lustrous dark green leaves; 1.5 to 4 inches long Flower: 2 to 3 inch clusters of fragrant flowers in late spring Flower Color: creamy white Site/Sun: Sun to shade; Well-drained soil Form: Stiff branches; dense broad spreading mound Regions: Native to Japan and China; grows well in the Coastal Plains and Eastern Piedmont of North Carolina. Comments: Tough and durable plant that tolerates drought, heat, and salt spray. It can be severely pruned. However, heavy pruning may cause blooming to be reduced. The plant is frequently damaged by deer. Variegated pittosporum. Photo Karen Russ Pittosporum tobira growth habit. Photo Scott Zona Currituck Master Gardeners Plant of the Month – December 2017 When, Where, and How to Plant Pittosporums are very tolerant of a range of soil conditions, as long as the soil is well drained. Poor drainage or excessive moisture can lead to rapid death from root rot diseases. So, avoid planting in areas where water accumulates after rains. They grow well in both full sun and shade, and are very heat tolerant. Pittosporums can suffer from cold damage if they are grown in the upper Piedmont or Mountain regions of North Carolina. Growing Tips and Propagation This shrub is relatively low maintenance and can be pruned at any time during the year. -
New and Revised Plant Declarations in South Australia
Twentieth Australasian Weeds Conference New and revised plant declarations in South Australia David A. Cooke, Michaela A. Heinson and John G. Virtue Biosecurity SA, GPO Box 1671, Adelaide, South Australia 5001, Australia ([email protected]) Summary South Australia has conducted a com- • Notification – The presence and locations of the prehensive review of plant declarations under the declared plant must be reported to the regional Natural Resources Management Act 2004. Various NRM Authority by the owner of the land. sections of this Act allow for prohibition of sale and • Control – Land owners are required to take action road transport of declared plants, legal requirements to destroy or control certain declared plant species for landholder control and formal notification of their present on their property. NRM Authorities are presence. Declarations are based on risk assessment also responsible for controlling these declared and policies adopted for each species. The review plants on road reserves, and may have the power has occurred over four phases with 155 weed policies to recover costs of control from the adjoining revised or newly developed. Policies cover broad goals landowners. and objectives, state risk assessment and regional The first comprehensive review of plants declared management actions. under weeds legislation in South Australia in 20 years, There are currently 140 declared plants in SA with as described in Heinson et al. (2014), commenced in another five currently under consideration. These are 2010. The review was split into phases and is now in alisma (Alisma lanceolatum With.), coastal tea-tree its fourth and final phase. For each phase a revised (Leptospermum laevigatum (Gaertn.) F.Muell.), dune or new, state-level policy was prepared for a plant. -
Auranticarpa Rhombifolia (A.Cunn
Australian Tropical Rainforest Plants - Online edition Auranticarpa rhombifolia (A.Cunn. ex Hook.) L.Cayzer, Crisp & I.Telford Family: Pittosporaceae Cayzer, L.W., Crisp, M.D. & Telford, I.R.H. (2000) Aust. Syst. Bot. 13(6): 907-909. Common name: Diamond leaf Laurel; Hollywood; Queensland Pittosporum; White Holly Stem Tree up to 25 metres. Bark pale grey, fissured, more or less corky. Leaves Alternate, commonly clustered in pseudo-whorls behind terminal bud, without stipules; petioles short, Flowers. CC-BY: APII, ANBG. 5-15 mm. Blades obovate to elliptic, coarsely toothed in distal half or entire, glabrous, 5-12 cm long, 3-5 cm wide; pinnately veined with 11-15 pairs of secondary veins each side of midvein; secondary veins distinct to raised on both surfaces; apex acuminate, blunt; base markedly attenuate. Flowers In axillary corymbs or panicles; strongly fragrant; sepals 5, free, cream to white, 1-2 mm long; petals 5, free, much longer than sepals, white to cream, 5-6 mm long; stamens 5, free; anthers 2-3 mm long, dorsifixed on filaments that taper from a broad base; gynoecium superior and borne on a prominent gynophore; locules 2 (3). Fruit. CC-BY: APII, ANBG. Fruit An obovoid, yellow-orange capsule, opening to release one or more black seeds that are not embedded in a sticky matrix; locules 2 (or 3); placentation axile. Seedlings Seed germination time ca. 84 days. Cotyledons ovate or lanceolate, about 15-22 x 4-8 mm. First pair of leaves alternate, rhomboid or obovate, lobed or coarsely toothed towards the apex. Tenth leaf stage not available but probably: leaf blade margin toothed. -
Pittosporum Viridiflorum Cape Pittosporum Pittosporaceae
Pittosporum viridiflorum Cape pittosporum Pittosporaceae Forest Starr, Kim Starr, and Lloyd Loope United States Geological Survey--Biological Resources Division Haleakala Field Station, Maui, Hawai'i May, 2003 OVERVIEW Pittosporum viridiflorum (Cape pittosporum), native to South Africa, is cultivated in Hawai'i as an ornamental plant (Wagner et al. 1999). In Hawai'i, P. viridiflorum was first collected in 1954. It has spread from plantings via bird dispersed seeds and is now naturalized on the islands of Hawai'i, Lana'i, and Maui (Starr et al. 1999, Wagner et al. 1999). Due to its relative small distribution and potential threat, P. viridiflorum is targeted for control by the Big Island Invasive Committee (BIISC) on Hawai'i and is a potential future target for control by the Maui Invasive Species Committee (MISC) on Maui. The Lana'i population could also be evaluated for control. TAXONOMY Family: Pittosporaceae (Pittosporum family) (Wagner et al. 1999). Latin name: Pittosporum viridiflorum Sims (Wagner et al. 1999). Synonyms: None known. Common names: Cape pittosporum, cheesewood (Wagner et al. 1999, Matshinyalo and Reynolds 2002). Taxonomic notes: Pittosporaceae is a family made up of 9 genera and about 200 species from tropical and warm termperate areas of the Old World, being best developed in Australia (Wagner et al. 1999). The genus Pittosporum is made up of about 150 species of tropical and subtropical Africa, Asia, Australia, New Zealand, and some Pacific Islands (Wagner et al. 1999). Nomenclature: The genus name, Pittosporum, is derived from the Greek word, pittos, meaning pitch, and sporos, meaning seeds, in reference to the black seeds covered with viscid resin (Wagner et al. -
Live Bayside Plant Bayside Publication
Live Bayside Plant Bayside Contents 2 Introduction What are indigenous plants? Bayside’s original vegetation communities Bayside’s natural bushland reserves Get involved and learn 8 Bayside City Council Garden Design 76 Royal Avenue, Main considerations Sandringham. VIC 3191. Tel: 9599 4444 Habitat gardening Utilising runoff www.bayside.vic.gov.au Designing with indigenous plants 22 Acknowledgements Planting and Maintenance This booklet was produced by Green Gecko Publications with the kind permission of Plant selection Nillumbik Shire Council to modify Live Local Plant Local: A guide to planting in Nillumbik. Site preparation Photographs by Bayside City Council, Pauline Reynolds, Mary Trigger, Elaine Shallue, Planting technique Naina I Knoess Maintenance Design: www.nainak.com.au 28 Disclaimer: Although precautions have been taken to ensure the accuracy of the Indigenous Plant List information, the publishers, authors and printers cannot accept responsibility for any claim, Creepers and climbers loss, damage or liability arising out of the use of the information provided. Herbs and groundcovers Cover image: Love Creeper Grasses and flaxes This publication is printed on 100% recycled paperstock. Rushes and sedges Small shrubs Large shrubs Trees Pest Plants 61 Further Reading 65 Green Gecko PUBLICATIONS Mary Trigger Tel: 0414 641 337 Email: [email protected] ABN: 90618914198 Indigenous or native plants Many retail nurseries sell ‘native’ When two species crossbreed they plants. This refers to any plant found in can create a third species e.g. Horse x Introduction Australia, as opposed to an ‘indigenous’ Donkey = Mule. Many native Correas plant that is specific to a region e.g. have crossed with indigenous Correas Bayside. -
Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al. -
Bush Tucker Plant Fact Sheets
Traditional Bush Tucker Plant Fact Sheets Acknowledgements: We would like to acknowledge the traditional Noongar owners of this land and custodians of the knowledge used in these Fact Sheets. Illustrations and photos by Melinda Snowball, Deb Taborda, Amy Krupa, Pam Agar and Sian Mawson. ALGAE BUSTER Developed by SERCUL for use with the Bush Tucker Education Program. Used as food Used as medicine Used as resources Local to SW WA Caution: Do not prepare bush tucker food without having been shown by Indigenous or experienced persons. PHOSPHORUS www.sercul.org.au/our-projects/ AWARENESS PROJECT bushtucker/ Some bush tucker if eaten in large quantities or not prepared correctly can cause illness. Australian Bluebell Scientific name: Billardiera heterophylla Aboriginal name: Gumug (Noongar) Plant habit Leaf and stem Flower Fruit About ... Family PITTOSPORACEAE This plant relies on birds to eat the fruit and then Climate Temperate disperse the seeds. The seeds then germinate to produce a new plant. Habitat Open forest and woodland areas Australian bluebells are a common bushland plant Form Small shrub; twiner of the south west of Western Australia. This plant Height: up to 1.5 m has been introduced to the Eastern States, where it is considered a weed; as it forms a thick mat over the Foliage Long, leafy stems which twist around native vegetation. themselves or nearby plants Glossy green, leathery leaves The plant contains toxins which can cause nausea and Length: 50 mm skin irritation, so wear gloves if handling it. (Eurobodalla Shire Council) Flower Birak to Bunuru (Summer) but can flower all year around Intense blue Aboriginal Uses Bell-shaped Occur in clusters of two or more flowers • The fleshy blue berries can be eaten when ripe and Length: up to 10 mm are quite sweet with a soft texture Fruit Follow on from the flower Greenish-blue fruits Length: up to 20 mm Cylindrical in shape Contain many sticky seeds ALGAE BUSTER Developed by SERCUL for use with the Bush Tucker Education Program. -
A Aura Rhom Anntica Mbifo Arpa Ollia
Plant of the Week AAuurraannttiiccaarrppaa rrhhoommbbiiffoolliiaa Diammond Leaf Pittoosporum, White Hollywood Until recently, we would have called this tree Pittosporum rhombifolium, but in the year 2000, botanists decided that, together with another 5 species also previously included in the genus Pittosporum, it was more appropriately included in Auranticarpa (meaning “golden fruit”)1. The Diamond Laurel, Diamond Leaf Pittosporum or White Hollywood, is a small to medium rainforest tree that grows on basalt soils from the Richmond River in northern NSW to the Forty Mile Scrub National Park near the Undara Lava Tubes on the Kennedy Highway south-west of Innisfail in tropical north Queensland. White flowers in late spring and early summer are followed by spectacular displays of bright orange fruit in late summer and autumn. The specific name rhombifolia refers to the rhomboid, or diamond, shaped leaves. Butterflies are attracted to the nectar in flowers and seeds are eaten and dispersed by birds. Not surprisingly, this has become a very popular garden plant, not just in Australia but elsewhere in the world. Distribution of Auranticarpa rhombifolia in Australia. Outliers indicate trees planted in parks, gardens or as street trees. 1 Cayzer, L.W., Crisp, M.D. & Telford, I.R.H. (2000) Auranticarpa, a new genus of Pittosporaceae from northern Australia. Australian Systematic Botany 13(6): 907-909 2Society for Growing Australian Plants, Queensland Region: www.sgapqld.org.au/butterfly_attracting.pdf Map: Distribution of Auranticarpa rhombifolia, Atlas of Living Australia, http://bie.ala.org.au/species/Auranticarpa+rhombifolia Alison Downing & Kevin Downing 12.03.2012 Downing Herbarium, Department of Biological Sciences. -
Listing Advice
The Minister listed this as a key threatening process, effective from 8 January 2010 Advice to the Minister for the Environment, Heritage and the Arts from the Threatened Species Scientific Committee (the Committee) on Amendments to the List of Key Threatening Processes under the Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) 1. Name and description of the threatening process 1.1 Title of the process Loss and degradation of native plant and animal habitat by invasion of escaped garden plants, including aquatic plants. 1.2 Name Changes The original title of the nomination was ‘Loss and degradation of native plant and animal habitat by invasion of escaped garden plants’. The Committee changed the name of the nomination to ‘Loss and degradation of native plant and animal habitat by invasion of escaped garden plants, including aquatic plants’ to reflect that the threatening process is not restricted to the terrestrial environment. 1.3 Description of the process The homogenisation of the global flora and fauna through the mass movement of species is creating one of the greatest environmental challenges facing the planet (Wilson, 1992). In natural ecosystems, invasive plants impact negatively on the biodiversity of many Australian vegetation types ranging from tropical wetlands to arid riverine vegetation. Leigh and Briggs (1992) identified weed competition as the primary cause for the extinction of at least four native plant species, and estimated that another 57 species were threatened or would become so in the future through competition of weeds. These figures almost certainly underestimate the contemporary problem by a large margin. The gardening industry is by far the largest importer of introduced plant species, being the source for the introduction of 25 360 or 94% of non-native plant species into Australia (Virtue et al., 2004).