Physics 305 Summary of Week 1 Schrödinger and Heisenberg

Total Page:16

File Type:pdf, Size:1020Kb

Physics 305 Summary of Week 1 Schrödinger and Heisenberg Physics 305 Summary of Week 1 SchrodingerÄ and Heisenberg picture We are all familiar with the SchrÄodinger equation, that tells us how a state ªs depends on time j i d ih¹ ª = H ª : (1) dtj si j si Here H is the hamiltonian, in general some given function of the position and momentum. One can write the formal solution to the SchrÄodinger equation as ¡ i tH ª = e h¹ ª : (2) j si j hi where ª is time-independent: it coincides with ª at t = 0. We call ªs the SchrÄodinger j hi j si j i wavefunction and ªh the Heisenberg wavefunction. We can introduce a complete or- thonormal basis ofjeigenstatesi of H H n = En n ; n m = ±nm (3) j i j i h j i and decompose ª as j hi ªh = X cn n cn = n ªh : (4) j i n j i h j i 2 The cn's are (time-independent) complex numbers such that cn = 1. The time- Pn dependent SchrÄodinger wavefunction can now be expressed as j j i ¡ h¹ tEn ªs = X cne n : (5) j i n j i There are now two equivalent ways of describing time evolution in quantum mechanics. In the SchrÄodinger picture, states are time-dependent and satisfy the SchrÄodinger equation (1). Operators As in the SchrÄodinger picture, such as the position and momentum operator and functions thereof, are time-independent. Their expectations values, de¯ned as A = ª A ª , do depend on time, via h i h sj sj si d i A = [H; A] : (6) dth i h¹ D E 1 In the Heisenberg picture, on the other hand, the states ªh are time-independent and related to the SchrÄodinger states via eqn (2). The time-depj endencei in this formulation is contained in the operators Ah, which satisfy the equation of motion d i A = [H; A ] (7) dt h h¹ h The Heisenberg operators are related to the time-independent SchrÄodinger operators via i tH ¡ i tH Ah = e h¹ Ase h¹ (8) This relation combined with (1) implies that expectation values in the Heisenberg picture, de¯ned as A = ª A ª , are identical to those de¯ned in the SchrÄodinger picture h i h hj hj hi i tH ¡ i tH ª A ª = ª e h¹ A e h¹ ª = ª A ª (9) h hj hj hi h hj s j hi h sj sj si So it is clear that both formalisms are indeed equivalent: in both pictures, the expectation value of operators satisfy the Ehrenfest equation of motion (6). In the SchrÄodinger picture, the time-dependence comes from the wavefunctions, in the Heisenberg picture from the operators. Charged particle in an electro-magnetic field To write the hamiltonian of a charged particle in an electro-magnetic ¯eld, we introduce the electro-magnetic vectorpotential : A~(~x; t) and potential : Á(~x; t) : (10) The B~ and E~ ¯eld are obtained from these potentials via 1 @A~ B~ = ~ A E~ = ~ Á (11) r £ ¡r ¡ c @t Given A~ and Á, the hamiltonian of a particle with charge e and mass m is given by 1 e H = (p~ + A~(~x; t))2 + eÁ(~x; t) : (12) 2m c 2 The form of this hamiltonian is ¯xed by the requirement that the resulting equations of motion take the correct form in terms of the Lorentz force. It is convenient to work in the Heisenberg picture. The position and momentum operators satisfy d~x i @H = [ H; ~x ] = (13) dt h¹ @p~ dp~ i @H = [ H; p~ ] = ; (14) dt h¹ ¡ @~x where we used the canonical commutation relations h¹ [p ; x ] = ± k; l = 1; 2; 3: (15) k l i kl The above equations are just the Hamilton equations of classical mechanics, except that ~x and p~ are now operators, rather than just numbers. For the time-derivative of the position operator we ¯nd d~x 1 e = (p~ + A~): (16) dt m c So velocity and momentum are no longer in the same direction. The above relation can be rewritten as e d~x p~ = m~v A~ ; ~v (17) ¡ c ´ dt With a bit more work { taking the time-derivative of (16) and using the second Hamilton equation (14) and relations (11) { one derives that d2x e m = eE~ ~v B~ : (18) dt2 ¡ ¡ c £ This is the Lorentz force equation. Charged particle in a constant magnetic field We now consider the case of a constant magnetic ¯eld. Without loss of generality, we can choose the B-¯eld in the direction of the z-axis: B~ = ( 0; 0; B) (19) with B a constant. For the corresponding vector potential, we choose A~ = ( 1 By; 1 Bx; 0) : (20) ¡ 2 2 3 You can verify that A~ and B~ are related via (11). Plugging (20) into (12), we obtain the hamiltonian 1 e 2 e 2 2 H = (px By) + (py + Bx) + p : (21) 2m³ ¡ 2c 2c z´ This can be rewritten as: 1 p2 H = (p2 + p2) + 1 m!2(x2 + y2) + !L + z (22) 2m x y 2 z 2m with Lz = xpy ypx (23) ¡ the angular momentum in the z direction, and eB ! ! = = L : (24) 2mc 2 !L is the well-known Larmor frequency. Note that this hamiltonian does not look invariant under translations in the (x; y) plane, although the physics should be translation invariant. We will explain this later. The hamiltonian (22) also looks a bit complicated, because it has many terms. Things are not as bad as they look, however. As we will see, it can be reduced to the hamiltonian of a simple harmonic oscillator. First we note that the motion in the z-direction is trivial: the hamiltonian equations of motion for z and pz read dz p dp = z ; z = 0; (25) dt m dt which tells us that the particle moves with a uniform velocity in the z-direction. From now on we will ignore this z-motion, and concentrate of the motion in the (x; y)-plane. A second helpful fact is that all the terms in H are (at most) quadratic in positions and momenta. As a result, the corresponding Hamilton equations of motion can be written as a linear equation: x px=m !y 0 ! 1=m 0 x 0 1 0 ¡ 1 0 ¡ 1 0 1 d y py=m + !x ! 0 0 1=m y B C = B 2 C = B 2 C B C : (26) dt B px C B m! x !py C B m! 0 0 ! C B px C B C B 2 ¡ C B 2 ¡ C B C @ py A @ m! y + !px A @ 0 m! ! 0 A @ py A 4 To solve these equations, we would like to ¯nd suitable linear combinations of the coordi- d nates and momenta, such that the time-derivative dt acts via a diagonal matrix. In other words, we want to diagonalize the above 4 4 matrix. We will do this in two steps. £ The ¯rst two terms of the hamiltonian are those of a simple harmonic oscillator. It is therefore natural to introduce creation and annihilation operators via h¹ y hm!¹ y x = (ax + a ) px = i (ax a ) (27) q 2m! x ¡ q 2 ¡ x h¹ y hm!¹ y y = (ay + a ) py = i (ay a ) (28) q 2m! y ¡ q 2 ¡ y These are the standard expressions for the creation and annihilation operators of a harmonic oscillator. From (15) one deduces the familiar commutation relations y y [ax; ax] = 1 ; [ay; ay] = 1: (29) Let us express the hamiltonian in terms of these new operators. A simple calculation shows that y y y y H = h!¹ (a ax + a ay + 1) + ih!¹ (a ax a ay) (30) x y y ¡ x In the ¯rst term we recognize the hamiltonion of two harmonic oscillators, and the last term is equal to !Lz. The hamiltonian can be simpli¯ed a bit further, by introducing the complex combina- tions 1 y 1 y y a§ = (ax iay) ; a§ = (a ia ) (31) p2 § p2 x ¨ y which also satisfy the standard commutation relations of creation and annihilation operators y y [a+ ; a+ ] = 1 ; [a¡ ; a¡ ] = 1: (32) The hamiltonian reduces to the very simple form y 1 H = h!¹ L(a+ a+ + 2 ) (33) y Note that H does not depend on a¡ and a¡. Using (7) and (32), we ¯nd for the equation y of motion of the creation and annihilation operators (a§; a§) a+ i!La i!L 0 0 0 a+ 0 1 0 ¡ + 1 0 ¡ 1 0 1 d a¡ 0 0 0 0 0 a¡ B y C = B y C = B C B y C (34) dt B a+ C B i!La+ C B 0 0 i!L 0 C B a+ C B y C B C B C B y C @ a¡ A @ 0 A @ 0 0 0 0 A @ a¡ A 5 So, as promised, we have diagonalized the equation of motion. It is now an easy task to obtain the energy spectrum. The following formulas are just the standard ones for a harmonic oscillator; in our case, we just have two oscillators, one with frequency !L and one with frequency 0. We introduce the number operators y y N+ = a+ a+ ; N¡ = a¡ a¡ : (35) The corresponding eigenstates are N+ n ; n¡ = n n ; n¡ ; N¡ n ; n¡ = n¡ n ; n¡ (36) j + i + j + i j + i j + i The creation and annihilation operators act on these eigenstates as follows y a n+ ; n¡ = n+ + 1 n++ 1; n¡ ; a+ n+ ; n¡ = pn+ n+ 1; n¡ (37) + j i q j i j i j ¡ i y a n+ ; n¡ = n¡ + 1 n+ ; n¡+ 1 ; a¡ n+ ; n¡ = pn¡ n+ ; n¡ 1 (38) ¡ j i q j i j i j ¡ i All these eigenstates can be obtained from the ground state by acting with the creation operators 1 y n y n n ; n = (a ) + (a ) ¡ 0; 0 (39) j + ¡ i + ¡ j i qn+! n¡! where 0; 0 is annihilated by both annihilation operators j i a 0; 0 = a 0; 0 = 0 (40) + j i ¡ j i 1 The hamiltonian (33) is just H = h!¹ L(N+ + 2 ), so its eigenvalues and eigenstates are 1 H n ; n¡ = h¹!L(n+ + ) n ; n¡ : (41) j + i 2 j + i Note that the eigenvalues are independent of n¡ , so there are in¯nitely many eigenstates with the same given eigenenergy.
Recommended publications
  • 1 Notation for States
    The S-Matrix1 D. E. Soper2 University of Oregon Physics 634, Advanced Quantum Mechanics November 2000 1 Notation for states In these notes we discuss scattering nonrelativistic quantum mechanics. We will use states with the nonrelativistic normalization h~p |~ki = (2π)3δ(~p − ~k). (1) Recall that in a relativistic theory there is an extra factor of 2E on the right hand side of this relation, where E = [~k2 + m2]1/2. We will use states in the “Heisenberg picture,” in which states |ψ(t)i do not depend on time. Often in quantum mechanics one uses the Schr¨odinger picture, with time dependent states |ψ(t)iS. The relation between these is −iHt |ψ(t)iS = e |ψi. (2) Thus these are the same at time zero, and the Schrdinger states obey d i |ψ(t)i = H |ψ(t)i (3) dt S S In the Heisenberg picture, the states do not depend on time but the op- erators do depend on time. A Heisenberg operator O(t) is related to the corresponding Schr¨odinger operator OS by iHt −iHt O(t) = e OS e (4) Thus hψ|O(t)|ψi = Shψ(t)|OS|ψ(t)iS. (5) The Heisenberg picture is favored over the Schr¨odinger picture in the case of relativistic quantum mechanics: we don’t have to say which reference 1Copyright, 2000, D. E. Soper [email protected] 1 frame we use to define t in |ψ(t)iS. For operators, we can deal with local operators like, for instance, the electric field F µν(~x, t).
    [Show full text]
  • An Introduction to Quantum Field Theory
    AN INTRODUCTION TO QUANTUM FIELD THEORY By Dr M Dasgupta University of Manchester Lecture presented at the School for Experimental High Energy Physics Students Somerville College, Oxford, September 2009 - 1 - - 2 - Contents 0 Prologue....................................................................................................... 5 1 Introduction ................................................................................................ 6 1.1 Lagrangian formalism in classical mechanics......................................... 6 1.2 Quantum mechanics................................................................................... 8 1.3 The Schrödinger picture........................................................................... 10 1.4 The Heisenberg picture............................................................................ 11 1.5 The quantum mechanical harmonic oscillator ..................................... 12 Problems .............................................................................................................. 13 2 Classical Field Theory............................................................................. 14 2.1 From N-point mechanics to field theory ............................................... 14 2.2 Relativistic field theory ............................................................................ 15 2.3 Action for a scalar field ............................................................................ 15 2.4 Plane wave solution to the Klein-Gordon equation ...........................
    [Show full text]
  • Discrete-Continuous and Classical-Quantum
    Under consideration for publication in Math. Struct. in Comp. Science Discrete-continuous and classical-quantum T. Paul C.N.R.S., D.M.A., Ecole Normale Sup´erieure Received 21 November 2006 Abstract A discussion concerning the opposition between discretness and continuum in quantum mechanics is presented. In particular this duality is shown to be present not only in the early days of the theory, but remains actual, featuring different aspects of discretization. In particular discreteness of quantum mechanics is a key-stone for quantum information and quantum computation. A conclusion involving a concept of completeness linking dis- creteness and continuum is proposed. 1. Discrete-continuous in the old quantum theory Discretness is obviously a fundamental aspect of Quantum Mechanics. When you send white light, that is a continuous spectrum of colors, on a mono-atomic gas, you get back precise line spectra and only Quantum Mechanics can explain this phenomenon. In fact the birth of quantum physics involves more discretization than discretness : in the famous Max Planck’s paper of 1900, and even more explicitly in the 1905 paper by Einstein about the photo-electric effect, what is really done is what a computer does: an integral is replaced by a discrete sum. And the discretization length is given by the Planck’s constant. This idea will be later on applied by Niels Bohr during the years 1910’s to the atomic model. Already one has to notice that during that time another form of discretization had appeared : the atomic model. It is astonishing to notice how long it took to accept the atomic hypothesis (Perrin 1905).
    [Show full text]
  • Finally Making Sense of the Double-Slit Experiment
    Finally making sense of the double-slit experiment Yakir Aharonova,b,c,1, Eliahu Cohend,1,2, Fabrizio Colomboe, Tomer Landsbergerc,2, Irene Sabadinie, Daniele C. Struppaa,b, and Jeff Tollaksena,b aInstitute for Quantum Studies, Chapman University, Orange, CA 92866; bSchmid College of Science and Technology, Chapman University, Orange, CA 92866; cSchool of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel; dH. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom; and eDipartimento di Matematica, Politecnico di Milano, 9 20133 Milan, Italy Contributed by Yakir Aharonov, March 20, 2017 (sent for review September 26, 2016; reviewed by Pawel Mazur and Neil Turok) Feynman stated that the double-slit experiment “. has in it the modular momentum operator will arise as particularly signifi- heart of quantum mechanics. In reality, it contains the only mys- cant in explaining interference phenomena. This approach along tery” and that “nobody can give you a deeper explanation of with the use of Heisenberg’s unitary equations of motion intro- this phenomenon than I have given; that is, a description of it” duce a notion of dynamical nonlocality. Dynamical nonlocality [Feynman R, Leighton R, Sands M (1965) The Feynman Lectures should be distinguished from the more familiar kinematical non- on Physics]. We rise to the challenge with an alternative to the locality [implicit in entangled states (10) and previously ana- wave function-centered interpretations: instead of a quantum lyzed in the Heisenberg picture by Deutsch and Hayden (11)], wave passing through both slits, we have a localized particle with because dynamical nonlocality has observable effects on prob- nonlocal interactions with the other slit.
    [Show full text]
  • Chapter 4. Bra-Ket Formalism
    Essential Graduate Physics QM: Quantum Mechanics Chapter 4. Bra-ket Formalism The objective of this chapter is to describe Dirac’s “bra-ket” formalism of quantum mechanics, which not only overcomes some inconveniences of wave mechanics but also allows a natural description of such intrinsic properties of particles as their spin. In the course of the formalism’s discussion, I will give only a few simple examples of its application, leaving more involved cases for the following chapters. 4.1. Motivation As the reader could see from the previous chapters of these notes, wave mechanics gives many results of primary importance. Moreover, it is mostly sufficient for many applications, for example, solid-state electronics and device physics. However, in the course of our survey, we have filed several grievances about this approach. Let me briefly summarize these complaints: (i) Attempts to analyze the temporal evolution of quantum systems, beyond the trivial time behavior of the stationary states, described by Eq. (1.62), run into technical difficulties. For example, we could derive Eq. (2.151) describing the metastable state’s decay and Eq. (2.181) describing the quantum oscillations in coupled wells, only for the simplest potential profiles, though it is intuitively clear that such simple results should be common for all problems of this kind. Solving such problems for more complex potential profiles would entangle the time evolution analysis with the calculation of the spatial distribution of the evolving wavefunctions – which (as we could see in Secs. 2.9 and 3.6) may be rather complex even for simple time-independent potentials.
    [Show full text]
  • Advanced Quantum Theory AMATH473/673, PHYS454
    Advanced Quantum Theory AMATH473/673, PHYS454 Achim Kempf Department of Applied Mathematics University of Waterloo Canada c Achim Kempf, September 2017 (Please do not copy: textbook in progress) 2 Contents 1 A brief history of quantum theory 9 1.1 The classical period . 9 1.2 Planck and the \Ultraviolet Catastrophe" . 9 1.3 Discovery of h ................................ 10 1.4 Mounting evidence for the fundamental importance of h . 11 1.5 The discovery of quantum theory . 11 1.6 Relativistic quantum mechanics . 13 1.7 Quantum field theory . 14 1.8 Beyond quantum field theory? . 16 1.9 Experiment and theory . 18 2 Classical mechanics in Hamiltonian form 21 2.1 Newton's laws for classical mechanics cannot be upgraded . 21 2.2 Levels of abstraction . 22 2.3 Classical mechanics in Hamiltonian formulation . 23 2.3.1 The energy function H contains all information . 23 2.3.2 The Poisson bracket . 25 2.3.3 The Hamilton equations . 27 2.3.4 Symmetries and Conservation laws . 29 2.3.5 A representation of the Poisson bracket . 31 2.4 Summary: The laws of classical mechanics . 32 2.5 Classical field theory . 33 3 Quantum mechanics in Hamiltonian form 35 3.1 Reconsidering the nature of observables . 36 3.2 The canonical commutation relations . 37 3.3 From the Hamiltonian to the equations of motion . 40 3.4 From the Hamiltonian to predictions of numbers . 44 3.4.1 Linear maps . 44 3.4.2 Choices of representation . 45 3.4.3 A matrix representation . 46 3 4 CONTENTS 3.4.4 Example: Solving the equations of motion for a free particle with matrix-valued functions .
    [Show full text]
  • 22.51 Course Notes, Chapter 9: Harmonic Oscillator
    9. Harmonic Oscillator 9.1 Harmonic Oscillator 9.1.1 Classical harmonic oscillator and h.o. model 9.1.2 Oscillator Hamiltonian: Position and momentum operators 9.1.3 Position representation 9.1.4 Heisenberg picture 9.1.5 Schr¨odinger picture 9.2 Uncertainty relationships 9.3 Coherent States 9.3.1 Expansion in terms of number states 9.3.2 Non-Orthogonality 9.3.3 Uncertainty relationships 9.3.4 X-representation 9.4 Phonons 9.4.1 Harmonic oscillator model for a crystal 9.4.2 Phonons as normal modes of the lattice vibration 9.4.3 Thermal energy density and Specific Heat 9.1 Harmonic Oscillator We have considered up to this moment only systems with a finite number of energy levels; we are now going to consider a system with an infinite number of energy levels: the quantum harmonic oscillator (h.o.). The quantum h.o. is a model that describes systems with a characteristic energy spectrum, given by a ladder of evenly spaced energy levels. The energy difference between two consecutive levels is ∆E. The number of levels is infinite, but there must exist a minimum energy, since the energy must always be positive. Given this spectrum, we expect the Hamiltonian will have the form 1 n = n + ~ω n , H | i 2 | i where each level in the ladder is identified by a number n. The name of the model is due to the analogy with characteristics of classical h.o., which we will review first. 9.1.1 Classical harmonic oscillator and h.o.
    [Show full text]
  • Superconducting Transmon Machines
    Quantum Computing Hardware Platforms: Superconducting Transmon Machines • CSC591/ECE592 – Quantum Computing • Fall 2020 • Professor Patrick Dreher • Research Professor, Department of Computer Science • Chief Scientist, NC State IBM Q Hub 3 November 2020 Superconducting Transmon Quantum Computers 1 5 November 2020 Patrick Dreher Outline • Introduction – Digital versus Quantum Computation • Conceptual design for superconducting transmon QC hardware platforms • Construction of qubits with electronic circuits • Superconductivity • Josephson junction and nonlinear LC circuits • Transmon design with example IBM chip layout • Working with a superconducting transmon hardware platform • Quantum Mechanics of Two State Systems - Rabi oscillations • Performance characteristics of superconducting transmon hardware • Construct the basic CNOT gate • Entangled transmons and controlled gates • Appendices • References • Quantum mechanical solution of the 2 level system 3 November 2020 Superconducting Transmon Quantum Computers 2 5 November 2020 Patrick Dreher Digital Computation Hardware Platforms Based on a Base2 Mathematics • Design principle for a digital computer is built on base2 mathematics • Identify voltage changes in electrical circuits that map base2 math into a “zero” or “one” corresponding to an on/off state • Build electrical circuits from simple on/off states that apply these basic rules to construct digital computers 3 November 2020 Superconducting Transmon Quantum Computers 3 5 November 2020 Patrick Dreher From Previous Lectures It was
    [Show full text]
  • Pictures and Equations of Motion in Lagrangian Quantum Field Theory
    Pictures and equations of motion in Lagrangian quantum field theory Bozhidar Z. Iliev ∗ † ‡ Short title: Picture of motion in QFT Basic ideas: → May–June, 2001 Began: → May 12, 2001 Ended: → August 5, 2001 Initial typeset: → May 18 – August 8, 2001 Last update: → January 30, 2003 Produced: → February 1, 2008 http://www.arXiv.org e-Print archive No.: hep-th/0302002 • r TM BO•/ HO Subject Classes: Quantum field theory 2000 MSC numbers: 2001 PACS numbers: 81Q99, 81T99 03.70.+k, 11.10Ef, 11.90.+t, 12.90.+b Key-Words: Quantum field theory, Pictures of motion, Schr¨odinger picture Heisenberg picture, Interaction picture, Momentum picture Equations of motion, Euler-Lagrange equations in quantum field theory Heisenberg equations/relations in quantum field theory arXiv:hep-th/0302002v1 1 Feb 2003 Klein-Gordon equation ∗Laboratory of Mathematical Modeling in Physics, Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Boul. Tzarigradsko chauss´ee 72, 1784 Sofia, Bulgaria †E-mail address: [email protected] ‡URL: http://theo.inrne.bas.bg/∼bozho/ Contents 1 Introduction 1 2 Heisenberg picture and description of interacting fields 3 3 Interaction picture. I. Covariant formulation 6 4 Interaction picture. II. Time-dependent formulation 13 5 Schr¨odinger picture 18 6 Links between different time-dependent pictures of motion 20 7 The momentum picture 24 8 Covariant pictures of motion 28 9 Conclusion 30 References 31 Thisarticleendsatpage. .. .. .. .. .. .. .. .. 33 Abstract The Heisenberg, interaction, and Schr¨odinger pictures of motion are considered in La- grangian (canonical) quantum field theory. The equations of motion (for state vectors and field operators) are derived for arbitrary Lagrangians which are polynomial or convergent power series in field operators and their first derivatives.
    [Show full text]
  • Advanced Quantum Theory AMATH473/673, PHYS454
    Advanced Quantum Theory AMATH473/673, PHYS454 Achim Kempf Department of Applied Mathematics University of Waterloo Canada c Achim Kempf, October 2016 (Please do not copy: textbook in progress) 2 Contents 1 A brief history of quantum theory 9 1.1 The classical period . 9 1.2 Planck and the \Ultraviolet Catastrophe" . 9 1.3 Discovery of h ................................ 10 1.4 Mounting evidence for the fundamental importance of h . 11 1.5 The discovery of quantum theory . 11 1.6 Relativistic quantum mechanics . 12 1.7 Quantum field theory . 14 1.8 Beyond quantum field theory? . 16 1.9 Experiment and theory . 18 2 Classical mechanics in Hamiltonian form 19 2.1 Newton's laws for classical mechanics cannot be upgraded . 19 2.2 Levels of abstraction . 20 2.3 Classical mechanics in Hamiltonian formulation . 21 2.3.1 The energy function H contains all information . 21 2.3.2 The Poisson bracket . 23 2.3.3 The Hamilton equations . 25 2.3.4 Symmetries and Conservation laws . 27 2.3.5 A representation of the Poisson bracket . 29 2.4 Summary: The laws of classical mechanics . 30 2.5 Classical field theory . 31 3 Quantum mechanics in Hamiltonian form 33 3.1 Reconsidering the nature of observables . 34 3.2 The canonical commutation relations . 35 3.3 From the Hamiltonian to the Equations of Motion . 38 3.4 From the Hamiltonian to predictions of numbers . 41 3.4.1 A matrix representation . 42 3.4.2 Solving the matrix differential equations . 44 3.4.3 From matrix-valued functions to number predictions .
    [Show full text]
  • Time Dependent Perturbation Theory) Dipan Kumar Ghosh UM-DAE Centre for Excellence in Basic Sciences Kalina, Mumbai November 15, 2018
    Quantum Mechanics-II Approximation Methods : (Time Dependent Perturbation Theory) Dipan Kumar Ghosh UM-DAE Centre for Excellence in Basic Sciences Kalina, Mumbai November 15, 2018 1 Introduction Till now we have discussed systems where the Hamiltonian had no explicit time dependence. We will now consider situation where a time dependent perturbation V (t) is present in addition to the time independent Hamiltonian H0, the solution of the latter problem is known to us and its eigenstates are given by H0 j φni = En j φni (1) In the absence of the perturbation, if the system initially happened to be in a particular eigenstate |j ni of H0, it would continue to be in that state for ever, apart from picking up an unimportant phase factor eiEnt=~. A time dependent perturbation would change that and the system would no longer in that eigenstate but be found in some state j (t)i. Since any arbitrary state can always be expressed as a linear combination of the complete set of eigenstates fj φnig of H0, it implies that the perturbation induces transi- tion between different eigenstates. The time evolution operator is no longer exp iHt=~, as would be the case if H were independent of time. The question that we address is what is the probability of transition from the given initial state j ni to different eigenstates m of the Hamiltonian H0, where m 6= n ? 2 Schr¨odinger,Heisenberg and Interaction Pictures We start with a review of Schr¨odingerand Heisenberg pictures, which we had come across in QM-1 course.
    [Show full text]
  • The University of Chicago Quantum Computing with Distributed Modules a Dissertation Submitted to the Faculty of the Division Of
    THE UNIVERSITY OF CHICAGO QUANTUM COMPUTING WITH DISTRIBUTED MODULES A DISSERTATION SUBMITTED TO THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF PHYSICS BY NELSON LEUNG CHICAGO, ILLINOIS MARCH 2019 Copyright c 2019 by Nelson Leung All Rights Reserved TABLE OF CONTENTS LIST OF FIGURES . vi LIST OF TABLES . viii ACKNOWLEDGMENTS . ix ABSTRACT . x PREFACE............................................ 1 1 QUANTUM COMPUTING . 2 1.1 Introduction to Quantum Computing . .2 1.2 High-Level Description of Some Quantum Algorithms . .3 1.2.1 Grover’s algorithm . .3 1.2.2 Shor’s algorithm . .3 1.2.3 Variational Quantum Eigensolver (VQE) . .4 1.3 Quantum Architectures . .4 1.3.1 Trapped Ions . .4 1.3.2 Silicon . .5 1.3.3 Superconducting qubits . .5 1.4 Thesis Overview . .6 2 CIRCUIT QUANTUM ELECTRODYNAMICS . 7 2.1 Quantization of Quantum Harmonic Oscillator . .7 2.2 Circuit Quantum Harmonic Oscillator . 10 2.3 Josephson Junction . 12 2.4 Quantization of Transmon Qubit . 13 2.5 Quantization of Split Junction Transmon Qubit with External Flux . 16 2.6 Coupling between Resonators . 18 2.7 Dispersive Shift between Transmon and Resonator . 21 3 CONTROLLING SUPERCONDUCTING QUBITS . 23 3.1 Charge Control . 23 3.2 Flux Control . 25 3.3 Transmon State Measurement . 25 3.4 Cryogenic Environment . 26 3.5 Microwave Control Electronics . 26 3.5.1 Oscillator . 26 3.5.2 Arbitrary waveform generator . 27 3.5.3 IQ mixer . 27 3.6 Other Electronics . 28 3.7 Microwave Components . 28 3.7.1 Attenuator .
    [Show full text]