The Effect of the Laser Incidence Angle in the Surface of L-PBF
Total Page:16
File Type:pdf, Size:1020Kb
coatings Article The Effect of the Laser Incidence Angle in the Surface of L-PBF Processed Parts Sara Sendino 1,* , Marc Gardon 2, Fernando Lartategui 3 , Silvia Martinez 1 and Aitzol Lamikiz 1 1 Aerospace Advance Manufacturing Research Center-CFAA, P. Tecnológico de Bizkaia 202, 48170 Zamudio, Spain; [email protected] (S.M.); [email protected] (A.L.) 2 EMEA AM Applications Manager, Renishaw Ibérica, Carrer de la Recerca 7, 08850 Barcelona, Spain; [email protected] 3 UO Structures & Statics, ITP Aero, P. Tecnológico de Bizkaia 300, 48170 Zamudio, Spain; [email protected] * Correspondence: [email protected] Received: 29 September 2020; Accepted: 22 October 2020; Published: 24 October 2020 Abstract: The manufacture of multiple parts on the same platform is a common procedure in the Laser Powder Bed Fusion (L-PBF) process. The main advantage is that the entire working volume of the machine is used and a greater number of parts are obtained, thus reducing inert gas volume, raw powder consumption, and manufacturing time. However, one of the main disadvantages of this method is the possible differences in quality and surface finish of the different parts manufactured on the same platform depending on their orientation and location, even if they are manufactured with the same process parameters and raw powder material. Throughout this study, these surface quality differences were studied, focusing on the variation of the surface roughness with the angle of incidence of the laser with respect to the platform. First, a characterization test was carried out to understand the behavior of the laser in the different areas of the platform. Then, the surface roughness, microstructure, and minimum thickness of vertical walls were analyzed in the different areas of the platform. These results were related to the angle of incidence of the laser. As it was observed, the laser is completely perpendicular only in the center of the platform, whilst at the border of the platform, due to the incidence angle, it melts an elliptical area, which affects the roughness and thickness of the manufactured part. The roughness increases from values of Sa = 5.489 µm in the central part of the platform to 27.473 µm at the outer borders while the thickness of the manufactured thin walls increases around 40 µm. Keywords: roughness; incidence angle; additive manufacturing; L-PBF; INCONEL718 1. Introduction Laser technology has been widely used in different industrial processes for many years, due to the characteristics of the laser source: high energy density, high efficiency, large temperature gradients, high repeatability of the process, and formation of a narrow heat-affected zone (HAZ) [1]. Nowadays, it is possible to find various research works on laser technologies such as laser welding [2,3], cutting [4,5], remelting [6,7], additive technologies [8,9] . thus demonstrating the importance of the development of these technologies. Due to the great development that the different technologies based on metal additive manufacturing (AM) have had in recent years, it seems reasonable that one of the most researched and promising metal AM process is the Laser Powder Bed Fusion (L-PBF) technology. This technology, also known by commercial names as Selective Laser Melting (SLM) or Direct Metal Laser Sintering (DMLS), is being applied for the direct manufacturing of functional components in different sectors [10,11]. Coatings 2020, 10, 1024; doi:10.3390/coatings10111024 www.mdpi.com/journal/coatings Coatings 2020, 10, 1024 2 of 12 In the L-PBF process, the final part is manufactured directly using powder as raw material. This powder is homogeneously distributed by a recoater in constant thickness layers of 20 to 60 µm. Once the recoater has distributed a layer of powder, a laser beam melts the powder within an area, which has been previously specified in the CAD (Computer-Aided Design) file. Once the complete layer has been processed, the platform lowers the thickness of a layer and the process is repeated layer-by-layer until the full part is obtained [12]. This technology presents many advantages compared to conventional machining technologies such as the ability to manufacture geometrically complex parts [10,13,14]. In addition, L-PBF also presents advantages above other AM technologies as Spierings [15] showed. One of these advantages is the wide range of alloys with very different properties and characteristics that can be processed. Thus, different applications and studies can be found with high toughness Ti-TiB composites [16,17], high-density alloys such as Cu-10Sn bronze [18], high-resistant alloys such as Al85Nd8Ni5Co2 [19], or high modulus of elasticity and mechanical strength CNTs/AlSi10Mg [20]. Therefore, L-PBF process is of special interest in sectors such as health and aerospace due to the possibility of obtaining complex parts in a wide range of available materials [10]. However, L-PBF technology has several limitations, particularly related to the poor surface finish and the need for final post-processing of the manufactured parts [10]. The parts manufactured using L-PBF show roughness values Ra between 3.2 and 12.5 µm [13], whereas conventional technologies obtain roughness values between 1–2 µm [11]. Surface quality is a critical attribute in the aerospace and medical sectors since surface imperfections caused by roughness could impact the performance of the part. Therefore, surface roughness is a well-researched crack initiator [12], reducing the life-span of the end part due to lower tensile and fatigue strength [10]. In the medical domain, rough surfaces can accumulate more micro-organisms than a smooth surface, requiring a finishing operation in many applications in the health sector [21]. Furthermore, roughness has a significant effect on the tribological behavior of the surface in applications where the friction between surfaces is present. Nowadays, in order to minimize the roughness and to achieve functional parts with real applicability, finishing operations are carried out. However, the finishing operation of parts manufactured using L-PBF technology is frequently very complex due to the geometrical complexity of the parts [22]. In addition, the finishing process increases considerably the manufacturing time and cost of the part [12] since most of the finishing processes involve manual operations. Moreover, sometimes it is not possible to finish some areas such as internal ducts or hollow cavities [23]. Therefore, it is necessary to reduce the roughness as much as possible in the additive manufacturing process itself before finishing the final part. The resultant roughness can be originated by different factors. On the one hand, the process parameters during manufacturing play an important role in the resulting roughness [22,24–26]. In this sense, it is necessary to adjust parameters such as laser power, exposure time, the distance between points, and overlapping. Some previous studies state that the use of higher laser power reduces roughness, since it increases the wettability of each layer [12], while other studies show that excessive laser power can lead to spatters of excessively oxidized particles, which would also increase roughness [23]. In addition, excessive laser power will lead to higher porosity. Thus, it is necessary to find a balance between the laser power and scan speed to ensure acceptable roughness and other properties such as porosity [11,12,23]. In addition, another process parameter that influences the roughness is the thickness of the layer used [27]. In any case, even when the optimal parameters are being used, the surface roughness can be very different depending on the position of the part in the machine [28], due to the direction of the inert gas in the manufacturing chamber [29], or the angle of incidence [28] and the geometry being processed. One of the most affected areas by roughness is the downskin area. Downskin areas are those that have not had molten material in the lower layer and have been built over non-melted powder. In this case, Coatings 2020, 10, 1024 3 of 12 Coatingssome of2020 these, 10, xpowder FOR PEER particles REVIEW remain partially attached to the processed layer when the layer3 meltsof 12 and re-solidifies during manufacturing [30]. ThereThere may may be be other other effects effects such such as as partial partial melting melting of of powder powder particles particles due due to to heat heat transfer transfer when when severalseveral parts parts are are manufactured manufactured on on the the same same platfo platform.rm. When When different different parts parts are are manufactured manufactured very very closeclose to to each each other, other, the the accumulated accumulated heat heat of of one one part part may may affect affect the the adjacent, adjacent, causing causing its its surface surface temperaturetemperature to to rise, rise, resulting resulting in in partially partially melt melt powder powder particles particles that that will will attach attach to the to thesurface surface [21]. [ 21A]. similarA similar effect eff ectcan can be beobserved observed in inthe the case case of oflarge large parts, parts, where where a ahigh high number number of of layers layers need need to to be be processedprocessed and and the the generated generated heat heat into into the the manufactur manufacturinging chamber chamber is is also also higher. higher. It It should should also also be be notednoted that thisthis roughness roughness due due to theto particlesthe particle attacheds attached