Peculiar Orbits and Asymmetries in Extreme Trans-Neptunian Space

Total Page:16

File Type:pdf, Size:1020Kb

Peculiar Orbits and Asymmetries in Extreme Trans-Neptunian Space MNRAS 000,1–17 (2021) Preprint 17 June 2021 Compiled using MNRAS LATEX style file v3.0 Peculiar orbits and asymmetries in extreme trans-Neptunian space C. de la Fuente Marcos1? and R. de la Fuente Marcos2 1Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain 2AEGORA Research Group, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain Accepted 2021 June 12. Received 2021 June 10; in original form 2021 January 5 ABSTRACT It is still an open question how the Solar system is structured beyond 100 au from the Sun. Our understanding of this vast region remains very limited and only recently we have become aware of the existence there of a group of enigmatic bodies known as the extreme trans- Neptunian objects (ETNOs) that have large orbits with perihelia beyond the orbit of Neptune. Four ETNOs —Sedna, Leleakuhonua, 2012 VP113, and 2013 SY99— have perihelia beyond 50 au. The study of the ETNOs may provide much needed information on how this remote region is organized. Here, we apply machine-learning techniques to the sample of 40 known ETNOs to identify statistically significant clusters that may signal the presence of true dynam- ical groupings and study the distribution of the mutual nodal distances of the known ETNOs that measure how close two orbits can get to each other. Machine-learning techniques show that the known ETNOs may belong to four different populations. Results from the analysis of the distribution of nodal distances show that 41 per cent of the known ETNOs have at least one mutual nodal distance smaller than 1.45 au (1st percentile of the distribution), perhaps hinting at past interactions. In this context, the peculiar pair of ETNOs made of 505478 (2013 UT15) and 2016 SG58 has a mutual ascending nodal distance of 1.35 au at 339 au from the Sun. In addition, the known ETNOs exhibit a highly statistically significant asymmetry between the distributions of object pairs with small ascending and descending nodal distances that might be indicative of a response to external perturbations. Key words: methods: statistical – celestial mechanics – minor planets, asteroids: general – Kuiper belt: general – Oort Cloud. 1 INTRODUCTION recognized (see e.g. Gladman et al. 2002; Kenyon & Bromley 2004; Morbidelli & Levison 2004; Stern 2005), the origin and evolution Our degree of understanding of the structure of the Solar system of this population (or populations) is far from well established. beyond 100 au from the Sun remains very limited. In order for this Here, we adopt the naming convention featured in Trujillo & situation to change, we have to find and study objects with orbits Sheppard(2014): extreme (outer) Solar system bodies have per- not only much larger than those of typical members of the trans- ihelion distances, q > 30 au and semimajor axes, a > 150 au. Neptunian or Kuiper belt, but also with perihelia increasingly far- These boundaries in q and a are dynamically motivated: q > 30 au ther from Neptune so their trajectories are only weakly affected by implies that the ETNOs cannot experience close encounters with the gravitational pull of the giant planets. The first object fitting Neptune and a > 150 au makes a resonant engagement with Nep- into these rather general requirements, 148209 (2000 CR ), was 105 tune unlikely (see e.g. Clement & Sheppard 2021). Such a group arXiv:2106.08369v1 [astro-ph.EP] 15 Jun 2021 discovered in February 2000 at Lowell Observatory during a sur- of minor bodies was designated as exterior trans-Neptunian objects vey of the trans-Neptunian belt (Millis et al. 2000; Gladman et al. or ETNOs by Rickman et al.(2004) and extreme trans-Neptunian 2001), signalling the presence of an extended scattered structure objects (also ETNOs) by de la Fuente Marcos & de la Fuente Mar- well beyond Pluto. cos(2014). In the following, we will use the term ‘extreme trans- A trickle of related discoveries has continued throughout the Neptunian objects’ (ETNOs) to refer to Trujillo and Sheppard’s 21st century, in spite of this being an intrinsically challenging task. extreme outer Solar system bodies (those with a > 150 au and Major milestones in this continuing effort have been the discover- q > 30 au). ies of 90377 Sedna (2003 VB12) in 2003 (Brown, Trujillo & Ra- The ETNOs are unlikely to be captured in distant 1:N mean- binowitz 2004) and of 2012 VP113 in 2012 (Trujillo & Sheppard 2014). Although the distinctive nature of this group of objects rel- motion resonances with Neptune: the farthest ones with known ob- ative to that of the already well-understood scattered disc was soon jects in them are 1:9 at a∼130 au with 2007 TC434 and 2015 KE172 (Volk et al. 2018), and probably 1:10 at a∼140 au with 533563 (2014 JW80) and 1:11 at a∼150 au with 543735 (2014 OS394) as ? E-mail: [email protected] pointed out by Clement & Sheppard(2021). Resonant objects in © 2021 The Authors 2 C. de la Fuente Marcos and R. de la Fuente Marcos the 1:12 mean-motion resonance with Neptune at a∼157 au and be- al. 2014; Bannister et al. 2018; Khain et al. 2020). Whether or yond may not exist although Clement & Sheppard(2021) showed not there is a plausible single population of ETNOs remains an reasonable numbers of captures as far out as the 1:14, see also the open question and here we explore possible answers by applying discussion in Gallardo(2006) regarding the 1:18, 1:19 and 1:20 machine-learning techniques to the sample of 40 known ETNOs to mean-motion resonances with Neptune.1;2 The topic of Neptune’s study how are they arranged in orbital parameter space. This paper resonances in the scattered disc has already been extensively stud- is organized as follows. In Section 2, we discuss data and methods. ied and it is relatively well understood within the context of the Machine-learning techniques, in the form of the k-means++ algo- known Solar system (see e.g. Lykawka & Mukai 2007; Kaib & rithm implemented in the Python library Scikit-learn, are applied Sheppard 2016; Nesvorný, Vokrouhlický & Roig 2016; Saillenfest in Section 3 to three-dimensional datasets to evaluate the presence et al. 2017a; Lan & Malhotra 2019; Gallardo 2020). However, the of any significant clustering in the sample. Our findings are tested issue of capture of small bodies in distant mean-motion resonances against the distribution of their mutual nodal distances that mea- with Neptune remains an open question. Volk, Malhotra, & Graham sures how close two orbits can get to each other in Section 4. Poles (2021) have recently explored the 1:N, 2:N and 3:N mean-motion and perihelia that define the orientation of the orbits in space are resonances with Neptune out to a=550 au at a wide range of peri- studied in Section 5. Our results are discussed in Section 6 and our helion distances (q=33–60 au) within the context of the restricted conclusions are summarized in Section 7. three-body problem to find out that at large a, the surviving libra- tion zones of Neptune’s strongest resonances are generally wider for larger q due to less crowding from weaker neighbouring reso- nances, although the sticking times tend to be shorter as one moves 2 DATA AND METHODS further out (see e.g. Gallardo 2006). Here, we work with publicly available data from Jet Propulsion The ETNOs discovered so far (see Table1) move in rather Laboratory’s (JPL) Small-Body Database (SBDB)3 and HORI- elongated orbits and have perihelion distances beyond 30 au; these ZONS on-line solar system data and ephemeris computation unusual properties make them particularly hard to find. In fact, the service,4 both provided by the Solar System Dynamics Group ETNOs have only been found at perihelion or very near it, lead- (Giorgini 2011, 2015). The HORIZONS ephemeris system has re- ing to a very distinctive pattern regarding how orbital properties cently been updated to replace the DE430/431 planetary ephemeris, relate to discovery locations: their equatorial coordinates at discov- used since 2013, with the new DE440/441 solution (Park et al. ery time strongly constraint the orientations of their orbits in space. 2021) and sixteen most massive small-body perturbers. The new Orbits are defined by the values of semimajor axis (that controls DE440/441 general-purpose planetary solution includes seven ad- orbital size), eccentricity, e (that controls shape), and those of the ditional years of ground and space-based astrometric data, data cal- angular elements —inclination, i, longitude of the ascending node, ibrations, and dynamical model improvements, most significantly Ω, and argument of perihelion, !— that control the orientation of involving Jupiter, Saturn, Pluto, and the Kuiper Belt (Park et al. the orbit in space. 2021). DE440 covers the years 1550–2650 while DE441 is tuned Figure 1 in de la Fuente Marcos & de la Fuente Marcos(2014) to cover a time range of −13,200 to +17,191 years (Park et al. shows that the sizes and shapes of the orbits of the ETNOs (panels 2021). The most visible change with this update may be in the B and C in the figure) do not depend on the position of the object at ephemerides expressed with respect to the Solar system barycen- discovery, but i, Ω and ! (panels D, E and F) do. This means that tre. There is a time-varying shift of ∼100 km in DE441’s barycen- the way observations have been conducted (i.e. where the discover- tre relative to DE431 due to the inclusion of 30 new Kuiper-belt ies are being made) affects the observed distributions of the angular masses, and the Kuiper Belt ring mass (Park et al.
Recommended publications
  • " Tnos Are Cool": a Survey of the Trans-Neptunian Region VI. Herschel
    Astronomy & Astrophysics manuscript no. classicalTNOsManuscript c ESO 2012 April 4, 2012 “TNOs are Cool”: A survey of the trans-Neptunian region VI. Herschel⋆/PACS observations and thermal modeling of 19 classical Kuiper belt objects E. Vilenius1, C. Kiss2, M. Mommert3, T. M¨uller1, P. Santos-Sanz4, A. Pal2, J. Stansberry5, M. Mueller6,7, N. Peixinho8,9 S. Fornasier4,10, E. Lellouch4, A. Delsanti11, A. Thirouin12, J. L. Ortiz12, R. Duffard12, D. Perna13,14, N. Szalai2, S. Protopapa15, F. Henry4, D. Hestroffer16, M. Rengel17, E. Dotto13, and P. Hartogh17 1 Max-Planck-Institut f¨ur extraterrestrische Physik, Postfach 1312, Giessenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Konkoly Observatory of the Hungarian Academy of Sciences, 1525 Budapest, PO Box 67, Hungary 3 Deutsches Zentrum f¨ur Luft- und Raumfahrt e.V., Institute of Planetary Research, Rutherfordstr. 2, 12489 Berlin, Germany 4 LESIA-Observatoire de Paris, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, France 5 Stewart Observatory, The University of Arizona, Tucson AZ 85721, USA 6 SRON LEA / HIFI ICC, Postbus 800, 9700AV Groningen, Netherlands 7 UNS-CNRS-Observatoire de la Cˆote d’Azur, Laboratoire Cassiope´e, BP 4229, 06304 Nice Cedex 04, France 8 Center for Geophysics of the University of Coimbra, Av. Dr. Dias da Silva, 3000-134 Coimbra, Portugal 9 Astronomical Observatory of the University of Coimbra, Almas de Freire, 3040-04 Coimbra, Portugal 10 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris, France 11 Laboratoire d’Astrophysique de Marseille, CNRS & Universit´ede Provence, 38 rue Fr´ed´eric Joliot-Curie, 13388 Marseille Cedex 13, France 12 Instituto de Astrof´ısica de Andaluc´ıa (CSIC), Camino Bajo de Hu´etor 50, 18008 Granada, Spain 13 INAF – Osservatorio Astronomico di Roma, via di Frascati, 33, 00040 Monte Porzio Catone, Italy 14 INAF - Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Napoli, Italy 15 University of Maryland, College Park, MD 20742, USA 16 IMCCE, Observatoire de Paris, 77 av.
    [Show full text]
  • Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur
    Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur To cite this version: Alex Soumbatov-Gur. Phobos, Deimos: Formation and Evolution. [Research Report] Karpov institute of physical chemistry. 2019. hal-02147461 HAL Id: hal-02147461 https://hal.archives-ouvertes.fr/hal-02147461 Submitted on 4 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phobos, Deimos: Formation and Evolution Alex Soumbatov-Gur The moons are confirmed to be ejected parts of Mars’ crust. After explosive throwing out as cone-like rocks they plastically evolved with density decays and materials transformations. Their expansion evolutions were accompanied by global ruptures and small scale rock ejections with concurrent crater formations. The scenario reconciles orbital and physical parameters of the moons. It coherently explains dozens of their properties including spectra, appearances, size differences, crater locations, fracture symmetries, orbits, evolution trends, geologic activity, Phobos’ grooves, mechanism of their origin, etc. The ejective approach is also discussed in the context of observational data on near-Earth asteroids, main belt asteroids Steins, Vesta, and Mars. The approach incorporates known fission mechanism of formation of miniature asteroids, logically accounts for its outliers, and naturally explains formations of small celestial bodies of various sizes.
    [Show full text]
  • Should Earth Get Demoted from Planet Status Just Like Pluto?
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861.Volume 10, Issue 3 Ver. I (May. – June. 2018), PP 15-19 www.iosrjournals.org Should Earth Get Demoted From Planet Status Just Like Pluto? Dipak Nath Assistant Professor, HOD, Department of Physics, Sao Chang Govt College, Tuensang;Nagaland, India. Corresponding Author: Dipak Nath Abstract: Clyde.W. Tombough discovered Pluto on march13, 1930. From its discovery in 1930 until 2006, Pluto was classified as Planet. In the late 20th and early 21st century, many objects similar to Pluto were discovered in the outer solar system, notably the scattered disc object Eris in 2005, which is 27% more massive than Pluto. On august-24, 2006, the International Astronomical Union (IAU) defined what it means to be a Planet within the solar system. This definition excluded Pluto as a Planet added it as a member of the new category “Dwarf Planet” along with Eris and Ceres. There were many reasons why Pluto got demoted to dwarf planet status, one of which was that it couldn't clear its orbit of asteroids and other debris. But Earth's orbit is also crowded...too crowded for Earth to be a planet? Earth is indeed in a very crowded orbit, surrounded by tens of thousands of asteroids and other objects. The presence of so many asteroids seems like a serious problem for Earth's claim that it has cleared its neighborhood. And Earth isn't alone in this problem - Jupiter is surrounded by some 100,000 Trojan asteroids, and there's similar clutter around Mars and Neptune.
    [Show full text]
  • (50000) Quaoar, See Quaoar (90377) Sedna, See Sedna 1992 QB1 267
    Index (50000) Quaoar, see Quaoar Apollo Mission Science Reports 114 (90377) Sedna, see Sedna Apollo samples 114, 115, 122, 1992 QB1 267, 268 ap-value, 3-hour, conversion from Kp 10 1996 TL66 268 arcade, post-eruptive 24–26 1998 WW31 274 Archimedian spiral 11 2000 CR105 269 Arecibo observatory 63 2000 OO67 277 Ariel, carbon dioxide ice 256–257 2003 EL61 270, 271, 273, 274, 275, 286, astrometric detection, of extrasolar planets – mass 273 190 – satellites 273 Atlas 230, 242, 244 – water ice 273 Bartels, Julius 4, 8 2003 UB313 269, 270, 271–272, 274, 286 – methane 271–272 Becquerel, Antoine Henry 3 – orbital parameters 271 Biermann, Ludwig 5 – satellite 272 biomass, from chemolithoautotrophs, on Earth 169 – spectroscopic studies 271 –, – on Mars 169 2005 FY 269, 270, 272–273, 286 9 bombardment, late heavy 68, 70, 71, 77, 78 – atmosphere 273 Borealis basin 68, 71, 72 – methane 272–273 ‘Brown Dwarf Desert’ 181, 188 – orbital parameters 272 brown dwarfs, deuterium-burning limit 181 51 Pegasi b 179, 185 – formation 181 Alfvén, Hannes 11 Callisto 197, 198, 199, 200, 204, 205, 206, ALH84001 (martian meteorite) 160 207, 211, 213 Amalthea 198, 199, 200, 204–205, 206, 207 – accretion 206, 207 – bright crater 199 – compared with Ganymede 204, 207 – density 205 – composition 204 – discovery by Barnard 205 – geology 213 – discovery of icy nature 200 – ice thickness 204 – evidence for icy composition 205 – internal structure 197, 198, 204 – internal structure 198 – multi-ringed impact basins 205, 211 – orbit 205 – partial differentiation 200, 204, 206,
    [Show full text]
  • Tilting Saturn II. Numerical Model
    Tilting Saturn II. Numerical Model Douglas P. Hamilton Astronomy Department, University of Maryland College Park, MD 20742 [email protected] and William R. Ward Southwest Research Institute Boulder, CO 80303 [email protected] Received ; accepted Submitted to the Astronomical Journal, December 2003 Resubmitted to the Astronomical Journal, June 2004 – 2 – ABSTRACT We argue that the gas giants Jupiter and Saturn were both formed with their rotation axes nearly perpendicular to their orbital planes, and that the large cur- rent tilt of the ringed planet was acquired in a post formation event. We identify the responsible mechanism as trapping into a secular spin-orbit resonance which couples the angular momentum of Saturn’s rotation to that of Neptune’s orbit. Strong support for this model comes from i) a near match between the precession frequencies of Saturn’s pole and the orbital pole of Neptune and ii) the current directions that these poles point in space. We show, with direct numerical inte- grations, that trapping into the spin-orbit resonance and the associated growth in Saturn’s obliquity is not disrupted by other planetary perturbations. Subject headings: planets and satellites: individual (Saturn, Neptune) — Solar System: formation — Solar System: general 1. INTRODUCTION The formation of the Solar System is thought to have begun with a cold interstellar gas cloud that collapsed under its own self-gravity. Angular momentum was preserved during the process so that the young Sun was initially surrounded by the Solar Nebula, a spinning disk of gas and dust. From this disk, planets formed in a sequence of stages whose details are still not fully understood.
    [Show full text]
  • Tilting Ice Giants with a Spin–Orbit Resonance
    The Astrophysical Journal, 888:60 (12pp), 2020 January 10 https://doi.org/10.3847/1538-4357/ab5d35 © 2020. The American Astronomical Society. All rights reserved. Tilting Ice Giants with a Spin–Orbit Resonance Zeeve Rogoszinski and Douglas P. Hamilton Astronomy Department, University of Maryland, College Park, MD 20742, USA; [email protected], [email protected] Received 2019 August 28; revised 2019 November 20; accepted 2019 November 26; published 2020 January 8 Abstract Giant collisions can account for Uranus’s and Neptune’s large obliquities, yet generating two planets with widely different tilts and strikingly similar spin rates is a low-probability event. Trapping into a secular spin–orbit resonance, a coupling between spin and orbit precession frequencies, is a promising alternative, as it can tilt the planet without altering its spin period. We show with numerical integrations that if Uranus harbored a massive circumplanetary disk at least three times the mass of its satellite system while it was accreting its gaseous atmosphere, then its spin precession rate would increase enough to resonate with its own orbit, potentially driving the planet’s obliquity to 70°.Wefind that the presence of a massive disk moves the Laplace radius significantly outward from its classical value, resulting in more of the disk contributing to the planet’s pole precession. Although we can generate tilts greater than 70°only rarely and cannot drive tilts beyond 90°, a subsequent collision with an object about 0.5 M⊕ could tilt Uranus from 70°to 98°. Minimizing the masses and number of giant impactors from two or more to just one increases the likelihood of producing Uranus’s spin states by about an order of magnitude.
    [Show full text]
  • Comparative Kbology: Using Surface Spectra of Triton
    COMPARATIVE KBOLOGY: USING SURFACE SPECTRA OF TRITON, PLUTO, AND CHARON TO INVESTIGATE ATMOSPHERIC, SURFACE, AND INTERIOR PROCESSES ON KUIPER BELT OBJECTS by BRYAN JASON HOLLER B.S., Astronomy (High Honors), University of Maryland, College Park, 2012 B.S., Physics, University of Maryland, College Park, 2012 M.S., Astronomy, University of Colorado, 2015 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Astrophysical and Planetary Sciences 2016 This thesis entitled: Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs written by Bryan Jason Holler has been approved for the Department of Astrophysical and Planetary Sciences Dr. Leslie Young Dr. Fran Bagenal Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii ABSTRACT Holler, Bryan Jason (Ph.D., Astrophysical and Planetary Sciences) Comparative KBOlogy: Using spectra of Triton, Pluto, and Charon to investigate atmospheric, surface, and interior processes on KBOs Thesis directed by Dr. Leslie Young This thesis presents analyses of the surface compositions of the icy outer Solar System objects Triton, Pluto, and Charon. Pluto and its satellite Charon are Kuiper Belt Objects (KBOs) while Triton, the largest of Neptune’s satellites, is a former member of the KBO population. Near-infrared spectra of Triton and Pluto were obtained over the previous 10+ years with the SpeX instrument at the IRTF and of Charon in Summer 2015 with the OSIRIS instrument at Keck.
    [Show full text]
  • Simulation of Attitude and Orbital Disturbances Acting on ASPECT Satellite in the Vicinity of the Binary Asteroid Didymos
    Simulation of attitude and orbital disturbances acting on ASPECT satellite in the vicinity of the binary asteroid Didymos Erick Flores García Space Engineering, masters level (120 credits) 2017 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Simulation of attitude and orbital disturbances acting on ASPECT satellite in the vicinity of the binary asteroid Didymos Erick Flores Garcia School of Electrical Engineering Thesis submitted for examination for the degree of Master of Science in Technology. Espoo December 6, 2016 Thesis supervisors: Prof. Jaan Praks Dr. Leonard Felicetti Aalto University Luleå University of Technology School of Electrical Engineering Thesis advisors: M.Sc. Tuomas Tikka M.Sc. Nemanja Jovanović aalto university abstract of the school of electrical engineering master’s thesis Author: Erick Flores Garcia Title: Simulation of attitude and orbital disturbances acting on ASPECT satellite in the vicinity of the binary asteroid Didymos Date: December 6, 2016 Language: English Number of pages: 9+84 Department of Radio Science and Engineering Professorship: Automation Technology Supervisor: Prof. Jaan Praks Advisors: M.Sc. Tuomas Tikka, M.Sc. Nemanja JovanoviÊ Asteroid missions are gaining interest from the scientific community and many new missions are planned. The Didymos binary asteroid is a Near-Earth Object and the target of the Asteroid Impact and Deflection Assessment (AIDA). This joint mission, developed by NASA and ESA, brings the possibility to build one of the first CubeSats for deep space missions: the ASPECT satellite. Navigation systems of a deep space satellite differ greatly from the common planetary missions. Orbital environment close to an asteroid requires a case-by-case analysis.
    [Show full text]
  • Oort Cloud and Scattered Disc Formation During a Late Dynamical Instability in the Solar System ⇑ R
    Icarus 225 (2013) 40–49 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Oort cloud and Scattered Disc formation during a late dynamical instability in the Solar System ⇑ R. Brasser a, , A. Morbidelli b a Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan b Departement Lagrange, University of Nice – Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, Nice, France article info abstract Article history: One of the outstanding problems of the dynamical evolution of the outer Solar System concerns the Received 11 January 2012 observed population ratio between the Oort cloud (OC) and the Scattered Disc (SD): observations suggest Revised 21 January 2013 that this ratio lies between 100 and 1000 but simulations that produce these two reservoirs simulta- Accepted 11 March 2013 neously consistently yield a value of the order of 10. Here we stress that the populations in the OC Available online 2 April 2013 and SD are inferred from the observed fluxes of new long period comets (LPCs) and Jupiter-family comets (JFCs), brighter than some reference total magnitude. However, the population ratio estimated in the sim- Keywords: ulations of formation of the SD and OC refers to objects bigger than a given size. There are multiple indi- Origin, Solar System cations that LPCs are intrinsically brighter than JFCs, i.e. an LPC is smaller than a JFC with the same total Comets, Dynamics Planetary dynamics absolute magnitude. When taking this into account we revise the SD/JFC population ratio from our sim- ulations relative to Duncan and Levison (1997), and then deduce from the observations that the size-lim- þ54 ited population ratio between the OC and the SD is 44À34.
    [Show full text]
  • Pluto and Its Cohorts, Which Is Not Ger Passing by and Falling in Love So Much When Compared to the with Her
    INTERNATIONAL SPACE SCIENCE INSTITUTE SPATIUM Published by the Association Pro ISSI No. 33, March 2014 141348_Spatium_33_(001_016).indd 1 19.03.14 13:47 Editorial A sunny spring day. A green On 20 March 2013, Dr. Hermann meadow on the gentle slopes of Boehnhardt reported on the pre- Impressum Mount Etna and a handsome sent state of our knowledge of woman gathering flowers. A stran- Pluto and its cohorts, which is not ger passing by and falling in love so much when compared to the with her. planets in our cosmic neighbour- hood, yet impressively much in SPATIUM Next time, when she is picking view of their modest size and their Published by the flowers again, the foreigner returns gargantuan distance. In fact, ob- Association Pro ISSI on four black horses. Now, he, serving dwarf planet Pluto poses Pluto, the Roman god of the un- similar challenges to watching an derworld, carries off Proserpina to astronaut’s face on the Moon. marry her and live together in the shadowland. The heartbroken We thank Dr. Boehnhardt for his Association Pro ISSI mother Ceres insists on her return; kind permission to publishing Hallerstrasse 6, CH-3012 Bern she compromises with Pluto allow- herewith a summary of his fasci- Phone +41 (0)31 631 48 96 ing Proserpina to living under the nating talk for our Pro ISSI see light of the Sun during six months association. www.issibern.ch/pro-issi.html of a year, called summer from now for the whole Spatium series on, when the flowers bloom on the Hansjörg Schlaepfer slopes of Mount Etna, while hav- Brissago, March 2014 President ing to stay in the twilight of the Prof.
    [Show full text]
  • Planet Definition
    Marin Erceg dipl.oec. CEO ORCA TEHNOLOGIJE http://www.orca-technologies.com Zagreb, 2006. Editor : mr.sc. Tino Jelavi ć dipl.ing. aeronautike-pilot Text review : dr.sc. Zlatko Renduli ć dipl.ing. mr.sc. Tino Jelavi ć dipl.ing. aeronautike-pilot Danijel Vukovi ć dipl.ing. zrakoplovstva Translation review : Dana Vukovi ć, prof. engl. i hrv. jez. i knjiž. Graphic and html design : mr.sc. Tino Jelavi ć dipl.ing. Publisher : JET MANGA Ltd. for space transport and services http://www.yuairwar.com/erceg.asp ISBN : 953-99838-5-1 2 Contents Introduction Defining the problem Size factor Eccentricity issue Planemos and fusors Clear explanation of our Solar system Planet definition Free floating planets Conclusion References Curriculum Vitae 3 Introduction For several thousand years humans were aware of planets. While sitting by the fire, humans were observing the sky and the stars even since prehistory. They noticed that several sparks out of thousands of stars were oddly behaving, moving around the sky across irregular paths. They were named planets. Definition of the planet at that time was simple and it could have been expressed by following sentence: Sparkling dot in the sky whose relative position to the other stars is continuously changing following unpredictable paths. During millenniums and especially upon telescope discovery, human understanding of celestial bodies became deeper and deeper. This also meant that people understood better the space and our Solar system and in this period we have accepted the following definition of the planet: Round objects orbiting Sun. Following Ceres and Asteroid Belt discoveries this definition was not suitable any longer, and as a result it was modified.
    [Show full text]
  • Colours of Minor Bodies in the Outer Solar System II - a Statistical Analysis, Revisited
    Astronomy & Astrophysics manuscript no. MBOSS2 c ESO 2012 April 26, 2012 Colours of Minor Bodies in the Outer Solar System II - A Statistical Analysis, Revisited O. R. Hainaut1, H. Boehnhardt2, and S. Protopapa3 1 European Southern Observatory (ESO), Karl Schwarzschild Straße, 85 748 Garching bei M¨unchen, Germany e-mail: [email protected] 2 Max-Planck-Institut f¨ur Sonnensystemforschung, Max-Planck Straße 2, 37 191 Katlenburg- Lindau, Germany 3 Department of Astronomy, University of Maryland, College Park, MD 20 742-2421, USA Received —; accepted — ABSTRACT We present an update of the visible and near-infrared colour database of Minor Bodies in the outer Solar System (MBOSSes), now including over 2000 measurement epochs of 555 objects, extracted from 100 articles. The list is fairly complete as of December 2011. The database is now large enough that dataset with a high dispersion can be safely identified and rejected from the analysis. The method used is safe for individual outliers. Most of the rejected papers were from the early days of MBOSS photometry. The individual measurements were combined so not to include possible rotational artefacts. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1, 1). The average colours, absolute magnitude, spectral gradient are listed for each object, as well as their physico-dynamical classes using a classification adapted from Gladman et al., 2008. Colour-colour diagrams, histograms and various other plots are presented to illustrate and in- vestigate class characteristics and trends with other parameters, whose significance are evaluated using standard statistical tests.
    [Show full text]