No-Longer Polymer List Version 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gasket Chemical Services Guide
Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials. -
Thermodynamics and Reaction Mechanism of Urea Decomposition† Cite This: Phys
PCCP View Article Online PAPER View Journal | View Issue Thermodynamics and reaction mechanism of urea decomposition† Cite this: Phys. Chem. Chem. Phys., 2019, 21,16785 a b b b Steffen Tischer, * Marion Bo¨rnhorst, Jonas Amsler, Gu¨nter Schoch and Olaf Deutschmann ab The selective catalytic reduction technique for automotive applications depends on ammonia production from a urea–water solution via thermolysis and hydrolysis. In this process, undesired liquid and solid by-products are formed in the exhaust pipe. The formation and decomposition of these Received 18th March 2019, by-products have been studied by thermogravimetric analysis and differential scanning calorimetry. Accepted 5th July 2019 A new reaction scheme is proposed that emphasizes the role of thermodynamic equilibrium of the DOI: 10.1039/c9cp01529a reactants in liquid and solid phases. Thermodynamic data for triuret have been refined. The observed phenomenon of liquefaction and re-solidification of biuret in the temperature range of 193–230 1Cis rsc.li/pccp explained by formation of a eutectic mixture with urea. Creative Commons Attribution-NonCommercial 3.0 Unported Licence. 1 Introduction and ammonium ISE (ion-selective electrode) measurements. Concluding from experimental results and literature data, 23 Air pollution by nitrogen oxides from Diesel engines is a major possible reactions including urea and its by-products biuret, problem concerning the environment and society. Therefore, cyanuric acid, ammelide, ammeline and melamine are presented. governments follow the need to regulate emissions by law (e.g., Further, cyanate and cyanurate salts and cyanamide are 715/2007/EG, ‘‘Euro 5 and Euro 6’’).1 The favored method to proposed as possible intermediates of high temperature urea reduce nitrogen oxides is selective catalytic reduction (SCR) decomposition. -
Food and Drugs
21 Part 170 to 199 Revised as of April 1, 2001 Food and Drugs Containing a codification of documents of general applicability and future effect As of April 1, 2001 With Ancillaries Published by Office of the Federal Register National Archives and Records Administration A Special Edition of the Federal Register VerDate 11<MAY>2000 11:38 Apr 16, 2001 Jkt 194064 PO 00000 Frm 00001 Fmt 8091 Sfmt 8091 Y:\SGML\194064F.XXX pfrm02 PsN: 194064F U.S. GOVERNMENT PRINTING OFFICE WASHINGTON : 2001 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: (202) 512-1800 Tax: (202) 512-2250 Mail Stop: SSOP, Washington, DC 20402–0001 VerDate 11<MAY>2000 11:38 Apr 16, 2001 Jkt 194064 PO 00000 Frm 00002 Fmt 8092 Sfmt 8092 Y:\SGML\194064F.XXX pfrm02 PsN: 194064F Table of Contents Page Explanation ................................................................................................ v Title 21: Chapter I—Food and Drug Administration, Department of Health and Human Services (Continued) ................................................. 3 Finding Aids: Material Approved for Incorporation by Reference ............................ 573 Table of CFR Titles and Chapters ....................................................... 587 Alphabetical List of Agencies Appearing in the CFR ......................... 605 Redesignation Table ............................................................................ 615 List of CFR Sections Affected ............................................................. 617 -
Tetraethylenepentamine
Tetraethylenepentamine sc-237036 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Tetraethylenepentamine STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY1 HEALTH3 HAZARD INSTABILITY0 SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 SYNONYMS C8-H23-N5, NH2(CH2-CH2-NH)3-CH2-CH2-NH2, H2-N-CH2-(CH2-NH-CH2)3-CH2-NH2, H2-N-(C2-H4-NH)4-H, "tetraethylene pentamine", "N-(2-aminoethyl)-N-(2-((2-aminoethyl)amino)ethyl)-1, 2-ethanediamine", "1, 2-ethanediamine, N-(2-amino((2-aminoethyl)amino)ethyl)-", "1, 4, 7, 10, 13-pentaazatridecane", "1, 11-diamino-3, 6, 9-, triazaundecane", TEPA, "D.E.H. 26", ethyleneamine, "polyethylene-1, 2-ethanediamine" Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability 1 Toxicity 2 Min/Nil=0 Low=1 Body Contact 3 Moderate=2 Reactivity 2 High=3 Extreme=4 1 of 14 Chronic 3 CANADIAN WHMIS SYMBOLS EMERGENCY OVERVIEW RISK Causes burns. Risk of serious damage to eyes. May cause SENSITISATION by skin contact. May cause harm to the unborn child. Harmful in contact with skin and if swallowed. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. -
United States Patent Office E
Unitede States- Patent- Office 3,845,059E. 1. 2 The reaction of biuret with diethanolamine to form PREPARATION OF N,N'-DIETHANOL3,845,059 PIPERAZINE N,N'-diethanol piperazine can be illustrated as follows: Alvin F. Beale, Jr., Lake Jackson, Tex., assignor to The Dow Chemical Company, Midland, Mich. 2(HOCH)NH -- NH2CONHCONH --> No Drawing. Filed June 19, 1972, Ser. No. 264,704 5 CHO Int, C. C07d51/70 U.S. C. 260-268. SY 8 Claims /N al-woman-mamm CH, CH, ABSTRACT OF THE DISCLOSURE + 2CO. 1 + 8NHat Diethanolamine is reacted with urea or a urea pyrol- lo Y yzate (e.g. biuret, triuret, or cyanuric acid) to form N,N'-diethanol piperazine. The following chart illustrates the balanced stoichiom BACKGROUND OF THE INVENTION la etry for reacting diethanolamine with urea, biuret, triuret, N,N'-diethanol piperazine has been previously prepared and cyanuric acid. Reaction products Moles of Empirical Moles N,N'- Moles of formula of of diethanol Moles Moles (HOCH)NH Name of reactant reactant reactant piperazine of Co2 of NH3 2---------------------- Urea------------------------ CHNO 2 2 4. 2- ---. Biuret---. C2HNO2 2 3 6-- --- Triuret.----- ... C3HNO3 2 3. 6 8 6.----- ... Cyanuric aci - C3H3NO3 2 3. 6 6 by the condensation of piperazine with ethylene chloro- The reaction has been found to be specific for dieth hydrin as reported in J. Am. Chem. Soc., Vol. 55, p. 3823 anolamine since analogous dialkanolamines do not give (1933). The compound has been reported to have phar- corresponding dialkanol-substituted cyclic structures con macological properties as an anesthetic or sedative in 30 taining nitrogens within a carbon ring. -
Asian Journal of Chemistry Asian Journal of Chemistry
Asian Journal of Chemistry; Vol. 27, No. 9 (2015), 3149-3151 ASIAN JOURNAL OF CHEMISTRY http://dx.doi.org/10.14233/ajchem.2015.16726 Synthesis and Antimicrobial Activities of 2-S-Hepta-O-benzoyl lactosyl-1-aryl-5-hepta-O-benzoyl-β-lactosyl-2-isothiobiurets * REENA J. DESHMUKH and SHIRISH P. D ESHMUKH P.G. Department of Chemistry, Shri Shivaji College, Akola-444 001, India *Corresponding author: E-mail: [email protected] Received: 20 April 2014; Accepted: 14 March 2015; Published online: 26 May 2015; AJC-17213 A series of novel 2-S-hepta-O-benzoyl lactosyl-1-aryl-5-hepta-O-benzoyl-β-lactosyl-2-isothiobiurets have been synthesized by the interaction of S-hepta-O-benzoyl lactosyl-1-arylisothiocarbamides and hepta-O-benzoyl-β-D-lactosyl isocyanate. These compounds were screened for their antibacterial and antifungal activities against Escherichia coli, Proteus vulgaris, Salmonella typhimurium, Staphylococcus aureus, Pseudomonas aeruginosa and Aspergillus niger. The newly synthesized compounds have been characterized by analytical and IR, 1H NMR and mass spectral studies. Keywords: Arylisothiocarbamides, Lactosyl thiocyanate, Isothiobiurets. INTRODUCTION an efficient synthetic route to novel lactosyl isothiourea derivatives and their antimicrobial activities are reported. A number of thiourea derivatives have been reported to 1 2 exhibit antibacterial , herbicidal and fungicidal activities. EXPERIMENTAL Sugar thioureas3 has synthetic applications in neoglycocon- jugate synthetic strategies4, including neoglycoproteins5, Melting points determined are uncorrected. IR Spectra glycodendrimers6, glycoclusters7 and pseudooligosaccharides8. were recorded on Perkin-Elmer spectrum RXI FTIR spectro- Thiobiurets (mono and di) are also important derivatives meter. 1H NMR was obtained on Bruker DRX-300 MHz NMR of (thio) urea which may increase the biological activity of Spectrometer. -
Spray Foam Event 2013, Session a Presentations Contents List
Spray Foam Event 2013, Session A Presentations Contents List 1. Introduction to Spray Polyurethane Foam (Click to go to PDF Page 2) 2. OSHA’s Isocyanates National Emphasis Program (Click to go to PDF Page 58) 3. EOLWD On-site Consultation Program (Click to go to PDF Page 76) 4. Essential Resources and Training, American Chemistry Council (Click to go to PDF Page 109) 5. Safe Spray Foam (Click to go to PDF Page 126) 6. EPA Safe Use of Polyurethane Products (Click to go to PDF Page 137) Return to Contents List Introduction to Spray Polyurethane Foam This presentation will provide important background information on SPF, including history, product categories and delivery methods and applications. It will also address chemical concerns and include tips for a quality installation, and briefly cover environmental impacts of the product COPYRIGHTED MATERIALS This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of any part of this presentation without written permission of the speaker is prohibited. © 2013 Spray Polyurethane Foam Alliance Presentation Content 1. History 2. Product Categories 3. Basic Chemistry 4. Delivery Methods 5. Chemical Concerns 6. Environmental Impact 7. Quality Installation 8. Summary History of SPF in Buildings in construction for 50 years • Late 60’s ‐ Medium Density (agricultural and industrial) • Mid 70’s ‐Roofing ‐ Medium Density (general const.) ‐ Sealants • Mid 90’s ‐ Low Density (residential) Product Category Four general categories of SPF Spray Foam -
Biuret Applications in Beef and Dairy Rations
The Technical Edge Biuret has Practical Applications in Beef and Dairy Rations Feed grade biuret, an economical source of non-protein nitro- gen (NPN), is an ADM Alliance Nutrition® exclusive. It can be Table 1 Nutrient Composition of Biuret used in ruminant diets and is approved for use in dairy lactation Item % AF % DM diets. Prior to May 2003, biuret was not approved for use in dairy DM, % 99 — rations. ADM was instrumental in getting biuret approved for use in dairy rations. Numerous research articles were reviewed and Protein, % 246 248.5 summarized. On May 27, 2003, ADM received an approval letter RDP, % CP 100 100 from the Food and Drug Administration (FDA) allowing biuret to 1 be formulated into dairy rations. SIP , % CP 100 100 Biuret is formed by the controlled decomposition of urea, con- NPN, % SIP 100 100 densing two molecules of urea into a single molecule of biuret, NRC, 2001 A Protein, % CP 100 100 which retains three of the nitrogen atoms (see Figure 1). Feed- 1 grade biuret is a mixture containing biuret and urea (maximum of For use in formulation; biuret is slowly soluble. 14%) with small amounts of triuret and cyanuric acid. Typically, biuret contains a minimum of 35% nitrogen with a crude protein fed in confinement. The slower degradation and physical proper- value of 246% (See Table 1). ties assist in forming a high-quality, self-fed supplement. Biuret Biuret is less soluble than urea. The combination of structural is at least 7.3 times less toxic than urea, making it ideal when and physical characteristics slows the rumen digestion of biuret. -
Attachment A
Attachment A Proposed 15-Day Modifications California Code of Regulations, Title 17, Division 3, Chapter 1, Subchapter 7.7, Article 1 Note: This document shows proposed modifications to the originally proposed amendments to the Regulation for the Reporting of Criteria Air Pollutants and Toxic Air Contaminants, as presented during the November 19, 2020, meeting of the California Air Resources Board. At that meeting, the Board directed staff to make modifications to the proposed amendments based on public comments received, and to provide these updates for public comment for a period of at least 15 days. The pre-existing regulation text is set forth below in normal type. The original proposed amendments are shown in underline formatting to indicate additions and strikeout to indicate deletions. The additional proposed modifications made available with the notice of public availability of modified text dated March XY, 2021, are shown in double- underline to indicate additions and double-strikethrough to indicate deletions. The symbol “***” means that intervening text not proposed for amendment is not shown. Proposed Amendments to the Regulation for the Reporting of Criteria Air Pollutants and Toxic Air Contaminants California Code of Regulations, Title 17, Division 3, Chapter 1, Subchapter 7.7, Articles 1 and 2 Amend Subchapter 7.7, Article 1, and sections 93400, 93401, 93402, 93403, 93404, 93405, 93406, 93407, 93408, 93409, 93410, title 17, California Code of Regulations, and adopt new Subchapter 7.7, Article 2, sections 93420, 93421, and new Subchapter 7.7, Article 2, Appendices A and B to title 17, California Code of Regulations, to read as follows: Subchapter 7.7: Regulation for the Reporting of Criteria Air Pollutants and Toxic Air Contaminants Article 1. -
United States Patent Office Patented Feb
3,367,956 United States Patent Office Patented Feb. 6, 1968 1 2 3,367,956 or cycloaliphatic hydrocarbons. When following the pro PREPARATION OF BIURET POLYISOCYANATES cedure of the present invention, it is critical to elevate Hans Joachim Hennig, Cologne-Starnmheim, and Otto the temperature at least in the later stage of the reaction Bayer, Erwin Windemuth, and Wilhelm Bunge, Lever ' to about ISO-250° C. to bring about formation of mono kusen, Germany, assignors to Farhenfabriken Bayer isocyanate which must be continuously removed substan Aktiengesellschaft, Leverkusen, Germany, a German corporation tially as soon as it is formed, preferably by operating at N0 Drawing. Filed Apr. 1, 1964, Ser. No. 356,650 the elevated temperature at a reduced pressure or by Claims priority, application Germany, Apr. 13, 1963, using a carrier gas to remove the organic monoisocyanate F 39,482 from the reaction mixture substantially as soon as it is 6 Claims. (Cl. 260—453) formed. Then the well-de?ned biuret polyisocyanates of the invention are formed instead of high molecular weight This invention relates to organic polyisocyanates and condensation products. Thus, it is an essential feature of more particularly to a process for the preparation of this invention to carry out the process under such tem biuret polyisocyanates. Moreover, this invention provides perature conditions that a monoisocyanate is split off and a new and unexpected way of preparing biuret polyiso the reactants may recombine to form a biuret polyiso cyanates which may also contain carbamyl groups with cyanate. Instead of high molecular weight condensation out the formation of undesirable by-products. -
Electronic Supplementary Information For
Electronic Supplementary Material (ESI) for Molecular Systems Design & Engineering. This journal is © The Royal Society of Chemistry 2018 Electronic supplementary information for Understanding structural adaptability: a reactant informatics approach to experiment design Rosalind J. Xu, Jacob H. Olshansky, Philip D. F. Adler, Yongjia Huang, Matthew D. Smith, Matthias Zeller,† Joshua Schrier and Alexander J. Norquist Department of Chemistry, Haverford College, Haverford PA 19041 † Department of Chemistry, Purdue University, West Lafayette IN Author to whom correspondence should be addressed. Haverford College 370 Lancaster Avenue Haverford PA, 19041 USA tel (610) 896 2949 fax (610) 896 4963 email [email protected] http://www.haverford.edu/chem/Norquist/ Figure S1. Three dimensional packing of [C4H14N2]2[VO(SeO3)(HSeO3)]6·5H2O (1). Green octahedra represent [VO6] while purple, red, blue, white and gray spheres represent selenium oxygen, nitrogen, carbon and hydrogen atoms, respectively. Selected hydrogen atoms have been removed for clarity. Figure S2. Three dimensional packing of [C8H26N4][VO(SeO3)(HSeO3)]6·6H2O (3). Green octahedra represent [VO6] while purple, red, blue, white and gray spheres represent selenium oxygen, nitrogen, carbon and hydrogen atoms, respectively. Selected hydrogen atoms have been removed for clarity. Figure S3. (a) One-dimensional chain SBU and (b) and (c) two slice connectivities in [C4H12N2][(VO)3(SeO3)(HSeO3)4]·H2O (4). Green polyhedra represent [VO6] and [VO5] while purple, red, and gray spheres represent selenium oxygen, and hydrogen atoms, respectively. Figure S4. 10-fold cross validation results for the decision trees in this study. Figure S5. Decision tree containing the 75 historical reactions and the 128 reactions from the fractional factorial analysis. -
EPOXY CURING AGENTS Product Overview Guide
EPOXY CURING AGENTS Product Overview Guide NORTH AMERICA EPOXY CURING AGENTS A Robust Toolbox to Meet Diverse Formulation and End Use Requirements With a heritage built on more than 50 continuous years in the industry, Dow is the reliable leader in innovative epoxy product and technology solutions. Dow offers a robust portfolio of epoxy products, including a diverse range of curing agent chemistries and individual grades, to help meet specific formulating and application requirements. To meet increased demand for environmentally responsible formulations, our line also includes low emission and waterborne curing agents. 2 Dow leadership in epoxy technology is demonstrated by innovative technology, high quality products and attention to customer service. In addition to providing one of the broadest epoxy offerings today, our epoxy innovation pipeline – part of Dow’s $1.6 billion annual investment in research & development – ensures that the epoxy products you will require tomorrow are being created by Dow today. Beyond technology development, we are also a source of technical support to help you apply our solutions effectively so customers achieve desired results. Our comprehensive service model – which combines the Dow epoxy sales organization and our R&D and Technical Service Center in Freeport, Texas – gives you access to local know-how and support and world-class technical resources. Our commitment to the epoxy industry includes adhering to the highest standards for safety in the manufacture, storage, transport, use and disposal of our products. This guide presents a comprehensive listing of curing agents available from Dow. For assistance in choosing the right product for your formulation, or to investigate emerging innovation, please contact us.