Aspects of Scale Invariance in Physics and Biology

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of Scale Invariance in Physics and Biology ASPECTS OF SCALE INVARIANCE IN PHYSICS AND BIOLOGY Vasyl Alba A DISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF PHYSICS Advisers: William Bialek and Juan Maldacena September 2017 © Copyright by Vasyl Alba, 2017. All rights reserved. Abstract We study three systems that have scale invariance. The first system is a conformal field theory in d > 3 dimensions. We prove that if there is a unique stress-energy tensor and at least one higher-spin conserved current in the theory, then the correlation functions of the stress-energy tensors and the conserved currents of higher-spin must coincide with one of the following possibilities: a) a theory of n free bosons, b) a theory of n free fermions or c) d−2 a theory of n 2 -forms. The second system is the primordial gravitational wave background in a theory with inflation. We show that the scale invariant spectrum of primordial gravitational waves is isotropic only in the zero-order approximation, and it gets a small correction due to the primordial scalar fluctuations. When anisotropy is measured experimentally, our result will allow us to distinguish between different inflationary models. The third system is a biological system. The question we are asking is whether there is some simplicity or universality underlying the complexities of natural animal behavior. We use the walking fruit fly (Drosophila melanogaster) as a model system. Based on the result that unsupervised flies’ behaviors can be categorized into one hundred twenty-two discrete states (stereotyped movements), which all individuals from a single species visit repeatedly, we demonstrated that the sequences of states are strongly non-Markovian. In particular, correlations persist for an order of magnitude longer than expected from a model of random state-to-state transitions. The correlation function has a power-law decay, which is a hint of some kind of criticality in the system. We develop a generalization of the information bottleneck method that allows us to cluster these states into a small number of clusters. This more compact description preserves a lot of temporal correlation. We found that it is enough to use a two-cluster representation of the data to capture long-range correlations, which opens a way for a more quantitative description of the system. Usage of the maximal entropy method allowed us to find a description that closely resembles a famous inverse- square Ising model in 1d in a small magnetic field. iii Acknowledgements I would like to thank the Universe for this realization of our world because I was lucky to be at Princeton and I had the privilege to work with William Bialek and Juan Maldacena. I am indebted to Juan Maldacena, my adviser, for the interesting journey to the very frontier of the High Energy Physics, as well as for a huge motivation that I got during numerous discussions with him. He exposed me to a completely new and unbelievable level of thinking about the subject. I am indebted to William Bialek, my adviser, for introducing me to a theoretical bio- physics; he taught a class in spring 2012, and as, I see it now, he planted an idea of working in the field of Biological Physics. It took a few years for the idea to grow. So, I incredibly grateful to Bill for all his help and support that lead to a smooth transition into a new field, when I decided to do it. I am very thankful to Bill for all time he spent teaching me how to work in a completely new field. Every meeting with him led to a substantial jump in my understanding of the questions we discussed. His fine taste for problems in the world of living organisms will always be the highest standard for me, that will influence my research for years. I am very grateful to Sasha Zhiboedov for uncountable hours of discussions that we had in the Institute’s ”dungeons,” and for all his help that made my first years at Princeton extremely pleasant. I thank Lyman Page, who was my adviser for an experimental project. It was a really pleasant experience. Also, I would like to thank him for serving on my pre-thesis and FPO committee. I thank Herman Verlinde for serving on my pre-thesis and FPO committee, and for numerous pieces of advice that he gave to me during these years at Princeton. I thank Igor Klebanov for being a reader of this dissertation. iv I would like to thank my collaborators for a wonderful experience that I had: Kenan Diab, Gordon Berman, Joshua Shaevitz. I am thankful to Ben Machta for help with my simulations. I would like to thank the Department of Physics for awarding me with Joseph Henry Merit Prize, and Kusaka Memorial Prize in Physics. I am extremely grateful to Andrei Mironov and Alexei Morozov for introducing me to the beautiful world of theoretical physics, and for all their help and great support at the Institute for Theoretical and Experiment Physics (Moscow), without whom I would never reach this point. There is not enough space in this dissertation to write about each and every remarkable person who helped me or influenced me in a good way. I am very thankful to all my friends and colleagues, especially, at the Department of Physics and at the Icahn laboratories. All of you helped me a lot in my continuous journey towards the understanding of this beautiful Nature. Last but not least, I am extremely grateful to all my family for their constant love and support that helped me to get through all the difficulties of the graduate school. v Хто думає про науку, той любить її, а хто її любить, той ніколи не “ перестає вчитися, хоча б зовні він і здавався бездіяльним. The one who thinks about science loves it, and the one who loves it will never cease to learn, even though he might seem to be outwardly idle. ” Hryhorii Savych Skovoroda, (1722 – 1794), Kharkiv vi To my family. vii Contents Abstract ....................................... iii Acknowledgements ................................. iv List of Figures .................................... xii 1 Introduction 1 1.1 Symmetry of the system as a defining principle ............... 4 1.2 How can we look into the past? ........................ 7 1.3 Searching for principles ............................ 12 1.4 An Overview of the Dissertation ....................... 14 Higher-Spin Theories ............................. 14 Anisotropy of the Primordial Gravitational Waves .............. 16 Physics of Behavior .............................. 18 Publications and preprints .............................. 19 Public presentations ................................. 19 2 Constraining conformal field theories with a higher spin symmetry in d > 3 dimensions 20 2.1 Introduction .................................. 20 2.2 Definition of the lightcone limits ....................... 25 viii 2.3 Charge conservation identities ........................ 29 2.4 Quasi-bilocal fields: basic properties ..................... 33 2.5 Quasi-bilocal fields: correlation functions .................. 39 2.5.1 Symmetries of the quasi-bilocal operators .............. 40 2.5.2 Correlation functions of the bosonic quasi-bilocal .......... 42 2.5.3 Correlation functions of the fermionic and tensor quasi-bilocal ... 44 2.5.4 Normalization of the quasi-bilocal correlation functions ...... 50 2.6 Constraining all the correlation functions ................... 51 2.7 Discussion and conclusions .......................... 56 3 Anisotropy of gravitational waves 59 3.1 Introduction .................................. 59 3.2 Gravity waves from inflation at leading order ................ 60 3.3 Sachs–Wolfe effect .............................. 63 3.3.1 Geodesic Equations in Different Gauges ............... 64 3.4 Anisotropy .................................. 66 4 Exploring a strongly non-Markovian behavior 70 4.1 Introduction .................................. 70 4.2 Experimental setup and initial analysis .................... 72 4.3 Formalization of behavior description .................... 74 4.4 Is there any memory in the system or can we use HMM/MC? ........ 78 4.4.1 Markov process ............................ 79 4.4.2 Hidden Markov Model ........................ 80 4.5 Clustering ................................... 82 4.6 Maximal entropy model ............................ 90 4.7 Simulation results ............................... 94 ix A Appendices for Chapter 2 99 A.1 Form factors as Fourier transforms of correlation functions ......... 99 A.2 Uniqueness of three-point functions in the tensor lightcone limit ...... 102 A.3 Uniqueness of hs22i for s ≥ 4 ........................ 104 A.4 Transformation properties of bilocal operators under K− .......... 105 A.4.1 Fermionic case ............................ 106 A.4.2 Tensor case .............................. 107 A.5 Proof that Oq exists .............................. 108 A.6 The free Maxwell field in five dimensions .................. 110 B Appendices for Chapter 3 112 B.1 Evolution ................................... 112 B.1.1 Solution during inflation ....................... 114 B.1.2 Solution during the first non-inflationary era ............ 115 B.1.3 Solutions during consecutive eras .................. 116 B.1.4 Solutions for an arbitrary history ................... 116 B.2 Particle creation ................................ 119 B.2.1 The first method to calculate Bogolyubov coefficients ....... 119 B.2.2 More conventional method of Bogolyubov coefficient calculation . 121 B.2.3 Graviton density ........................... 122 B.2.4 Spectrum ..............................
Recommended publications
  • Looking at Earth: an Astronaut's Journey Induction Ceremony 2017
    american academy of arts & sciences winter 2018 www.amacad.org Bulletin vol. lxxi, no. 2 Induction Ceremony 2017 Class Speakers: Jane Mayer, Ursula Burns, James P. Allison, Heather K. Gerken, and Gerald Chan Annual David M. Rubenstein Lecture Looking at Earth: An Astronaut’s Journey David M. Rubenstein and Kathryn D. Sullivan ALSO: How Are Humans Different from Other Great Apes?–Ajit Varki, Pascal Gagneux, and Fred H. Gage Advancing Higher Education in America–Monica Lozano, Robert J. Birgeneau, Bob Jacobsen, and Michael S. McPherson Redistricting and Representation–Patti B. Saris, Gary King, Jamal Greene, and Moon Duchin noteworthy Select Prizes and Andrea Bertozzi (University of James R. Downing (St. Jude Chil- Barbara Grosz (Harvard Univer- California, Los Angeles) was se- dren’s Research Hospital) was sity) is the recipient of the Life- Awards to Members lected as a 2017 Simons Investi- awarded the 2017 E. Donnall time Achievement Award of the gator by the Simons Foundation. Thomas Lecture and Prize by the Association for Computational American Society of Hematology. Linguistics. Nobel Prize in Chemistry, Clara D. Bloomfield (Ohio State 2017 University) is the recipient of the Carol Dweck (Stanford Univer- Christopher Hacon (University 2017 Robert A. Kyle Award for sity) was awarded the inaugural of Utah) was awarded the Break- Joachim Frank (Columbia Univer- Outstanding Clinician-Scientist, Yidan Prize. through Prize in Mathematics. sity) presented by the Mayo Clinic Di- vision of Hematology. Felton Earls (Harvard Univer- Naomi Halas (Rice University) sity) is the recipient of the 2018 was awarded the 2018 Julius Ed- Nobel Prize in Economic Emmanuel J.
    [Show full text]
  • Cosmology After WMAP (5)
    Cosmology After WMAP (5) DavidDavid SpergelSpergel Geneve June 2008 StandardStandard cosmologicalcosmological modelmodel StillStill FitsFits thethe DataData ! General Relativity + Uniform Universe Big Bang " Density of universe determines its fate + shape ! Universe is flat (total density = critical density) " Atoms 4% " Dark Matter 23% " Dark Energy (cosmological constant?) 72% ! Universe has tiny ripples " Adiabatic, scale invariant, Gaussian Fluctuations " Harrison-Zeldovich-Peebles " Inflationary models QuickQuick HistoryHistory ofof thethe UniverseUniverse " Universe starts out hot, dense and filled with radiation " As the universe expands, it cools. • During the first minutes, light elements form • After 500,000 years, atoms form • After 100,000,000 years, stars start to form • After 1 Billion years, galaxies and quasars ThermalThermal HistoryHistory ofof UniverseUniverse radiation matter NEUTRAL r IONIZED 104 103 z GrowthGrowth ofof FluctuationsFluctuations •Linear theory •Basic elements have been understood for 30 years (Peebles, Sunyaev & Zeldovich) •Numerical codes agree at better than 0.1% (Seljak et al. 2003) Sunyaev & Zeldovich CMBCMB OverviewOverview ! We can detect both CMB temperature and polarization fluctuations ! Polarization Fluctuations can be decomposed into E and B modes q ~180/l ADIABATIC DENSITY FLUCTUATIONS ISOCURVATURE ENTROPY FLUCTUATIONS DeterminingDetermining BasicBasic ParametersParameters Baryon Density 2 Wbh = 0.015,0.017..0.031 also measured through D/H DeterminingDetermining BasicBasic ParametersParameters
    [Show full text]
  • Small-Scale Anisotropies of the Cosmic Microwave Background: Experimental and Theoretical Perspectives
    Small-Scale Anisotropies of the Cosmic Microwave Background: Experimental and Theoretical Perspectives Eric R. Switzer A DISSERTATION PRESENTED TO THE FACULTY OF PRINCETON UNIVERSITY IN CANDIDACY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY RECOMMENDED FOR ACCEPTANCE BY THE DEPARTMENT OF PHYSICS [Adviser: Lyman Page] November 2008 c Copyright by Eric R. Switzer, 2008. All rights reserved. Abstract In this thesis, we consider both theoretical and experimental aspects of the cosmic microwave background (CMB) anisotropy for ℓ > 500. Part one addresses the process by which the universe first became neutral, its recombination history. The work described here moves closer to achiev- ing the precision needed for upcoming small-scale anisotropy experiments. Part two describes experimental work with the Atacama Cosmology Telescope (ACT), designed to measure these anisotropies, and focuses on its electronics and software, on the site stability, and on calibration and diagnostics. Cosmological recombination occurs when the universe has cooled sufficiently for neutral atomic species to form. The atomic processes in this era determine the evolution of the free electron abundance, which in turn determines the optical depth to Thomson scattering. The Thomson optical depth drops rapidly (cosmologically) as the electrons are captured. The radiation is then decoupled from the matter, and so travels almost unimpeded to us today as the CMB. Studies of the CMB provide a pristine view of this early stage of the universe (at around 300,000 years old), and the statistics of the CMB anisotropy inform a model of the universe which is precise and consistent with cosmological studies of the more recent universe from optical astronomy.
    [Show full text]
  • Lars Hernquist and Volker Springel Receive $500,000 Gruber Cosmology Prize
    Media Contact: A. Sarah Hreha +1 (203) 432‐6231 [email protected] Online Newsroom: https://gruber.yale.edu/news‐media Lars Hernquist and Volker Springel Receive $500,000 Gruber Cosmology Prize Lars Hernquist Volker Springel New Haven, CT — The 2020 Gruber Cosmology Prize recognizes Lars Hernquist, Center for Astrophysics | Harvard & Smithsonian, and Volker Springel, Max Planck Institute for Astrophysics, for their defining contributions to cosmological simulations, a method that tests existing theories of, and inspires new investigations into, the formation of structures at every scale from stars to galaxies to the universe itself. Hernquist and Springel will divide the $500,000 award, and each will receive a gold laureate pin at a ceremony that will take place later this year. The award recognizes their transformative work on structure formation in the universe, and development of numerical algorithms and community codes further used by many other researchers to significantly advance the field. Hernquist was a pioneer in cosmological simulations when he joined the fledgling field in the late 1980s, and since then he has become one of its most influential figures. Springel, who entered the field in 1998 and first partnered with Hernquist in the early 2000s, has written and applied several of the most widely used codes in cosmological research. Together Hernquist and Springel constitute, in the words of one Gruber Prize nominator, “one of the most productive collaborations ever in cosmology.” Computational simulations in cosmology begin with the traditional source of astronomical data: observations of the universe. Then, through a combination of theory and known physics that might approximate initial conditions, the simulations recreate the subsequent processes that would have led to the current structure.
    [Show full text]
  • 1St Edition of Brown Physics Imagine, 2017-2018
    A note from the chair... "Fellow Travelers" Ladd Observatory.......................11 Sci-Toons....................................12 Faculty News.................. 15-16, 23 At-A-Glance................................18 s the current academic year draws to an end, I’m happy to report that the Physics Department has had Newton's Apple Tree................. 23 an exciting and productive year. At this year's Commencement, the department awarded thirty five "Untagling the Fabric of the undergraduate degrees (ScB and AB), twenty two Master’s degrees, and ten Ph.D. degrees. It is always Agratifying for me to congratulate our graduates and meet their families at the graduation ceremony. This Universe," Professor Jim Gates..26 Alumni News............................. 27 year, the University also awarded my colleague, Professor J. Michael Kosterlitz, an honorary degree for his Events this year......................... 28 achievement in the research of low-dimensional phase transitions. Well deserved, Michael! Remembering Charles Elbaum, Our faculty and students continue to generate cutting-edge scholarships. Some of their exciting Professor Emeritus.................... 29 research are highlighted in this magazine and have been published in high impact journals. I encourage you to learn about these and future works by watching the department YouTube channel or reading faculty’s original publications. Because of their excellent work, many of our undergraduate and graduate students have received students prestigious awards both from Brown and externally. As Chair, I feel proud every time I hear good news from our On the cover: PhD student Shayan Lame students, ranging from receiving the NSF Graduate Fellowship to a successful defense of thier senior thesis or a Class of 2018.............................
    [Show full text]
  • Report for the Academic Year 1999
    l'gEgasag^a3;•*a^oggMaBgaBK>ry^vg^.g^._--r^J3^JBgig^^gqt«a»J^:^^^^^ Institute /or ADVANCED STUDY REPORT FOR THE ACADEMIC YEAR 1998-99 PRINCETON • NEW JERSEY HISTORICAL STUDIES^SOCIAl SC^JCE LIBRARY INSTITUTE FOR ADVANCED STUDY PRINCETON, NEW JERSEY 08540 Institute /or ADVANCED STUDY REPORT FOR THE ACADEMIC YEAR 1 998 - 99 OLDEN LANE PRINCETON • NEW JERSEY • 08540-0631 609-734-8000 609-924-8399 (Fax) http://www.ias.edu Extract from the letter addressed by the Institute's Founders, Louis Bamberger and Mrs. FeUx Fuld, to the Board of Trustees, dated June 4, 1930. Newark, New Jersey. It is fundamental m our purpose, and our express desire, that in the appointments to the staff and faculty, as well as in the admission of workers and students, no account shall be taken, directly or indirectly, of race, religion, or sex. We feel strongly that the spirit characteristic of America at its noblest, above all the pursuit of higher learning, cannot admit of any conditions as to personnel other than those designed to promote the objects for which this institution is established, and particularly with no regard whatever to accidents of race, creed, or sex. ni' TABLE OF CONTENTS 4 • BACKGROUND AND PURPOSE 7 • FOUNDERS, TRUSTEES AND OFFICERS OF THE BOARD AND OF THE CORPORATION 10 • ADMINISTRATION 12 • PRESENT AND PAST DIRECTORS AND FACULTY 15 REPORT OF THE CHAIRMAN 18 • REPORT OF THE DIRECTOR 22 • OFFICE OF THE DIRECTOR - RECORD OF EVENTS 27 ACKNOWLEDGMENTS 41 • REPORT OF THE SCHOOL OF HISTORICAL STUDIES FACULTY ACADEMIC ACTIVITIES MEMBERS, VISITORS,
    [Show full text]
  • Astro2020 Science White Paper Primordial Non-Gaussianity
    Astro2020 Science White Paper Primordial Non-Gaussianity Thematic Areas: Cosmology and Fundamental Physics Principal Author: Name: P. Daniel Meerburg Institution: University of Cambridge Email: [email protected] Abstract: Our current understanding of the Universe is established through the pristine measurements of structure in the cosmic microwave background (CMB) and the distribution and shapes of galaxies tracing the large scale structure (LSS) of the Universe. One key ingredient that underlies cosmological observables is that the field that sources the observed structure is assumed to be initially Gaussian with high precision. Nevertheless, a minimal deviation from Gaussianity is perhaps the most robust theoretical prediction of models that explain the observed Universe; it is necessarily present even in the simplest scenarios. In addition, most inflationary models produce far higher levels of non-Gaussianity. Since non-Gaussianity directly probes the dynamics in the early Universe, a detection would present a monumental discovery in cosmology, providing clues about physics at energy scales as high as the GUT scale. This white paper aims to motivate a continued search to obtain evidence for deviations from Gaussianity in the primordial Universe. Since the previous decadal, important advances have been made, both theoretically and observationally, which have further established the importance of deviations from Gaussianity in cosmology. Foremost, primordial non-Gaussianities are now very tightly constrained by the CMB. Second, models motivated by stringy physics suggest detectable signatures of primordial non-Gaussianities with a unique shape which has not been considered in previous searches. Third, improving constraints using LSS requires a better understanding how to disentangle non-Gaussianities sourced at late times from those sourced by the physics in the early Universe.
    [Show full text]
  • Looking at Earth: an Astronaut's Journey Induction Ceremony 2017
    american academy of arts & sciences winter 2018 www.amacad.org Bulletin vol. lxxi, no. 2 Induction Ceremony 2017 Class Speakers: Jane Mayer, Ursula Burns, James P. Allison, Heather K. Gerken, and Gerald Chan Annual David M. Rubenstein Lecture Looking at Earth: An Astronaut’s Journey David M. Rubenstein and Kathryn D. Sullivan ALSO: How Are Humans Different from Other Great Apes?–Ajit Varki, Pascal Gagneux, and Fred H. Gage Advancing Higher Education in America–Monica Lozano, Robert J. Birgeneau, Bob Jacobsen, and Michael S. McPherson Redistricting and Representation–Patti B. Saris, Gary King, Jamal Greene, and Moon Duchin Upcoming Events MARCH APRIL 1st 12th California Institute of Technology American Academy Pasadena, CA Cambridge, MA Bryson Symposium on Climate and Annual Awards Ceremony: A Celebration of the Energy Policy Arts and Sciences Featuring: Dallas Burtraw (Resources for Featuring: Martha C. Nussbaum (Univer- the Future), Ralph Cavanagh (nrdc), sity of Chicago), recipient of the Don M. Nathan S. Lewis (California Institute of Randel Award for Humanistic Studies; and Technology), Mary Nichols (California Barbara J. Meyer (University of California, Air Resources Board), Ronald O. Nichols Berkeley), recipient of the Francis Amory (Southern California Edison), Thomas F. Prize in Medicine & Physiology Rosenbaum (California Institute of Tech- nology), and Maxine L. Savitz (Honeywell, MAY Inc., ret.; formerly, President’s Council of Advisors on Science and Technology) 3rd American Academy 7th Cambridge, MA American Academy Songs of Love and Death: Sonnets by Petrarch Cambridge, MA and Others Set by Cipriano de Rore in “I madri- Building, Exploring, and Using the Tree of Life gali a cinque voci” (Venice, 1542) Featuring: Douglas E.
    [Show full text]
  • Astro2020 Science White Paper Probing Feedback in Galaxy Formation with Millimeter-Wave Observations
    Astro2020 Science White Paper Probing Feedback in Galaxy Formation with Millimeter-wave Observations Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects 3 Cosmology and Fundamental Physics Stars and Stellar Evolution Resolved Stellar Populations and their Environments 3 Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Authors: Names: Nicholas Battaglia, J. Colin Hill Institutions: Cornell University, Institute for Advanced Study Emails: [email protected], [email protected] Phones: (607)-255-3735, (509)-220-8589 Co-authors: Stefania Amodeo (Cornell), James G. Bartlett (APC/U. Paris Diderot), Kaustuv Basu (Uni- versity of Bonn), Jens Erler (University of Bonn), Simone Ferraro (Lawrence Berkeley Na- tional Laboratory), Lars Hernquist (Harvard), Mathew Madhavacheril (Princeton), Matthew McQuinn (University of Washington), Tony Mroczkowski (European Southern Observatory), Daisuke Nagai (Yale), Emmanuel Schaan (Lawrence Berkeley National Laboratory), Rachel Somerville (Rutgers/Flatiron Institute), Rashid Sunyaev (MPA), Mark Vogelsberger (MIT), Jessica Werk (University of Washington) Endorsers: James Aguirre (University of Pennsylvania), Zeeshan Ahmed (SLAC), Marcelo Alvarez arXiv:1903.04647v1 [astro-ph.CO] 11 Mar 2019 (UC–Berkeley), Daniel Angles-Alcazar (Flatiron Institute), Chetan Bavdhankar (National Center for Nuclear Physics), Eric Baxter (University of Pennsylvania), Andrew Benson (Carnegie Observatories), Bradford Benson (Fermi National Accelerator Laboratory/ Uni- versity of Chicago), Paolo de Bernardis (Sapienza Università di Roma), Frank Bertoldi (Uni- versity of Bonn), Fredirico Bianchini (University of Melbourne), Colin Bischoff (University of Cincinnati), Lindsey Bleem (Argonne National Laboratory/KICP), J. Richard Bond (Uni- versity of Toronto/ CITA), Greg Bryan (Columbia/Flatiron Institute), Erminia Calabrese (Cardiff), John E. Carlstrom (University of Chicago/Argonne National Laboratory/KICP), Joanne D.
    [Show full text]
  • A NSF Physics Frontier Center Annual Report 2005-2006
    A NSF Physics Frontier Center Annual Report 2005-2006 June 29, 2006 i Table of Contents 1 Executive Summary 1 2 Research Accomplishments and Plans 4 2.a Major Research Accomplishments . 4 2.a.1 Research Highlights . 4 2.a.2 Detailed Research Activities: MRC I- Theory . 5 2.a.3 Detailed Research Activities: MRC II- Structures in the Uni- verse ..................................... 20 2.a.4 Detailed Research Activities: MRC III - Cosmic Radiation Backgrounds ................................ 24 2.a.5 Detailed Research Activities: MRC IV - Particles from Space . 28 2.a.6 References . 32 2.b Research Organizational Details . 33 2.c Plans for the Coming Year . 33 3 Publications, Awards and Technology Transfers 40 3.a List of Publications in Peer Reviewed Journals . 40 3.b List of Publications in Peer Reviewed Conference Proceedings . 48 3.c Invited Talks by Institute Members . 52 3.d Honors and Awards . 56 3.e Technology Transfer . 57 4 Education and Human Resources 58 4.a Graduate and Postdoctoral Training . 58 4.a.1 Research Training . 58 4.a.2 Curriculum Development: . 62 4.b Undergraduate Education . 63 4.b.1 Undergraduate Research Experiences: . 63 4.b.2 Undergraduate Curriculum Development: . 64 4.c Educational Outreach . 65 4.c.1 K-12 Programs: Space Explorers . 66 4.c.2 Web-Based Educational Activities: . 69 4.c.3 Other: . 69 4.d Enhancing Diversity . 72 5 Community Outreach and Knowledge Transfer 74 5.a Visitor Participation in Center . 74 5.a.1 Long term visitors . 74 5.a.2 Short term and seminar visitors . 75 5.b Workshops and Symposia .
    [Show full text]
  • The Quantum Universe Quantum Fluctuations Played a Crucial Role in the Formation of the Structure of Our Universe
    PREISTRÄGER MAX-PLANCK-MEDAILLE The Quantum Universe Quantum fluctuations played a crucial role in the formation of the structure of our universe. Viatcheslav F. Mukhanov a 0,1 On March , something very remarkable hap- pened. The Planck science team released a highly precise photograph of our universe when it was only few hundred thousand years old. This photograph is so detailed that it shows some major features that the NASA/JPL-Caltech/ESA universe acquired only –3 seconds after creation. Most strikingly, the observed nontrivial features in the portrait of such a young universe came in exact agreement with what had been predicted by the theo- rists more than thirty years ago, long before the expe- riment was carried out. Without any exaggeration one can say that by now it is experimentally proven that quantum physics, which is normally considered to be relevant in atomic and smaller scales, also played the crucial role in determining the structure of the whole The satellite missions COBE, WMAP and more details of the cosmic microwave universe, including the galaxies, stars and planets. Planck successively revealed more and background. f course scientists and philosophers have always to conclude that the universe must be about 10 billion been interested in the origin of our universe. Ho- years old. Thus, Hubble’s discovery can be considered O wever, cosmology only became a natural science as a brilliant confirmation of the theoretical prediction less than a hundred years ago. It was not until 1923 that by Friedman. The most important conclusion from the American astronomer Edwin Hubble was able to Hubble’s discovery was that the universe was created resolve individual stars in the Andromeda Nebula and about several billions years ago.
    [Show full text]
  • Physics & Astrophysics 2020
    Physics & Astrophysics 2020 press.princeton.edu Congratulations to James Peebles, Joint Winner of the Nobel Prize in Physics Dear Readers, Princeton University Press is delighted to extend its warmest congratulations to P. James E. Peebles, joint winner of the 2019 Nobel Prize in Physics. We have had the honor of being his publisher since 1972, working with him on such landmark titles as Principles of Physical Cosmology and Large-Scale Structure of the Universe. Here, we are thrilled to announce the publication of his newest book, forthcoming in 2020: Cosmology’s Century, his insider’s history of the field from Einstein to our modern era. It leads off a wonderful list of titles in physics and astronomy that we are proud to present, and which we hope you will enjoy discovering in the pages that follow. Sincerely, Jessica Yao Ingrid Gnerlich Associate Editor, Physical Sciences Publisher for the Sciences Principles of Physical Cosmology Large-Scale Structure Quantum Mechanics Physical Cosmology P. J. E. Peebles of the Universe P. J. E. Peebles P. J. E. Peebles Paperback 9780691620138 P. J. E. Peebles Hardback 9780691087559 Paperback 9780691019338 $53.00 | £44.00 Paperback 9780691082400 $125.00 | £104.00 $95.00 | £78.00 E-book 9781400868773 $95.00 | £78.00 General Interest 2 – Science Essentials 9 – Princeton Science Library 11 – New in Paperback 12 Textbooks & Featured Monographs 13 – Princeton Frontiers in Physics 17 – In a Nutshell 18 Princeton Series in Astrophysics 20 – Princeton Series in Modern Observational Astronomy 21 Albert Einstein 22 – Of Related Interest 24 Jacket illustration by Sukutangan Cosmology’s Century From Nobel Prize–winning physicist P.
    [Show full text]