Contemporary Mathematics 560

Total Page:16

File Type:pdf, Size:1020Kb

Contemporary Mathematics 560 CONTEMPORARY MATHEMATICS 560 Topology and Geometry in Dimension Three Triangulations, Invariants, and Geometric Structures Conference in Honor of William Jaco's 70th Birthday June 4–6, 2010 Oklahoma State University, Stillwater, Oklahoma Weiping Li, Loretta Bartolini, Jesse Johnson, Feng Luo, Robert Myers, J. Hyam Rubinstein Editors American Mathematical Society http://dx.doi.org/10.1090/conm/560 Topology and Geometry in Dimension Three Triangulations, Invariants, and Geometric Structures CONTEMPORARY MATHEMATICS 560 Topology and Geometry in Dimension Three Triangulations, Invariants, and Geometric Structures Conference in Honor of William Jaco's 70th Birthday June 4–6, 2010 Oklahoma State University, Stillwater, Oklahoma Weiping Li Loretta Bartolini Jesse Johnson Feng Luo Robert Myers J. Hyam Rubinstein Editors American Mathematical Society Providence, Rhode Island Editorial Board Dennis DeTurck, managing editor George Andrews Abel Klein Martin J. Strauss 2010 Mathematics Subject Classification. Primary 57Mxx, 57N10, 46E25, 20C20, 20F65, 20J99, 14E20. Library of Congress Cataloging-in-Publication Data Topology and geometry in dimension three : triangulations, invariants, and geometric structures : conference in honor of William Jaco’s 70th birthday, June 4–6, 2010, Oklahoma State University, Stillwater, OK / Weiping Li ...[et al.], editors. p. cm. — (Contemporary mathematics ; v. 560) Includes bibliographical references. ISBN 978-0-8218-5295-8 (alk. paper) 1. Three-manifolds (Topology)—Congresses. 2. Topological manifolds—Congresses. I. Jaco, William H., 1940– II. Li, Weiping, 1963– QA613.2.T67 2011 514.34—dc23 2011033120 Copying and reprinting. Material in this book may be reproduced by any means for edu- cational and scientific purposes without fee or permission with the exception of reproduction by services that collect fees for delivery of documents and provided that the customary acknowledg- ment of the source is given. This consent does not extend to other kinds of copying for general distribution, for advertising or promotional purposes, or for resale. Requests for permission for commercial use of material should be addressed to the Acquisitions Department, American Math- ematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. Excluded from these provisions is material in articles for which the author holds copyright. In such cases, requests for permission to use or reprint should be addressed directly to the author(s). (Copyright ownership is indicated in the notice in the lower right-hand corner of the first page of each article.) c 2011 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Copyright of individual articles may revert to the public domain 28 years after publication. Contact the AMS for copyright status of individual articles. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 161514131211 Contents Preface vii Jacofest Talks ix Ideal triangulations on pseudo-Anosov mapping tori Ian Agol 1 A note on complete hyperbolic structures on ideal triangulated 3-manifolds Feng Luo 19 A linear bound on the tetrahedral number of manifolds of bounded volume (after Jørgensen and Thurston) Tsuyoshi Kobayashi and Yo’av Rieck 27 Layered models for closed 3-manifolds Jesse Johnson 43 Triangulations and nonorientable incompressible surfaces Zhenyi Liu 55 Introduction to the theory of Haken n-manifolds Bell Foozwell and Hyam Rubinstein 71 Pseudo-developing maps for ideal triangulations I: Essential edges and generalised hyperbolic gluing equations Henry Segerman and Stephan Tillmann 85 A generic Margulis number for hyperbolic 3-manifolds Peter B. Shalen 103 On gradings in Khovanov homology and sutured Floer homology J. Elisenda Grigsby and Stephan M. Wehrli 111 Hyperbolic knots in irreducible Heegaard surfaces Robert Myers 129 Stable W-length Danny Calegari and Dongping Zhuang 145 Turn graphs and extremal surfaces in free groups Noel Brady, Matt Clay and Max Forester 171 Kauffman brackets, character varieties and triangulations of surfaces Francis Bonahon and Helen Wong 179 v vi CONTENTS Problems at the Jacofest Hyam Rubinstein 195 Preface For many young topologists, their introduction to three-manifolds is marked by the blue volume Lectures on Three-Manifold Topology. This CBMS publication, which captures a series of lectures by William ‘Bus’ Jaco in the Fall of 1977, has become a classic reference for students and researchers. Progressing into the field of three-manifolds, one discovers the JSJ-decomposition; this result of Bus Jaco and Peter Shalen (discovered independently by Klaus Johannson) on the theory of characteristic varieties underlies the geometrization conjecture of Thurston. Bus’ many research achievements also include crucial contributions to the development of normal surface theory, triangulations and algorithms in 3-dimensional geometry and topology. Bus grew up in Grafton, West Virginia, planning at Fairmont College to be- come a school teacher. However, his outstanding talents in mathematics and drive for learning led to graduate school. A student of R H Bing and D. R. McMillan, Bus received his Ph.D. from the University of Wisconsin in 1968. Graduation was followed by a postdoctoral position at the University of Michigan, before taking a permanent position at Rice University, where he achieved rapid promotion to Full Professor. A highly active scholar, Bus held a variety of visiting positions thereafter, including terms at the Institute for Advanced Study, Columbia Univer- sity, University of Melbourne, Mathematical Sciences Research Institute, American Institute of Mathematics and University of Michigan. Moving to Oklahoma State University in 1982, as Head of the Department of Mathematics, marked the start of a highly influential term. Bus’ far-sighted lead- ership and tireless work ethic saw a boom in research and scholarly activities in the Department, accompanied by his own ongoing research achievements. His strong leadership and commitment to the profession were to rise to national prominence, with a term as Executive Director of the American Mathematical Society from 1988 to 1995. This outstanding contribution was followed with honors both scientific and professional: elected as Fellow of the American Association for Advancement of Sci- ence, Regents Professor at Oklahoma State University and Trustee of the American Mathematical Society. Along with his accomplishments in mathematics, Bus’ con- tributions to the Department, University, Profession and American Sciences are both remarkable and continuing. The Jacofest conference, held in Stillwater, Oklahoma, June 4-6 2010, brought together over 80 topologists and geometers from around the globe. There were 15 plenary talks attended by a wide range of participants: from long-standing collaborators to the latest generation of graduate students. This group produced an atmosphere rich in ideas and energy, most fitting to celebrate a career with such vii viii PREFACE qualities in abundance. We hope this volume captures the mathematical endeavours and warm recognition of Bus at the Conference. We would like to acknowledge the support received from the National Science Foundation under Grant No. 0900229 and Grant No. 1005383, the American Institute of Mathematics, the College of Arts and Sciences at Oklahoma State University and the Department of Mathematics at Oklahoma State University. We thank them for their generous financial and administrative support. We also thank D. Alspach, B. Conrey, M. Denzler, S. Downing, M. Gordon and A. M. McFarlin for their help at various stages of the Conference, and C. M. Thivierge for her assistance in preparing this volume. The Editors July 2011 Jacofest Talks Ian Agol University of California at Joseph Maher CUNY – College of Berkeley Staten Island “Ideal triangulations of bundles” “Random Heegaard splittings” Francis Bonahon University of Jessica Purcell Brigham Young Southern California University “Kauffman brackets, character varieties, “State surfaces, polyhedra, and guts of and triangulations of surfaces” knots” Danny Calegari California Institute of J. Hyam Rubinstein University of Technology Melbourne “Faces of the scl norm ball” “Normal 3-manifolds in triangulated 4-manifolds” Nathan Dunfield University of Illinois at Urbana-Champaign Saul Schleimer University of Warwick “Twisted Alexander polynomials, “On train track splitting sequences” hyperbolic geometry, and knot genus” Peter Shalen University of Illinois at Chicago David Futer Temple University “Angled triangulations and Dehn “Generic Margulis numbers” surgery” Stephan Tillmann University of Queensland Stavros Garoufalidis Georgia Institute “Straightening, spinning and the of Technology recognition of closed hyperbolic “The Slope Conjecture” 3-manifolds” Cameron Gordon University of Texas at Austin “Seifert fibered Dehn filling” Elisenda Grigsby Boston College “On sutured Khovanov homology and sutured Floer homology” Feng Luo Rutgers University “Minimally triangulated 3-manifolds with special normal surfaces” ix Titles in This Series 560 Weiping Li, Loretta Bartolini, Jesse Johnson, Feng Luo, Robert Myers, and J. Hyam Rubinstein, Editors, Topology and geometry in dimension three, 2011 559
Recommended publications
  • May 1998 Council Minutes
    AMERICAN MATHEMATICAL SOCIETY COUNCIL MINUTES Detroit, Michigan 16 May 1998 Abstract The Council of the Society met at 7:00 PM on Saturday, 16 May 1998, at the Detroit Airport Marriott, Detroit Metropolitan Airport. These are minutes for the meeting. Several items were discussed in Executive Session and are reported in these open minutes 1 2 CONTENTS Contents IMINUTES 4 1CALLTOORDER. 4 1.1 Opening of the Meeting and Introductions. .................. 4 1.2 1997 Elections. ................................... 4 2 MINUTES. 5 2.1MinutesoftheJanuary98Council............................. 5 2.2MinutesofBusinessbyMail................................ 5 3 CONSENT AGENDA. 5 4 REPORTS OF BOARDS AND STANDING COMMITTEES. 5 4.1 Editorial Boards Committee (EBC). ......................... 5 4.1.1 Mathematical Reviews Editorial Committee. .................. 5 4.1.2 Bulletin Editorial Committee. ......................... 6 4.1.3 Transactions and Memoirs Editorial Committee. ........... 6 4.2 Nominating Committee. ......................... 6 4.2.1 VicePresident.................................... 6 4.2.2 MemberatLargeoftheCouncil.......................... 6 4.2.3 Trustee. ................................... 6 4.3 Executive Committee and Board of Trustees (ECBT). ........... 6 4.3.1 Dues......................................... 6 4.3.2 Recommendationsforappointmentofofficers................... 7 4.4 Committee on Education (COE). ......................... 7 4.5 Committee on the Profession (CPROF). ......................... 8 4.5.1 StatementonTenure...............................
    [Show full text]
  • Max Dehn and the Origins of Topology and Infinite Group Theory
    Max Dehn and the Origins of Topology and Infinite Group Theory David Peifer Abstract. This article provides a brief history of the life, work, and legacy of Max Dehn. The emphasis is put on Dehn’s papers from 1910 and 1911. Some of the main ideas from these papers are investigated, including Dehn surgery, the word problem, the conjugacy problem, the Dehn algorithm, and Dehn diagrams. A few examples are included to illustrate the impact that Dehn’s work has had on subsequent research in logic, topology, and geometric group theory. 1. INTRODUCTION. It is now one hundred years since Max Dehn published his papers On the Topology of Three-Dimensional Spaces (1910) [9] and On Infinite Dis- continuous Groups (1911) [10]. At that time, topology was in its infancy. Group theory was also new and the study of general infinite groups had only just begun. Dehn’s pa- pers mark the beginning of two closely related research areas: the study of 3-manifolds in topology, and the study of infinite groups given by presentations in algebra. In these papers, Dehn brought together important ideas from the late 1800’s concerning hyper- bolic geometry, group theory, and topology. These papers are beautifully written and exhibit Dehn’s gifted ability to use simple combinatorial diagrams to illustrate founda- tional connections between algebra and geometry. In the years since Dehn’s passing, mathematicians have gone back to these two papers again and again to draw motiva- tion and inspiration. This article is written as a celebration of these two papers and of Max Dehn’s influence on one hundred years of mathematics.
    [Show full text]
  • Characters in Low-Dimensional Topology
    760 Characters in Low-Dimensional Topology A Conference Celebrating the Work of Steven Boyer June 2–6, 2018 Université du Québec à Montréal, Montréal, Québec, Canada Olivier Collin Stefan Friedl Cameron Gordon Stephan Tillmann Liam Watson Editors Characters in Low-Dimensional Topology A Conference Celebrating the Work of Steven Boyer June 2–6, 2018 Université du Québec à Montréal, Montréal, Québec, Canada Olivier Collin Stefan Friedl Cameron Gordon Stephan Tillmann Liam Watson Editors 760 Characters in Low-Dimensional Topology A Conference Celebrating the Work of Steven Boyer June 2–6, 2018 Université du Québec à Montréal, Montréal, Québec, Canada Olivier Collin Stefan Friedl Cameron Gordon Stephan Tillmann Liam Watson Editors Editorial Committee of Contemporary Mathematics Dennis DeTurck, Managing Editor Michael Loss Kailash Misra Catherine Yan Editorial Committee of the CRM Proceedings and Lecture Notes Vaˇsek Chvatal Lisa Jeffrey Nicolai Reshetikhin H´el`ene Esnault Ram Murty Christophe Reutenauer Pengfei Guan Robert Pego Nicole Tomczak-Jaegermann V´eronique Hussin Nancy Reid Luc Vinet 2010 Mathematics Subject Classification. Primary 57M25, 57M27, 57M50, 57N10, 53C25, 11F06, 20F06, 20E08, 20F65, 20F67. Library of Congress Cataloging-in-Publication Data Names: Collin, Olivier, 1971– editor. Title: Characters in low-dimensional topology : a conference celebrating the work of Steven Boyer, June 2–6, 2018, Universit´eduQu´ebec `aMontr´eal, Montr´eal, Qu´ebec, Canada / Olivier Collin, Stefan Friedl, Cameron Gordon, Stephan Tillmann, Liam Watson, editors. Description: Providence, Rhode Island : American Mathematical Society ; Montr´eal, Quebec, Canada : Centre de Recherches Math´ematiques, [2020] | Series: Contemporary mathemat- ics, 0271-4132 ; volume 760 | Centre de Recherches Math´ematiques Proceedings. | Includes bibliographical references.
    [Show full text]
  • Mathematisches Forschungsinstitut Oberwolfach Topologie
    Mathematisches Forschungsinstitut Oberwolfach Report No. 43/2008 Topologie Organised by Cameron Gordon (Austin) Bob Oliver (Paris) Thomas Schick (G¨ottingen) September 14th – September 20th, 2008 Abstract. This conference is one of the few occasions where researchers from many different areas in algebraic and geometric topology are able to meet and exchange ideas. Accordingly, the program covered a wide range of new developments in such fields as geometric group theory, rigidity of group actions, knot theory, and stable and unstable homotopy theory. More specifically, we discussed progress on problems such as Kuhn’s realization conjecture, the integral Riemann-Roch theorem, and Simon’s conjecture for knots, to mention just a few subjects with a name attached. Mathematics Subject Classification (2000): 19xxx, 55xxx, 57xxx. Introduction by the Organisers This conference was the last of six in the series of topology conferences in Ober- wolfach organized by Cameron Gordon and Bob Oliver, joined for the first time by Thomas Schick as successor of Wolfgang L¨uck, who was organizer for an even longer time. Unfortunately, L¨uck could not attend the conference for medical reasons. There were about 45 participants in the meeting, working in many different areas of algebraic and geometric topology. The 19 talks of the conference covered a wide range of areas such as 3-manifolds and knot theory, geometric group theory, algebraic K- and L-theory, and homotopy theory. One of the goals of the conference is to foster interaction between such different areas and the passage of methods from one to the other. The following is a summary of some of the highlights.
    [Show full text]
  • Torsion Function on Character Varieties
    TORSION FUNCTION ON CHARACTER VARIETIES LEO BENARD Abstract. In this paper we define the Reidemeister torsion as a rational function on the geometric components of the character variety of a one-cusped hyperbolic manifold M. We study its poles and zeros, and we deduce sufficient conditions on the manifold M for this function being non-constant. 0. Introduction The Reidemeister torsion has been introduced as a combinatorial invariant of ho- mological complexes in 1935 by both Reidemeister (in [33]) and Franz (in [15]) independently. It also appears in a more algebraic context in the seminal work of Cayley (see [18, Appendix B]) in 1848. Later on, it has been shown by Chapman ([4,6]) to be a topological invariant of manifolds. In this article M will be a 3-manifold, whose boundary @M is a torus, with rational homology of a circle, e.g. the exterior of a knot in a rational homology sphere. Given ∗ a representation ρ: π1(M) ! SL2(C) such that the complex C (M; ρ) of ρ-twisted cohomology with coefficients in C2 is acyclic, the torsion tor(M; ρ) of this complex is a complex-valued invariant of the pair (M; ρ), defined up to sign. Since for any 0 representation ρ : π1(M) ! SL2(C) conjugate to ρ, the invariants tor(M; ρ) and tor(M; ρ0) do coincide, it is natural to define the Reidemeister torsion as a rational function on the algebraic space of conjugacy classes of such representations, namely the character variety. It is done rigorously in this article. More precisely, let X be a one-dimensional component of the character variety.
    [Show full text]
  • Decision Problems for 3-Manifolds and Their Fundamental Groups
    DECISION PROBLEMS FOR 3-MANIFOLDS AND THEIR FUNDAMENTAL GROUPS MATTHIAS ASCHENBRENNER, STEFAN FRIEDL, AND HENRY WILTON Abstract. We survey the status of some decision problems for 3-mani- folds and their fundamental groups. This includes the classical decision problems for finitely presented groups (Word Problem, Conjugacy Prob- lem, Isomorphism Problem), and also the Homeomorphism Problem for 3-manifolds and the Membership Problem for 3-manifold groups. Introduction The classical group-theoretic decision problems were formulated by Max Dehn in his work on the topology of surfaces [De11] about a century ago. He considered the following questions about finite presentations hA j Ri for a group π: 1. the Word Problem, which asks for an algorithm to determine whether a word on the generators A represents the identity element of π; 2. the Conjugacy Problem, which asks for an algorithm to determine whether two words on the generators A represent conjugate elements of π; 3. the Isomorphism Problem, which asks for an algorithm to determine whether two given finite presentations represent isomorphic groups. Viewing π as the fundamental group of a topological space (represented as a simplicial complex, say), these questions can be thought of as asking for algorithms to determine whether a given loop is null-homotopic, whether a given pair of loops is freely homotopic, and whether two aspherical spaces are homotopy-equivalent, respectively. We add some further questions that arise naturally: 4. the Homeomorphism Problem, which asks for an algorithm to deter- mine whether two given triangulated manifolds are homeomorphic; 5. the Membership Problem, where the goal is to determine whether a given element of a group lies in a specified subgroup.
    [Show full text]
  • Compactification of Spaces of Representations After Culler, Morgan and Shalen
    COMPACTIFICATION OF SPACES OF REPRESENTATIONS AFTER CULLER, MORGAN AND SHALEN JEAN-PIERRE OTAL Introduction 1. The space of characters of a group 1.1 The space of characters as an affine algebraic set 1.2 The tautological representation 1.3 A compactification of affine algebraic sets 1.4 Thurston's compactification of Teichm¨ullerspace 2. A compactification of affine algebraic varieties by valuations 2.1 Valuations 2.2 The Riemann-Zariski space 2.3 Construction of valuations from sequences of points 2.4 Examples of valuations 3. Λ-trees. 3.1 Λ-trees 3.2 The classification of isometries of a Λ-tree 3.3 Isometric group actions on Λ-trees 3.4 Conjugated actions 4. The Bass-Serre tree associated to a valuation 4.1 The Λ-tree of lattices in a two-dimensional vector space 4.2 The action of GL(2;F ) on the tree 4.3 Application to the character variety 4.4 The limit tree of a sequence of discrete and faithfull representations 5. Geometric actions of groups on Λ-trees 5.1 Λ-measured laminations 5.2 Construction of laminations by transversality 5.3 Actions of surface groups 5.4 Actions of 3-manifolds groups 1 2 JEAN-PIERRE OTAL Introduction This paper stems from notes of a course given at the \Ultrametric Dynamical Days" in Santiago de Chile. The purpose of this course was to explain the compactifications of spaces of representations, as this tool applies for questions in low-dimensional topology and in hyperbolic geometry. The use of methods from algebraic geometry for studying spaces of representations originates in [10].
    [Show full text]
  • Part 1. Prelude to Topology
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000{000 S 0273-0979(XX)0000-0 TOPOLOGY THROUGH THE CENTURIES: LOW DIMENSIONAL MANIFOLDS JOHN MILNOR Based on the Abel Lecture at the 2014 International Congress of Mathematicians in Seoul Abstract. This note will provide a lightning tour through the centuries, con- centrating on the study of manifolds of dimension 2, 3, and 4. Further com- ments and more technical details about many of the sections may be found in the Appendix. Part 1. Prelude to Topology The subject known as topology took shape in the 19th century, made dramatic progress during the 20th century, and is flourishing in the 21st. But before there was any idea of topology, there were isolated results which hinted that there should be such a field of study. 1.1. Leonhard Euler, St.Petersburg, 1736. K¨onigsberg in the 18th century Euler Perhaps the first topological statement in the mathematical literature came with Euler's solution to the problem of the Seven Bridges of K¨onigsberg: the prob- lem of taking a walk which traverses each of the seven bridges exactly once. In fact, Euler showed that no such walk is possible. The problem can be represented by 2010 Mathematics Subject Classification. Primary 57N05{57N13, Secondary 01A5*, 01A6*. c 0000 (copyright holder) 1 2 JOHN MILNOR a graph, as shown below, where each land mass is represented by a dot, and each bridge by an edge. 3 Theorem. There exists a path traversing each edge of such a graph exactly once if and only if the graph has at most two ver- 5 3 tices which are \odd", in the sense that an odd number of edges meet there.
    [Show full text]
  • Arxiv:1912.03115V1 [Math.GT] 6 Dec 2019
    W. P. THURSTON AND FRENCH MATHEMATICS FRAN ¸COIS LAUDENBACH AND ATHANASE PAPADOPOULOS, WITH CONTRIBUTIONS BY WILLIAM ABIKOFF, NORBERT A'CAMPO, PIERRE ARNOUX, MICHEL BOILEAU, ALBERT FATHI, DAVID FRIED, GILBERT LEVITT, VALENTIN POENARU,´ HAROLD ROSENBERG, FRANCIS SERGERAERT, VLAD SERGIESCU AND DENNIS SULLIVAN Abstract. We give a general overview of the influence of William Thurston on the French mathematical school and we show how some of the major problems he solved are rooted in the French mathemati- cal tradition. At the same time, we survey some of Thurston's major results and their impact. The final version of this paper will appear in the Surveys of the European Mathematical Society. AMS classification: 01A70; 01A60; 01A61; 57M50; 57R17; 57R30 Keywords: William P. Thurston: Geometric structures; Hyperbolic struc- tures; Haefliger structures; low-dimensional topology; foliations; contact structures; history of French mathematics. Part 1. 1. Prologue Seven years have passed since Bill Thurston left us, but his presence is felt every day in the minds of a whole community of mathematicians who were shaped by his ideas and his completely original way of thinking about mathematics. In 2015-2016 a two-part celebration of Thurston and his work was pub- lished in the Notices of the AMS, edited by Dave Gabai and Steve Kerckhoff with contributions by several of Thurston's students and other mathemati- cians who were close to him [15]. Among the latter was our former colleague and friend Tan Lei, who passed away a few years later, also from cancer, at the age of 53. One of Tan Lei's last professional activities was the the- arXiv:1912.03115v1 [math.GT] 6 Dec 2019 sis defense of her student J´er^omeTomasini in Angers, which took place on December 5, 2014 and for which Dylan Thurston served on the committee.
    [Show full text]
  • April 1997 Council Minutes
    AMERICAN MATHEMATICAL SOCIETY COUNCIL MINUTES 7:00 pm College Park, Maryland 12 April 1997 Abstract The Council of the Society met at 7:00 PM on Saturday, April 12, 1997, in College Park. MD. These are the minutes for the meeting. There were several items discussed in Executive Session, the most crucial of which are the nominations for the 1997 Election. Several items were added to the agenda at the beginning of the meeting. Those attending the meeting were Francis Bonahon, David Bressoud, Gail Carpenter, Robert Daverman, Clifford Earle, Robert Fossum, Susan Friedlander, Frederick Gardiner, James M. Hyman, Arthur Jaffe, Franklin Peterson, Marc Rieffel, Lesley Sibner, Cora Sadosky, Alice Sil- verberg, Joel Spencer, and Karen Vogtmann. Guests attending were Chandler Davis (CMS Representative), John Ewing (ED), Eric Fried- lander (Nominating Committee Chair), and Sam Rankin (AED). 1 2 CONTENTS Contents IMINUTES 3 0 CALL TO ORDER AND INTRODUCTIONS. 3 0.1CalltoOrder......................................... 3 0.2IntroductionofNewCouncilMembers........................... 3 1 MINUTES 3 1.1January97CouncilMinutes................................ 3 1.2MinutesofBusinessByMail............................... 4 1.2.1 Election to the Executive Committee. .................. 4 2 REPORTS OF BOARDS AND STANDING COMMITTEES. 4 2.1 Nominating Committee. ......................... 4 2.1.1 Contested elections for the President of the Society. ........... 4 2.1.2 Contested elections involving an incumbent member of the Board of Trustees. 4 2.2 Nominating Committee [EXECUTIVE SESSION]. .................. 4 2.2.1 PRESIDENT. ................................... 4 2.2.2 VICE PRESIDENT. ......................... 4 2.2.3 MEMBER-AT-LARGEOFTHECOUNCIL................... 5 2.2.4 TRUSTEE...................................... 5 2.3 Executive Committee and Board of Trustees (ECBT). ........... 5 2.4 Committee on Publications (CPUB). ......................... 5 2.5 Report from the Executive Director.
    [Show full text]
  • W. P. Thurston and French Mathematics François Laudenbach, Athanase Papadopoulos
    W. P. Thurston and French mathematics François Laudenbach, Athanase Papadopoulos To cite this version: François Laudenbach, Athanase Papadopoulos. W. P. Thurston and French mathematics. 2019. hal-02388097 HAL Id: hal-02388097 https://hal.archives-ouvertes.fr/hal-02388097 Preprint submitted on 5 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. W. P. THURSTON AND FRENCH MATHEMATICS FRAN ¸COIS LAUDENBACH AND ATHANASE PAPADOPOULOS, WITH CONTRIBUTIONS BY WILLIAM ABIKOFF, NORBERT A'CAMPO, PIERRE ARNOUX, MICHEL BOILEAU, ALBERT FATHI, DAVID FRIED, GILBERT LEVITT, VALENTIN POENARU,´ HAROLD ROSENBERG, FRANCIS SERGERAERT, VLAD SERGIESCU AND DENNIS SULLIVAN Abstract. We give a general overview of the influence of William Thurston on the French mathematical school and we show how some of the major problems he solved are rooted in the French mathemati- cal tradition. At the same time, we survey some of Thurston's major results and their impact. The final version of this paper will appear in the Surveys of the European Mathematical Society. AMS classification: 01A70; 01A60; 01A61; 57M50; 57R17; 57R30 Keywords: William P. Thurston: Geometric structures; Hyperbolic struc- tures; Haefliger structures; low-dimensional topology; foliations; contact structures; history of French mathematics.
    [Show full text]
  • View This Volume's Front and Back Matter
    http://dx.doi.org/10.1090/cbms/043 Conference Boar d o f the Mathematical Science s CBMS Regional Conference Serie s in Mathematics Number 4 3 Lectures on Three-Manifold Topology William Jaco Published fo r th e Conference Boar d of the Mathematical Science s by the American Mathematical Societ y Providence, Rhode Islan d with support from the National Science Foundatio n Expository Lecture s from th e CBM S Regional Conferenc e held at the Virginia Polytechnic Institute and State Universit y October 8-12,197 7 1980 Mathematics Subject Classifications . Primar y 55A05, 55A10, 55A25, 55D10, 55E05, 57A10. Key words and phrases . 3-manifold , fundamenta l group , Loop Theorem , Spher e Theorem , connected sums , sufficiently-large, hierarchies , Seifert fibered, periphera l structure , annulu s theorem, torus theorem, homotopy equivalences . Library of Congres s Cataloging in Publication Data Jaco, William , 1940 - Lectures o n three-manifol d topology . (Regional conferenc e serie s in mathematics; no. 43) "Expository lecture s fro m th e CBM S regional conferenc e hel d a t th e Virginia Polytech - nic Institute an d Stat e University , October 8-12, 1977. " Bibilography: p . Includes index. 1. Three-manifold s (Topology ) I . Conference Boar d o f th e Mathematica l Sciences . II. Title. III . Series. QALR33 no . 43 [QA613.2 ] 510 s [514\223 ] 79-2848 8 ISB N 0-8218-1693 4 Copying an d reprinting . Individua l reader s o f thi s publication , an d nonprofi t librarie s actin g for them , ar e permitte d t o mak e fai r us e o f th e material , suc h a s t o cop y a chapte r fo r us e in teachin g o r research .
    [Show full text]