<<

r-Process in mergers and GW170817

Jonas Lippuner July 18, 2018 FRIB and the GW170817 FRIB/NSCL/MSU, East Lansing MI

Operated by Los Alamos National Security, LLC for the U.S. Department of ’s NNSA

Los Alamos National Laboratory UNCLASSIFIED LA-UR-18-21867 Outline

1. r-Process nucleosynthesis overview 2. r-Process in neutron star mergers 3. Observational signature and first detection

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 2 Solar system abundances

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 3 Solar system abundances

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 3 The s-process

slow neutron capture 90Zr 91Zr 92Zr

τ ≪ τ ∼ 2 − 5 89 β− n 10 10 yr Y

84Sr 86Sr 87Sr 88Sr

85Rb 87Rb

78Kr 80Kr 82Kr 83Kr 84Kr 86Kr

79Br 81Br

74Se 76Se 77Se 78Se 80Se 82Se

75As

70Ge 72Ge 73Ge 74Ge 76Ge

69Ga 71Ga

66Zn 67Zn 68Zn 70Zn

65Cu

closed neutron shell

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 4 The s-process

slow neutron capture 90Zr 91Zr 92Zr

τ ≪ τ ∼ 2 − 5 89 β− n 10 10 yr Y

84Sr 86Sr 87Sr 88Sr

85Rb 87Rb

78Kr 80Kr 82Kr 83Kr 84Kr 86Kr

79Br 81Br

74Se 76Se 77Se 78Se 80Se 82Se

75As

70Ge 72Ge 73Ge 74Ge 76Ge

69Ga 71Ga

66Zn 67Zn 68Zn 70Zn

65Cu

closed neutron shell

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 4 The r-process

rapid neutron capture 90Zr 91Zr 92Zr τ ≪ τ ∼ n β− 10 ms – 10 s 89Y

84Sr 86Sr 87Sr 88Sr

85Rb 87Rb

78Kr 80Kr 82Kr 83Kr 84Kr 86Kr

79Br 81Br

74Se 76Se 77Se 78Se 80Se 82Se

75As

70Ge 72Ge 73Ge 74Ge 76Ge

69Ga 71Ga

66Zn 67Zn 68Zn 70Zn

65Cu

neutron drip line closed neutron shell

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 5 The r-process

rapid neutron capture 90Zr 91Zr 92Zr τ ≪ τ ∼ n β− 10 ms – 10 s 89Y

84Sr 86Sr 87Sr 88Sr

85Rb 87Rb

78Kr 80Kr 82Kr 83Kr 84Kr 86Kr

79Br 81Br

74Se 76Se 77Se 78Se 80Se 82Se

75As

70Ge 72Ge 73Ge 74Ge 76Ge

69Ga 71Ga

66Zn 67Zn 68Zn 70Zn

65Cu

neutron drip line closed neutron shell

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 5 Double peaks due to closed neutron shells

τ ≪ τ ∼ 2 − 5 90 91 92 s-process: β− n 10 10 yr Zr Zr Zr τ ≪ τ ∼ r-process: n β− 10 ms – 10 s 89Y

84Sr 86Sr 87Sr 88Sr

85Rb 87Rb

78Kr 80Kr 82Kr 83Kr 84Kr 86Kr

79Br 81Br

74Se 76Se 77Se 78Se 80Se 82Se

75As

70Ge 72Ge 73Ge 74Ge 76Ge

69Ga 71Ga

66Zn 67Zn 68Zn 70Zn

65Cu

neutron drip line closed neutron shell

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 6 Double peaks due to closed neutron shells

τ ≪ τ ∼ 2 − 5 90 91 92 s-process: β− n 10 10 yr Zr Zr Zr τ ≪ τ ∼ r-process: n β− 10 ms – 10 s 89Y

84Sr 86Sr 87Sr 88Sr

85Rb 87Rb

78Kr 80Kr 82Kr 83Kr 84Kr 86Kr

79Br 81Br

74Se 76Se 77Se 78Se 80Se 82Se

75As

70Ge 72Ge 73Ge 74Ge 76Ge

69Ga 71Ga

66Zn 67Zn 68Zn 70Zn

65Cu

neutron drip line closed neutron shell

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 6 Double peaks due to closed neutron shells

τ ≪ τ ∼ 2 − 5 90 91 92 s-process: β− n 10 10 yr Zr Zr Zr τ ≪ τ ∼ r-process: n β− 10 ms – 10 s 89Y

84Sr 86Sr 87Sr 88Sr

85Rb 87Rb

78Kr 80Kr 82Kr 83Kr 84Kr 86Kr

79Br 81Br

74Se 76Se 77Se 78Se 80Se 82Se

75As

70Ge 72Ge 73Ge 74Ge 76Ge

69Ga 71Ga

66Zn 67Zn 68Zn 70Zn

65Cu

neutron drip line closed neutron shell

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 6 Double peaks due to closed neutron shells

τ ≪ τ ∼ 2 − 5 90 91 92 s-process: β− n 10 10 yr Zr Zr Zr τ ≪ τ ∼ r-process: n β− 10 ms – 10 s 89Y

84Sr 86Sr 87Sr 88Sr

85Rb 87Rb

78Kr 80Kr 82Kr 83Kr 84Kr 86Kr

79Br 81Br

74Se 76Se 77Se 78Se 80Se 82Se

75As

70Ge 72Ge 73Ge 74Ge 76Ge

69Ga 71Ga

66Zn 67Zn 68Zn 70Zn

65Cu

neutron drip line closed neutron shell

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 6 Solar system abundances

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 7 SkyNet

Sky Net bitbucket.org/jlippuner/skynet

• General-purpose nuclear reaction network • ∼8000 isotopes, ∼140,000 nuclear reactions • Evolves temperature based on nuclear reactions • Input: ρ(t), initial composition, entropy • Open source

Lippuner, J. and Roberts, L. F., ApJS 233, 18 (2017)

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 8 SkyNet features

Science • Extended Timmes equation of state (EOS) • Calculate nuclear statistical equilibrium (NSE) • NSE mode • Calculate inverse rates from detailed balance to be consistent with NSE • Electron screening with smooth transition between weak and strong screening (reactions and NSE)

Code • Adaptive time stepping • Python bindings • Modularity • Extendible reaction class (currently REACLIB, table, ) • Make movies

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 9 Outline

1. r-Process nucleosynthesis overview 2. r-Process in neutron star mergers 3. Observational signature and first detection

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 10 Merger ejecta: Dynamical

Tidal tails or collision interface −4 −2 NS–NS: Mej ∼ 10 − few × 10 M⊙, Ye ∼ 0.05 − 0.45 −1 NS–BH: Mej ∼ 0 − 10 M⊙, Ye . 0.2

Bauswein+13, Hotokezaka+13, Foucart+14, Sekiguchi+15, Kyutoku+15, Radice+16

From Price+06

From Bauswein+13

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 11 Merger ejecta: Disk outflow

Neutrino driven wind or outflow due to viscous heating and α recombination −3 Mej ∼ few × 10 M⊙, Ye ∼ 0.2 − 0.45

Surman+08, Wanajo+11, Fernandez+13,´ Perego+14, Just+15, Foucart+15

From Perego+14 From Fernandez+13´

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 12 Movie

http://jonaslippuner.com/skynet/SkyNet_Ye_0.010_s_010.000_tau_007.100.mp4 http://jonaslippuner.com/skynet/SkyNet_Ye_0.250_s_010.000_tau_007.100.mp4

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 13 r-Process abundances vs. electron fraction

10−2 = Ye 0.01 Observed solar r-process

Ye = 0.19 10−3 Ye = 0.25

Ye = 0.50 10−4

10−5

Abundance 10−6

10−7

10−8

10−9 0 25 50 75 100 125 150 175 200 225 250 Mass number A JL, Roberts 2015, ApJ 815, 82, arXiv:1508.03133

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 14 Full binary simulations

From Wanajo+14 From Wanajo+14

See also Goriely+15

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 15 Nucleosynthesis in HMNS disk outflow

• 3 M⊙ central HMNS or BH, 0.03 M⊙ accretion disk • Variable HMNS lifetime, neutrino leakage, α viscosity

Figure from Metzger & Fernandez´ (2014)

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 16 Final abundances

10−2 Observed solar r-process

10−3 A

Y 10−4 ej M

10−5

10−6 Final abundance −7 10 τ = 0 ms τ = 100 ms τ = 10 ms τ = 300 ms −8 10 τ = 30 ms τ = ∞

10−9 0 25 50 75 100 125 150 175 200 225 250

Mass number A JL, Fernandez,´ Roberts, et al. 2017, MNRAS 472, 904, arXiv:1703.06216

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 17 –neutron star merger

Roberts, JL, Duez, et al. 2017, MNRAS 464, 3907, arXiv:1601.07942 1. Full GR simulation of BH–NS Francois Foucart (UNH), Foucart et al., Phys. Rev. D 90, 024026 (2014) 2. Evolve ejecta in SPH code Matt Duez (WSU) 3. Nucleosynthesis with varying neutrino luminosity JL and Luke Roberts (MSU)

Figure credit: F. Foucart

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 18 BHNS: Final abundances vs. neutrino luminosity

10−2

Lνe,52 = 0.2 Lνe,52 = 25

Lνe,52 = 1 Solar r-process 10−3

10−4

10−5

10−6 Relative final abundance

10−7

10−8 0 50 100 150 200 250 Mass number A

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 19 Neutrino driven wind in core-collapse supernovae

emitted from hot proto-neutron star can drive outflow of n and p • Neutrino driven wind is mildly neutron-rich → r-process?

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 20 Jet in MHD-driven

• Requires very high magnetic field (B ∼ 1012 − 1013 G) and rapid rotation • Maybe 0.1 − 1% of all core-collapse supernovae

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 21 Jet in MHD-driven supernova

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 22 Outline

1. r-Process nucleosynthesis overview 2. r-Process in neutron star mergers 3. Observational signature and first detection

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 23 Observational signature of r-process: Kilonova

Metzger & Berger, 2012, ApJ 746, 48

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 24 Impact of lanthanides

2 = . 10− Ye 0 01 Observed solar r-process Ye = 0.19 Lanthanides = . 10−3 Ye 0 25 Actinides Ye = 0.50

10−4

10−5

Abundance 10−6

10−7

10−8

10−9 0 25 50 75 100 125 150 175 200 225 250 Mass number A

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 25 Impact of lanthanides

1042 −1 = . s = 10 kB baryon Ye 0 01 Ye = 0.19 τ = 7.1 ms Ye = 0.25

] = . = 1 M 0 01 M⊙ Ye 0.50 − Luminosity 1041 Heating rate

1040 Luminosity, heating rate [erg s

1039 0 5 10 15

Time [day]

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 26 First neutron star merger observation: GW170817

LIGO et al. 2017, ApJL 848, L13

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 27 GW170817: Hunt for electromagnetic counterpart

• LIGO/VIRGO localization: 31 deg2 ∼ 150full moons • Distance estimate: 40 ± 8 Mpc • 49 in that volume • Check all galaxies starting with most massive first

Kasliwal et al., 2017, 358, 1559

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 28 GW170817: Counterpart discovered in NGC 4993

• Discovered 10.9 hours after merger • Host : NGC 4993, elliptical galaxy, constellation , 40 Mpc ∼ 130 Mly

Credit: 1M2H Team / UC Santa Cruz & Carnegie Observatories / Ryan Foley

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 29 GW170817: Rapid color evolution

Credit: ESO / N.R. Tanvir, A.J. Levan and the VIN-ROUGE collaboration

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 30 GW170817: Huge observing campaign

LIGO et al., 2017, ApJL 848, L12

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 31 GW170817: Combined light curve

Villar et al., 2017, ApJL 851, L21

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 32 GW170817: One-component kilonova models fail

Cowperthwaite et al., 2017, ApJL 848, L17

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 33 GW170817: Two-component models do better

Tanvir et al., 2017, ApJL 848, L27 Troja et al., 2017, 551, 71

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 34 GW170817: Three-component model needed?

Villar et al., 2017, ApJL 851, L21

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 35 GW170817: Featureless optical spectrum

Nicholl et al., 2017, ApJL 848, L18

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 36 GW170817: spectrum

Chornock et al., 2017, ApJL 848, L19

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 37 GW170817: What we learned

• Confirmed neutron star mergers make short GRBs (but this was a weird GRB) −2 • Total ejecta mass larger than expected: ∼ 5 × 10 M⊙ • Neutron star mergers can easily make all r-process material in the galaxy • Blue (lanthanide-free) component larger than expected, maybe large disk wind or blue dynamical component • Lanthanide-rich component is evidence for full r-process, tens of Earth masses of and platinum −3 −2 2 −1 • “Purple” kilonova component with XLa ∼ 10 − 10 , κ ∼ 3 cm g ? • Gravity propagates at the , rules out many alternative theories of gravity besides Einstein’s

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 38 Summary

• s- and r-process create heavy elements beyond the iron peak • r-process happens in dynamical and disk ejecta in a neutron star merger • Dynamical ejecta (NS-NS and BH-NS) is generally neutron-rich enough for full r-process • Neutron star mergers are probably the dominant site of the r-process, core-collapse supernovae may contribute weakly • GW170817: First LIGO detection of neutron star merger accompanied by GRB and kilonova – Kilonova followed pretty well what we expected – Yet more work is needed to understand light curve in detail, purple component?

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 39 Extra slides

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 40 Solar system abundances

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 41 First (wrong) attempt: αβγ

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 42 Birth of modern theory of nucleosynthesis: B2FH

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 43 SkyNet

Define abundance

ni Yi = . (1) nB Consider reaction

p + 7Li → 2 4He (2)

with rate λ = λ(T ,ρ). Then ˙ Y4He = 2λYpY7Li + · · · , ˙ Yp = −λYpY7Li + · · · , ˙ Y7Li = −λYpY7Li + · · · (3) Need to solve big, stiff, non-linear system of ODEs

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 44 NS–NS ejecta sources: Tidal tails

Ye ∼ 0.05 − 0.45

Credit: D. J. Price et al. (2006)

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 45 NS–NS ejecta sources: Collision interface

Ye ∼ 0.05 − 0.45

Credit: D. Berry, SkyWorks Digital, Inc.

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 46 NS–NS ejecta sources: Disk outflow

Ye ∼ 0.2 − 0.45

Credit: A. Bauswein et al. (2013)

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 47 Parametrized r-process

Lippuner & Roberts, 2015, ApJ, 815, 82, arXiv:1508.03133 Parameters

0.01 ≤ Ye ≤ 0.50 initialelectronfraction −1 −1 1 kB baryon ≤ s ≤ 100 kB baryon initial specific entropy 0.1 ms ≤ τ ≤ 500ms expansiontimescale

Density profile 1 0

−t/τ −3 ρ0e t ≤ 3τ ρ/ρ 10 τ t 3 3 ρ( ,τ)=  3τ −6  ρ0 t ≥ 3τ 10 =  te  t Density  10−9 10−3 10−2 10−1 1 101 102 103 Time t/τ Initial conditions

• Choose initial temperature T0 = 6 GK

• Find ρ0 by solving for NSE at T0 and Ye that produces specified s

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 48 Final abundances vs. entropy

10−2 s = 1 kB Observed solar r-process s = 3.2 kB 10−3 s = 10 kB s = 100 kB 10−4

10−5

Abundance 10−6

10−7

10−8

10−9 0 25 50 75 100 125 150 175 200 225 250 Mass number A JL, Roberts 2015, ApJ 815, 82, arXiv:1508.03133

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 49 Electron fraction distribution

2.25 τ = 0 ms 2.00 τ = 10 ms τ = 30 ms 1.75 τ = 100 ms τ = 300 ms 1.50 τ = ∞ ] ⊙ M

3 1.25 −

1.00

Mass [10 0.75

0.50

0.25

0.00 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55

Electron fraction Ye

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 50 Ejected mass

30 Ye ≤ 0.25 Ye > 0.25 25 ] ⊙

M 20 3 −

15

10 Ejected mass [10

5

0 0 10 30 100 300 ∞ HMNS lifetime [ms]

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 51 BHNS: Electron fraction distribution

0.08

Lνe,52 = 0.2 L = 1 0.07 νe,52 Lνe,52 = 25

0.06

0.05 ] ⊙ M 0.04 Mass [ 0.03

0.02

0.01

0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Electron fraction Ye

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 52 Light curves vs. electron fraction 0 1042

Lanthanide and actinide mass fraction XLa+Ac Peak time tp [day] Peak effective temperature T [K] 5 eff . −1 −1 4 Peak Luminosity [erg s ] 41

− 10 −1 s = 10 kB baryon 3000 / −2 τ = 1 ms eff T 40 5, 10 −

3 6000K

/ −3 p t

, 6 days

La+Ac 39

X 10 −4 log 1600K 1 day

−5 1038 0.0 0.1 0.2 0.3 0.4 0.5

Los Alamos National Laboratory ElectronUNCLASSIFIED fraction Ye 3/19/2018 | 53 Recent evidence for rare r-process

• Reticulum II: 1 in 10 highly r-process enhanced ultra-faint dwarf galaxy • Recently discovered second UFD with r-process star: Tucana III Hansen et al., 2017, ApJ 838, 1

Ji et al., 2016, Nature 531, 610

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 54 Recent evidence for rare r-process

244 • Pu is actinide (r-process only) with τ1/2 ∼ 80 Myr (<τmix ∼ 300 Myr) • Interstellar material is swept up and deposited in deep-sea crust • Measure abundance of 244Pu in 25 Myr old deep-sea crust → 244Pu abundance in ISM

From Wallner+15 From Hotokezaka+15

Los Alamos National Laboratory UNCLASSIFIED 3/19/2018 | 55