MMPE'18 Do Druku

Total Page:16

File Type:pdf, Size:1020Kb

MMPE'18 Do Druku MATHEMATICAL MODELING IN PHYSICS AND ENGINEERING Wydawnictwo Wydziału Zarządzania Politechniki Częstochowskiej Cz ęstochowa 2018 Scientific editors: Technical editors: Andrzej Grzybowski Katarzyna Freus Jolanta Pozorska Katarzyna Szota Cover design: Tomasz Błaszczyk Jock Cooper, www.fractal-recurrious.com Scientific committee: Andrzej Grzybowski CUT - Chair Bohdan Mochnacki UOSM Tomasz Błaszczyk CUT Valerie Novitzká, TUK Jan Čapek UP Antoni Pierzchalski UL Mariusz Ciesielski CUT Jolanta Pozorska CUT Zbigniew Doma ński CUT Zbigniew Pozorski PUT Andrzej Drzewi ński UZG Piotr Puchała CUT Małgorzata Klimek CUT Gra żyna Rygał JDU Bohdan Kopytko CUT Norbert Sczygiol CUT Mariusz Kubanek CUT Urszula Siedlecka CUT Stanisław Kukla CUT Krzysztof Sokół CUT Adam Kulawik CUT William Steingartner TUK Jacek Leszczy ński AGH UST Oleg Tikhonenko CWU Zhbing Li SYSU Jerzy Winczek CUT Ewa Majchrzak SUT Izabela Zamorska CUT Organizing committee: Jolanta Pozorska -Conference General Mariusz Ciesielski Manager Zbigniew Doma ński Urszula Siedlecka- Secretary Katarzyna Freus Izabela Zamorska - Secretary Andrzej Grzybowski Jolanta Borowska Katarzyna Szota The materials submitted by the authors were reviewed and accepted by the Scientific Committee ISBN © Copyright by Wydawnictwo Wydziału Zarz ądzania Politechniki Cz ęstochowskiej Cz ęstochowa 2018 Wydawnictwo Wydziału Zarz ądzania Politechniki Cz ęstochowskiej 42-200 Cz ęstochowa, al. Armii Krajowej 36 B tel. 34 325 04 80, dystrybucja 34 325 08 67 e-mail: [email protected] Mathematical Modeling in Physics and Engineering The conference Mathematical Modeling in Physics and Engineering – MMPE’18 is organized by Czestochowa Branch of Polish Mathematical Society jointly with the Institute of Mathematics of Czestochowa University of Technology. Mathematical modeling is at the core of contemporary research within a wide range of fields of science and its applications. The MMPE’18 focuses on various aspects of mathematical modeling and usage of computer methods in modern problems of physics and engineering. The goal of this conference is to bring together mathematicians and researchers from physics and diverse disciplines of technical sciences. Apart from providing a forum for the presentation of new results, it creates a platform for exchange of ideas as well as for less formal discussions during the evening social events which are planned to make the conference experience more enjoyable. This year’s conference is organized for the 10th time. Every year the conference participants represent a prominent group of recognized scientists as well as young researchers and PhD students from domestic and foreign universities. This time we have invited speakers from Silesian University of Technology and University of Occupational Safety Management in Katowice as well as from other higher education institutions: Technical University of Košice, Vasyl Stefanyk Precarpathian National University, Jan Długosz University, Poznan University of Technology, University of Lodz and Technical University of Czestochowa. Organizers 3 Mathematical Modeling in Physics and Engineering 4 Mathematical Modeling in Physics and Engineering CONTENTS 1. NUMERICAL ALGORITHMS FOR FRACTIONAL OPERATORS Krzysztof Bekus............................................................................................ 9 2. POLYNOMIAL MAPPINGS WHICH HAVE TWO ZEROS AT INFINITY Grzegorz Biernat .......................................................................................... 11 3. FRACTIONAL STURM-LIOUVILLE PROBLEM WITH DIFFERENT TYPES OF BOUNDARY CONDITIONS – NUMERICAL APPROACH Tomasz Błaszczyk, Mariusz Ciesielski, Małgorzata Klimek ...................... 13 4. CLASSIFICATION OF THE BRAVAIS LATTICE AND CRYSTALLINE STRUCTURES Lena Caban, Joanna Kurek .......................................................................... 15 5. APPLICATION OF THE KRONECKER TENSOR PRODUCT FOR MODELLING THE DEPHT OF NITROGEN DIFFUSION PROCESS Anita Ciekot ................................................................................................. 17 6. FIBER BUNDLE MODEL WITH FRÉCHET DISTRIBUTED BREAKING THRESHOLDS Tomasz Derda .............................................................................................. 19 7. MIXED MATRIX PROBLEMS AND THEIR APPLICATIONS Nadiya Gubareni .......................................................................................... 21 8. ON ONE CLASS OF NONLOCAL PARABOLIC CONJUGATION PROBLEMS IN THE THEORY OF DIFFUSION PROCESSES WITH MEMBRANES Bohdan Kopytko, Roman Shevchuk ........................................................... 22 9. A NEW APPROACH TO SPEECH RECOGNITION USING CONVOLUTIONAL NEURAL NETWORKS Mariusz Kubanek ......................................................................................... 24 10. FRACTIONAL HEAT CONDUCTION IN A COMPOSITE CYLINDER Stanisław Kukla, Urszula Siedlecka ............................................................ 31 5 Mathematical Modeling in Physics and Engineering 11. ABOUT SOME UNIFORMLY BOUNDED SUPERPOSITION OPERATORS Maria Lupa, Małgorzata Wróbel ..................................................................33 12. A FEW WORDS ABOUT SUPPLY AND DEMAND Ewa Ładyga, Marek Ładyga .........................................................................35 13. METHODS OF MULTIDIMENSIONAL COMPARISON ANALYSIS IN ENTERPRISE MANAGEMENT Marek Ładyga, Ewa Ładyga .........................................................................38 14. APPLICATION OF NUMERICAL METHODS FOR SOLVING THE NON- FOURIER EQUATIONS. REVIEW OF OWN AND COLLABORATORS WORKS Ewa Majchrzak, Bohdan Mochnacki ............................................................42 15. THE ADVANTAGES OF LINEAR LOGIC IN COMPUTER SCIENCE Valerie Novitzká, William Steingartner, Mohamed Ali M. Eldojali ............44 16. FRACTIONAL HEAT CONDUCTION AND DIFFUSION EQUATIONS AND ASSOCIATED THEORIES OF THERMAL AND DIFFUSIVE STRESSES Yuriy Povstenko ...........................................................................................51 17. THE INFLUENCE OF THE BOUNDARY CONDITIONS ON THE SHEAR STRESSES IN SANDWICH PANELS SUBJECTED TO TORSION Zbigniew Pozorski, Szymon Wojciechowski ...............................................52 18. CONVERGENCE OF THE SEQUENCES OF HOMOGENEOUS YOUNG MEASURES Piotr Puchała .................................................................................................54 19. MATHEMATICAL THINKING AS AN INDISPENSABLE SKILL TO SOLVE BOTH EVERYDAY PROBLEMS AND PURELY MATHEMATICAL ISSUES Gra żyna Rygał ..............................................................................................56 20. THE CONTROL OF LOCAL AND GLOBAL INSTABILITY REGIONS OF THE SLENDER STRUCTURES Krzysztof Sokół ............................................................................................57 6 Mathematical Modeling in Physics and Engineering 21. REMARKS ABOUT GEOMETRIC SCALE IN ANALYTIC HIERARCHY PROCESS Tomasz Starczewski .................................................................................... 59 22. NEW LEARNING TOOLS FOR TEACHING THE SEMANTICS OF PROGRAMMING LANGUAGES William Steingartner, Valerie Novitzká ...................................................... 63 23. THE INFLUENCE OF MOUNTING RIGIDITY ON STABILITY AND STRENGTH OF CYLINDER BARRELS OF A TELESCOPIC HYDRAULIC CYLINDER Sebastian Uzny, Łukasz Kutrowski ............................................................. 69 24. NONLINEAR COMPONENT OF FREE VIBRATION FREQUENCY OF PARTIALLY TENSIONED SYSTEM WITH CONSIDERATION OF ROTATIONAL STIFFNESS OF SUPPORT Sebastian Uzny, Michał Osadnik ................................................................. 73 25. THE DETERMINATION OF STRESS-STRAIN RELATIONS FOR STEELS CONSIDERING THE INFLUENCE OF TEMPERATURE Jerzy Winczek .............................................................................................. 77 26. COMPARISON OF THE ANALYTICAL AND NUMERICAL SOLUTIONS OF THE LAPLACE EQUATION Ewa W ęgrzyn-Skrzypczak, Tomasz Skrzypczak ........................................ 83 27. INVERTIBLE POLYNOMIAL MAPPINGS WHICH HAVE ONE ZERO AT INFINITY STABILITY Magdalena Wo źniakowska .......................................................................... 85 28. DIFFERENTIAL TRANSFORMATION METHOD FOR A CANTILEVER BEAM WITH DAMAGE Izabela Zamorska ......................................................................................... 87 THE DIDACTIC PANEL ………………………………………………………………………………89 29. PROFESSIONAL PRACTICES IN THE STUDY PROGRAM ACCORDING TO LAW 2.0. REGIONAL POSSIBILITIES OF PROFESSIONAL PRACTICES Jolanta Borowska ......................................................................................... 91 7 Mathematical Modeling in Physics and Engineering 30. INTERDISCYPLINARY STUDIES ACCORDING TO LAW 2.0 Joanna Klekot ...............................................................................................92 31. THE REQUIREMENTS FOR GRANTING THE RIGHT TO CONDUCT STUDIES WITH A PRACTICAL PROFILE IN THE CONTEXT OF THE HIGHER EDUCATION AND SCIENCE LAW (ACT 2.0) Sylwia Lara-Dziembek .................................................................................93 32. THE REQUIREMENTS FOR GRANTING THE RIGHT TO CONDUCT STUDIES WITH A GENERAL ACADEMIC PROFILE IN THE CONTEXT OF THE HIGHER EDUCATION AND SCIENCE LAW (ACT 2.0) Edyta Pawlak ................................................................................................94 33. PRINCIPLES OF CLASSIFICATION OF SCIENTIFIC DISCIPLINES ACCORDING TO LAW 2.0 (LAW ON HIGHER EDUCATION AND SCIENCE), STATE ON
Recommended publications
  • Geometric Integration Theory Contents
    Steven G. Krantz Harold R. Parks Geometric Integration Theory Contents Preface v 1 Basics 1 1.1 Smooth Functions . 1 1.2Measures.............................. 6 1.2.1 Lebesgue Measure . 11 1.3Integration............................. 14 1.3.1 Measurable Functions . 14 1.3.2 The Integral . 17 1.3.3 Lebesgue Spaces . 23 1.3.4 Product Measures and the Fubini–Tonelli Theorem . 25 1.4 The Exterior Algebra . 27 1.5 The Hausdorff Distance and Steiner Symmetrization . 30 1.6 Borel and Suslin Sets . 41 2 Carath´eodory’s Construction and Lower-Dimensional Mea- sures 53 2.1 The Basic Definition . 53 2.1.1 Hausdorff Measure and Spherical Measure . 55 2.1.2 A Measure Based on Parallelepipeds . 57 2.1.3 Projections and Convexity . 57 2.1.4 Other Geometric Measures . 59 2.1.5 Summary . 61 2.2 The Densities of a Measure . 64 2.3 A One-Dimensional Example . 66 2.4 Carath´eodory’s Construction and Mappings . 67 2.5 The Concept of Hausdorff Dimension . 70 2.6 Some Cantor Set Examples . 73 i ii CONTENTS 2.6.1 Basic Examples . 73 2.6.2 Some Generalized Cantor Sets . 76 2.6.3 Cantor Sets in Higher Dimensions . 78 3 Invariant Measures and the Construction of Haar Measure 81 3.1 The Fundamental Theorem . 82 3.2 Haar Measure for the Orthogonal Group and the Grassmanian 90 3.2.1 Remarks on the Manifold Structure of G(N,M).... 94 4 Covering Theorems and the Differentiation of Integrals 97 4.1 Wiener’s Covering Lemma and its Variants .
    [Show full text]
  • Introduction
    Notes Introduction 1 Marie Corelli, or Mary Mackay (1855–1924) was a successful romantic novelist. The quotation is from her pamphlet, Woman or – Suffragette? A Question of National Choice (London: C. Arthur Pearson, 1907). 2 Sally Ledger and Roger Luckhurst, eds, The Fin de Siècle: A Reader in Cultural History c.1880–1900 (Oxford: Oxford University Press, 2000), p. xii. 3 A central text is Steven Shapin and Simon Schaffer, Leviathan and the Air- pump: Hobbes, Boyle and the Experimental Life (Princeton: Princeton University Press, 1985). 4 Otto Mayr, ‘The science-technology relationship’, in Science in Context: Readings in the Sociology of Science, ed. by Barry Barnes and David Edge (Milton Keynes: Open University Press, 1982), pp. 155–163. 5 Nature, November 8 1900, News, p. 28. 6 For example Alison Winter, ‘A calculus of suffering: Ada Lovelace and the bodily constraints on women’s knowledge in early Victorian England’, in Science Incarnate: Historical Embodiments of Natural Knowledge, ed. by Christopher Lawrence and Steven Shapin (Chicago: University of Chicago Press, 1998), pp. 202–239 and Margaret Wertheim, Pythagoras’ Trousers: God, Physics and the Gender Wars (London: Fourth Estate, 1997). 7 Carl B. Boyer, A History of Mathematics (New York: Wiley, 1968), pp. 649–650. 8 For the social construction of mathematics see David Bloor, ‘Formal and informal thought’, in Science in Context: Readings in the Sociology of Science, ed. by Barry Barnes and David Edge (Milton Keynes: Open University Press, 1982), pp. 117–124; Math Worlds: Philosophical and Social Studies of Mathematics and Mathematics Education, ed. by Sal Restivo, Jean Paul Bendegem and Roland Fisher (Albany: State University of New York Press, 1993).
    [Show full text]
  • Lecture Notes of the Unione Matematica Italiana
    Lecture Notes of 3 the Unione Matematica Italiana Editorial Board Franco Brezzi (Editor in Chief) Persi Diaconis Dipartimento di Matematica Department of Statistics Università di Pavia Stanford University Via Ferrata 1 Stanford, CA 94305-4065, USA 27100 Pavia, Italy e-mail: [email protected], e-mail: [email protected] [email protected] John M. Ball Nicola Fusco Mathematical Institute Dipartimento di Matematica e Applicazioni 24-29 St Giles’ Università di Napoli “Federico II”, via Cintia Oxford OX1 3LB Complesso Universitario di Monte S. Angelo United Kingdom 80126 Napoli, Italy e-mail: [email protected] e-mail: [email protected] Alberto Bressan Carlos E. Kenig Department of Mathematics Department of Mathematics Penn State University University of Chicago University Park 1118 E 58th Street, University Avenue State College Chicago PA. 16802, USA IL 60637, USA e-mail: [email protected] e-mail: [email protected] Fabrizio Catanese Fulvio Ricci Mathematisches Institut Scuola Normale Superiore di Pisa Universitätstraße 30 Piazza dei Cavalieri 7 95447 Bayreuth, Germany 56126 Pisa, Italy e-mail: [email protected] e-mail: [email protected] Carlo Cercignani Gerard Van der Geer Dipartimento di Matematica Korteweg-de Vries Instituut Politecnico di Milano Universiteit van Amsterdam Piazza Leonardo da Vinci 32 Plantage Muidergracht 24 20133 Milano, Italy 1018 TV Amsterdam, The Netherlands e-mail: [email protected] e-mail: [email protected] Corrado De Concini Cédric Villani Dipartimento di Matematica Ecole Normale Supérieure de Lyon Università di Roma “La Sapienza” 46, allée d’Italie Piazzale Aldo Moro 2 69364 Lyon Cedex 07 00133 Roma, Italy France e-mail: [email protected] e-mail: [email protected] The Editorial Policy can be found at the back of the volume.
    [Show full text]
  • Geometric Measure Theory at Brown in the 1960S
    Geometric Measure Theory at Brown in the 1960s Wendell H. Fleming Brown University May 5, 2015 Table of Contents Part I. - Mathematical Results 1. Introduction. 3 2. Pre-1960 background. 5 i. Structure of sets of finite Hausdorff measure. 5 ii. Gauss-Green (divergence) theorem. .6 iii. The Plateau (least area) problem. 6 iv. Surface area theory. 8 v. de Rham’s currents. .9 vi. Young’s generalized surfaces . .11 vii. Whitney’s geometric integration theory. 12 3. Rectifiable and integral currents. 13 4. Normal currents, other results. 18 5. Flat chains. 19 6. Higher dimensional Plateau problem. 20 7. Regularity results, Bernstein’s Theorem. 22 1 8. Geometric variational problems, generalized surfaces, varifolds. 26 Part II - Remembrances 9. Brown University Mathematics Department in the 1960s. 29 10. Graduate students and visitors in GMT. 30 11. Remembrances of leaders in GMT (Almgren, De Giorgi, Federer, Reifenberg, Young). ..................................................................................32 Appendices A. Notations and definitions. .45 B. Abstracts. 49 C. Generalized surfaces. .50 References Scientific obituary articles. 64 Books. ...........................................................................64 Journal references. 66 2 Part I - Mathematical Results 1 Introduction. The field of geometric measure theory (GMT) is at an interface of problems in mathematical analysis and geometry. This article is intended as a historical retrospective, with emphasis on the decade 1960-1969. This was a time of rapid development of GMT, and Brown University was at the forefront. It is a revision and extension of material presented at a miniconference on April 16, 2011 in memory of Herbert Federer, who died in April 2010. Federer joined the Mathematics Department in 1945, and remained at Brown throughout his career.
    [Show full text]
  • Lower Semicontinuity and Young Measures for Integral Functionals with Linear Growth
    Lower Semicontinuity and Young Measures for Integral Functionals with Linear Growth Johan Filip Rindler Worcester College University of Oxford A thesis submitted for the degree of Doctor of Philosophy in Mathematics Trinity Term 2011 In memory of Rudolf Lange (b15 August 1931 d18 January 1994) and Jorg¨ Kraftmeier (b4 August 1942 d12 June 2005). Abstract The first contribution of this thesis is a new proof of sequential weak* lower semicontinuity m in BV(Ω; R ) for integral functionals of the form Z Z s 1 dD u s F(u) := f(x; ru) dx + f x; s djD uj Ω Ω djD uj Z 1 d−1 m + f x; uj@Ω ⊗ nΩ dH ; u 2 BV(Ω; R ); @Ω m×d where f : Ω × R ! R is a quasiconvex Carath´eodory integrand with linear growth at infinity, i.e. jf(x; A)j ≤ M(1+jAj) for some M > 0, and f is such that the recession function 1 −1 0 f (x; A) := limx0!x;t!1 t f(x ; tA) exists and is (jointly) continuous. In contrast to the classical proofs by Ambrosio & Dal Maso [J. Funct. Anal. 109 (1992), 76{97] and Fonseca & M¨uller[Arch. Ration. Mech. Anal. 123 (1993), 1{49], the one presented here does not use Alberti's Rank One Theorem [Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), 239{274], but combines the usual blow-up method with a rigidity result for gradients. The second main result is the first general weak* lower semicontinuity theorem in the space BD(Ω) of functions of bounded deformation for functionals of the form Z Z s 1 dE u s F(u) := f(x; Eu) dx + f x; s djE uj Ω Ω djE uj Z 1 d−1 + f x; uj@Ω nΩ dH ; u 2 BD(Ω); @Ω where f satisfies similar assumptions as before, in particular it is assumed symmetric- quasiconvex.
    [Show full text]