Modelling the Impact of Bt Maize on Pest Population Dynamics, Insecticide Use and Economic Returns to Farmers
Modelling the impact of Bt maize on pest population dynamics, insecticide use and economic returns to farmers Rui Catarino, Graziano Ceddia, Francisco Areal, Nicholas Parisey, Julian Park Contributed Paper prepared for presentation at the 89th Annual Conference of the Agricultural Economics Society, University of Warwick, England 13 - 15 April 2015 Copyright 2015 by Rui Catarino, Graziano Ceddia, Francisco Areal, Nicholas Parisey, Julian Park. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. Modelling the impact of Bt maize on pest population dynamics, insecticide use and economic returns to farmers. Rui Catarino1*; Graziano Ceddia2; Francisco Areal1; Nicolas Parisey3; Julian Park1 1School of Agriculture, Policy and Development, University of Reading, Reading, UK 2Climate Risk Management Unit, Institute for Environment and Sustainability, Joint Research Center of the European Commission, Ispra (VA), Italy. 3Ecologie et Génétique des Insectes, Institut de Génétique, Environnement et Protection des Plantes, INRA, Rennes, France *Correspondence concerning this article should be addressed to Rui Catarino, Department of Agricultural and Food Economics, The University of Reading, Earley Gate, PO Box 236, Reading, RG6 6AR, Email: 1, Phone +44 (0) 118 378 5038 Abstract Transgenic crops that contain Cry genes from Bacillus thuringiensis (Bt) have been adopted by farmers over the last 17 years. Bt's toxicity spectrum, unlike traditional broad spectrum chemical insecticide, is relatively narrow and selective, which may indirectly benefit secondary insects that may become important pests. The economic damage caused by the rise of secondary pests could offset some or all of the benefits associated with the use of Bt varieties.
[Show full text]