Environmental and Economic Impacts of Chemical Fertilizer Use: a Case Study of the North China Plain

Total Page:16

File Type:pdf, Size:1020Kb

Environmental and Economic Impacts of Chemical Fertilizer Use: a Case Study of the North China Plain Environmental and Economic Impacts of Chemical Fertilizer Use: A Case Study of the North China Plain Thesis Presented in Partial Fulfillment of the Requirements for the Degrees Master of Arts and Master of Science in the Graduate School of The Ohio State University By Jane Elizabeth Powell, B.A. East Asian Studies Interdisciplinary Program and Agricultural, Environmental and Development Economics The Ohio State University 2018 Thesis Committee: Karen M. Mancl, Adviser Hongtao Yi H. Allen Klaiber, Adviser Sathya Gopalakrishnan Copyright by Jane Elizabeth Powell 2018 Abstract Since the 1960’s China’s agricultural system has gone through drastic changes. Modernization of this system necessitated adoption of key innovations, including new seed varieties, farm management practices, and the use of chemical fertilizers and pesticides. This thesis examines the impacts of three major transformations of China’s agricultural economy, including the Socialist Period, the Green Revolution, and the Reform Period. A production function was used to estimate the effect of different agricultural inputs, regions, and decades for China’s provincial grain production, including wheat, maize, and rice. The ordinary least squared estimates demonstrate the changes in China’s agricultural system in this period. The North China Plain’s (NCP) agricultural system was used as a case study, and demonstrated the changes in intensity of grain production from 1960-2016. Increasing chemical fertilizer use was found to be the most important change in China’s agricultural inputs, as changes in other inputs such as land, labor, and agricultural machinery were constrained. Chemical fertilizer use was found to be more effective for grain production in the NCP compared to other provinces. However, high or poorly balanced chemical fertilizer applications in this region has important environmental health consequences. This fertilizer intensive production is reinforced by Chinese farmers’ needs for ensured income and management practices introduced during the Green Revolution. China’s environmental policy has had limited success in addressing these problems. i Dedication Dedicated to my father, Kevin Charles Powell ii Acknowledgments From the East Asian Studies Center, I would like to thank my adviser Dr. Karen Mancl for her profound support of my research process, and Dr. Hongtao Yi for his help in navigating Chinese data sources. From the Department of Agricultural, Environmental, and Development Economics, I would like to thank Dr. H. Allen Klaiber and Dr. Sathya Gopalakrishnan for their help in developing an interdisciplinary thesis. iii Vita 2011…………………………………………………..North Baltimore High School 2015………………………………………..B.A. Asian Studies, Bowling Green State University Publications Powell, Jane. "Chinese Educational Reforms: Transition of an International Powerhouse." International ResearchScape Journal 2.1 (2015): 4. Powell, Jane. "Hiroshima’s Hibakusha: The Costs of Human Health in a Nuclear Age." International ResearchScape Journal 2.1 (2015): 1. Fields of Study Major Fields: Interdisciplinary East Asian Studies and Agricultural, Environmental, and Development Economics iv Table of Contents Abstract………………………………………………………………………………………….i Dedication……………………………………………………………………………………….ii Acknowledgments……………………………………………………………………………….iii Vita………………………………………………………………………………………………iv List of Tables…………………………………………………………………………………….vi List of Figures……………………………………………………………………………………vii Introduction………………………………………………………………………………………1 Chapter 1: China’s Green Revolution and the Environment…………………………………….3 The Socialist Period……………………………………………………………………...3 The Green Revolution……………………………………………………………………5 Reform Period……………………………………………………………………………7 Intensive Fertilizer Use…………………………………………………………….…….9 Environmental Impacts……………………………..……………………………………18 Policy and Local Response……………..………………………………………………..21 Chapter 2: China’s Agricultural Economy………………………………………………………32 Fertilizer, Land Use, and Efficiency……………………………………………………..32 Application Habits……………………………………………………………………….35 Long-Term Effects……………………………………………………………………….40 Methods…………………………………………………………………………………..43 Results……………………………………………………………………………………47 Discussion………………………………………………………………………………..52 Conclusions………………………………………………………………………………………70 References………………………………………………………………………………………..75 Appendix: Tables and Figures……………….….….….….….….………………………………81 v List of Tables Table 1: Categorization of Province Areas in (Cho, Chen, Yen, and English, 2007, p. 145)…...81 Table 2: Regressions of Grain Production (Grain Weight) on Agricultural Inputs and Conditions in China, 1960-2016……………………………………………………………………………..82 Table 3: Regression of Grain Production (Grain Weight) on Agricultural Inputs and Conditions in China, With and Without Provincial and Decade Variables, 1960-2016……………………..84 vi List of Figures Figure 1: Average Chemical Fertilizer Consumption per Chinese Province (10,000 metric tons), 1960-2015………………………………………………………………………………………..86 Figure 2: China Average Provincial Grain Production (10,000 metric tons)…………………... 87 Figure 3: Percent NCP Grain Production of National Grain Production Based on Decade Averages…………………………………………………………………………………………88 Figure 4: Grain Sown Area (1,000 hectares) by Decade Average………………………………89 vii Introduction In December of 2017, an article title the Chinese newspaper, The People’s Daily, announced “no increase in chemical fertilizer and agricultural chemicals in China” (我国化肥农 药使用量零增长). The article noted that since 2015, according to a news briefing from the Ministry of Agriculture, chemical fertilizer use has not increased, and chemical pesticide use nationally was also reduced (Chang Q. , 2017). The significance of this announcement lies in the complicated transformations that China’s agricultural system has gone through since the communist revolution. In the early 1950’s, China’s agricultural system was characterized by outdated methods and severely limited in the use of modern technologies. Modern agricultural innovations, such as chemical fertilizers, pesticides, and farm machinery were virtually non- existent. By the 1980’s, with the adoption of key innovations, China’s agriculture had begun to develop into a modern system. China’s rapid agricultural development relied on three major transformations of the agricultural economy. The first was the communist government’s restructuring of the agricultural system, and promotion of intensification through scientific farming during the socialist period. Second, was the introduction of new seed varieties, chemical fertilizers, and pesticides of the Green Revolution. Third, was market liberalization and increased farmer autonomy in the Reform Period. Through these changes, attitudes about agriculture have shifted, so that high production was prioritized over environmental health. In recent decades the high applications of chemical fertilizers shows increasing concern that it poses risks to environmental and human safety, contaminating soil and water supplies. 1 The North China Plain presents an excellent example of the effects of these transformations, both economically and environmentally. The intense production of wheat and maize in this region demonstrates the major changes in China’s agricultural economy. Intensive fertilizer application in this region, tied to lessons learned during the Green Revolution, demonstrated the changing attitudes towards agriculture’s relationship with nature. Reaching the Ministry of Agriculture’s goals of reducing agricultural chemicals depends on understanding the long-term effects of these major transformations. Therefore, the objectives of this study are to explore fertilizer use in the North China Plain, and to analyze the impacts of fertilizer use on the environment and agricultural economy. 2 Chapter 1: China’s Green Revolution and the Environment The People’s Republic of China began promoting intense agricultural development in the 1950’s. At the same time, an international development program, called the Green Revolution, was underway. The program was designed to transfer modern agricultural knowledge, practices, and materials to agricultural systems in less developed nations (Parayil, 2001, p. 971). By the 1960’s and 1970’s, China’s agriculture was impacted by the Green Revolution, but the strongest effects were not seen until the 1980’s One of the most important of these practices was chemical fertilizer use, a critical component of adopting the Green Revolution as a package. Farmers quickly learned that increasing fertilizer applications, in combination with other Green Revolution techniques and materials, could guarantee larger yields. These other key technologies included high-yield seeds, chemical pesticides, agricultural machinery, and improved irrigation (Parayil, 2001, p. 975). However, these improvements come at a cost, and intensive chemical fertilizer use has contributed to the pollution problems of China today. The Socialist Period One of the unique aspects of China’s Green Revolution was that its introduction coincided with the Socialist Period, from the 1950’s to late 1970’s. Unlike the agricultural sectors of many other Green Revolution nations, such as in India or Mexico, that were left to “fend for itself” (Parayil, 2001, p. 975), much of the research showed that The People’s Republic of China was highly involved in the control of the agricultural sector. However, this period suffered from structural problems, which despite good intentions, contributed to an ineffective system. 3 During this period,
Recommended publications
  • Managing Potassium for Organic Crop Production by Robert Mikkelsen an Adequate K Supply Is Essential for Both Organic and Conventional Crop Production
    NORTH AMERICA Managing Potassium for Organic Crop Production By Robert Mikkelsen An adequate K supply is essential for both organic and conventional crop production. Potas- sium is involved in many plant physiological reactions, including osmoregulation, protein synthesis, enzyme activation, and photosynthate translocation. The K balance on many farms is negative, where more K is removed in harvested crops than is returned again to the soil. An overview of commonly used K fertilizers for organic production is provided. otassium is an essential nutrient for plant growth, but it often receives less attention than N and P in many crop Pproduction systems. Many regions of the U.S.A. and all of the Canadian provinces remove more K during harvest than is returned to the soil in fertilizer and manure (Figure 1). In the U.S.A., an average of only 3 units of K is replaced as fertilizer and manure for every 4 units of K removed in crops, resulting in a depletion of nutrients from the soil and increasing occur- rences of deficiency in many places. Potassium is the soil cation required in the largest amount by plants, regardless of nutrient management philosophy. 1,400 Removal 1,200 Hay and forage crops can remove hundreds of pounds of K from the soil Manure each year, placing a heavy demand on soil resources. 1,000 Fertilizer Large amounts of K are required to maintain plant health 800 and vigor. Some specific roles of K in the plant include os- moregulation, internal cation/anion balance, enzyme activa- 600 tion, proper water relations, photosynthate translocation, and 400 protein synthesis.
    [Show full text]
  • Comparison of Three Approaches for Cultivating Lettuce, Mint and Mushroom Herb
    agronomy Article Nutrient Management in Aquaponics: Comparison of Three Approaches for Cultivating Lettuce, Mint and Mushroom Herb Valentina Nozzi 1, Andreas Graber 2 ID , Zala Schmautz 2 ID , Alex Mathis 2 and Ranka Junge 2,* ID 1 Department of Life and Environmental Science, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; [email protected] 2 Institute for Natural Resource Sciences, Zurich University of Applied Sciences, Grüental, 8820 Wädenswil, Switzerland; [email protected] (A.G.); [email protected] (Z.S.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +41-589-345-922 Received: 10 February 2018; Accepted: 5 March 2018; Published: 7 March 2018 Abstract: Nutrients that are contained in aquaculture effluent may not supply sufficient levels of nutrients for proper plant development and growth in hydroponics; therefore, they need to be supplemented. To determine the required level of supplementation, three identical aquaponic systems (A, B, and C) and one hydroponic system (D) were stocked with lettuce, mint, and mushroom herbs. The aquaponic systems were stocked with Nile tilapia. System A only received nutrients derived from fish feed; system B received nutrients from fish feed as well as weekly supplements of micronutrients and Fe; system C received the same nutrients as B, with weekly supplements of the macronutrients, P and K; in system D, a hydroponic inorganic solution containing N, Ca, and the same nutrients as system C was added weekly. Lettuce achieved the highest yields in system C, mint in system B, and mushroom herb in systems A and B. The present study demonstrated that the nutritional requirements of the mint and mushroom herb make them suitable for aquaponic farming because they require low levels of supplement addition, and hence little management effort, resulting in minimal cost increases.
    [Show full text]
  • Hydroponic Fertilizer
    9-7-37 HYDROPONIC FERTILIZER Hort Americas is an innovative leader in North America’s controlled environment agriculture industry (CEA). Hort Americas strives to innovate agriculture via premium technical support, professional salesmanship, unmatched customer service and outstanding products to our customers in the United States, Canada, Mexico and the Caribbean. In our efforts to fuel progress in CEA we are proud to release Hort Americas Hydroponic Fertilizer. Hort Americas has developed this unique fertilizer in cooperation with CEA hydroponic specialists, academicians and researchers to meet the nutritional needs of crops produced by hydroponic leafy green growers. DIRECTIONS FOR USE These are general guidelines that need to be adjusted to your hydroponic system, environmental conditions, and to the quality of your source water. HYDROPONICS: Have your source water tested by a professional water analysis laboratory to determine its nutrients, pH, EC and total alkalinity. Calcium nitrate, potassium nitrate, magnesium sulfate, chelated iron, or any other plant essential elements can be added as determined by plant response, tissue analysis, or nutrient solution analysis. SUGGESTED RATES: 0.271 to 0.455 lbs/100 gallons - 1.23 to 2.06 grams/1 gallon (3.785 L) Add to the nutrient solution 3.58 grams/gallon of calcium nitrate and 1.67 grams/gallon of magnesium sulfate. HORT AMERICAS SUGGESTED LETTUCE CROPPING STAGES: STAGE 1 - SEEDING AND GERMINATION. Sow seed in Hort Americas Closed Bottom Organic Plugs, Grodan AX cubes (NFT), Grodan AO cubes (raft), or horticulture foam cubes. Start with low light levels and a nutrient solution with an EC of 0.5 to 0.6 mS/cm.
    [Show full text]
  • Safe Use of Wastewater in Agriculture Safe Use of Safe Wastewater in Agriculture Proceedings No
    A UN-Water project with the following members and partners: UNU-INWEH Proceedings of the UN-Water project on the Safe Use of Wastewater in Agriculture Safe Use of Wastewater in Agriculture Wastewater Safe of Use Proceedings No. 11 No. Proceedings | UNW-DPC Publication SeriesUNW-DPC Coordinated by the UN-Water Decade Programme on Capacity Development (UNW-DPC) Editors: Jens Liebe, Reza Ardakanian Editors: Jens Liebe, Reza Ardakanian (UNW-DPC) Compiling Assistant: Henrik Bours (UNW-DPC) Graphic Design: Katja Cloud (UNW-DPC) Copy Editor: Lis Mullin Bernhardt (UNW-DPC) Cover Photo: Untited Nations University/UNW-DPC UN-Water Decade Programme on Capacity Development (UNW-DPC) United Nations University UN Campus Platz der Vereinten Nationen 1 53113 Bonn Germany Tel +49-228-815-0652 Fax +49-228-815-0655 www.unwater.unu.edu [email protected] All rights reserved. Publication does not imply endorsement. This publication was printed and bound in Germany on FSC certified paper. Proceedings Series No. 11 Published by UNW-DPC, Bonn, Germany August 2013 © UNW-DPC, 2013 Disclaimer The views expressed in this publication are not necessarily those of the agencies cooperating in this project. The designations employed and the presentation of material throughout this publication do not imply the expression of any opinion whatsoever on the part of the UN, UNW-DPC or UNU concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Unless otherwise indicated, the ideas and opinions expressed by the authors do not necessarily represent the views of their employers.
    [Show full text]
  • Developing Fertilizer Recommendations for Agriculture
    Developing Fertilizer Recommendations for Agriculture by Courtney Pariera Dinkins, former Research Associate; and Clain Jones, Extension Soil Fertility Specialist/Assistant Professor, Department of Land Resources and Environmental Services Developing fertilizer rates specific to your soil and crops should improve crop MontGuide yield and profit. MT200703AG Revised 7/19 THE PURPOSE OF THIS GUIDE IS TO PROVIDE Soil Analysis Conversion producers, Extension agents and crop advisers with the Laboratories report some nutrients in parts per million tools to more accurately determine fertilizer rates to (ppm), and, generally, will convert results from ppm to optimize crop yield and reduce loss of nutrients to the pounds per acre (lb/acre) for mobile nutrients, such as environment. N. However, if soil sampling depth was not provided to Fertilizer Recommendations and Guidelines the lab, this conversion cannot be made. To determine N application rates, results in ppm will need to be converted Soil test results typically include a fertilizer to lb/acre (see Calculation Box 1). recommendation that is based upon previous crop, the crop to be grown and yield goals (just for nitrogen, N). However, recommended fertilizer rates may be adjusted based on climate and soil properties at your specific location due to the high degree of variability throughout the state of Montana. In addition, many labs do not use Montana guidelines, so you may need to determine fertilizer rates yourself, or at least check the recommended rates. If you are unfamiliar with soil test reports, developing yield goals or fertilizer calculations, please first see the MontGuide Interpretation of Soil Test Reports for Agriculture (MT200702AG).
    [Show full text]
  • Accessing Future Crop Yield and Crop Water Productivity Over the Heihe
    Liu et al. Geosci. Lett. (2021) 8:2 https://doi.org/10.1186/s40562-020-00172-6 RESEARCH LETTER Open Access Accessing future crop yield and crop water productivity over the Heihe River basin in northwest China under a changing climate Qi Liu1,2, Jun Niu1,2* , Bellie Sivakumar3, Risheng Ding1,2 and Sien Li1,2 Abstract Quantitative evaluation of the response of crop yield and crop water productivity (CWP) to future climate change is important to prevent or mitigate the adverse efects of climate change. This study made such an evaluation for the agricultural land over the Heihe River basin in northwest China. The ability of 31 climate models for simulating the precipitation, maximum temperature, and minimum temperature was evaluated for the studied area, and a multi- model ensemble was employed. Using the previously well-established Soil and Water Assessment Tool (SWAT), crop yield and crop water productivity of four major crops (corn, wheat, barley, and spring canola-Polish) in the Heihe River basin were simulated for three future time periods (2025–2049, 2050–2074, and 2075–2099) under two Representa- tive Concentration Pathways (RCP4.5 and RCP8.5). The results revealed that the impacts of future climate change on crop yield and CWP of wheat, barley, and canola would all be negative, whereas the impact on corn in the eastern part of the middle reaches of the Heihe River basin would be positive. On the whole, climate change under RCP8.5 scenario would be more harmful to crops, while the corn crops in the Minle and Shandan counties have better ability to cope with climate change.
    [Show full text]
  • Hydroponic Fertilizer OASIS® Grower Solutions Product Sheet Complete Fertilizer for Hydroponics Balanced Nutrients for Young Plants and Initial Hydroponic Production
    Hydroponic Fertilizer OASIS® Grower Solutions Product Sheet Complete Fertilizer for Hydroponics Balanced Nutrients for young plants and initial hydroponic production All of the elements that hydroponic plants need - Doubling growth in OASIS® Hydroponic foam mediums. OASIS® Grower Solutions Hydroponic Fertilizer is a complete one-bag fertilizer specifically designed for commercial and hobby hydroponic production of lettuce, herbs, greens and most vegetables. The balanced nutrient proportion promotes robust growth and minimizes the necessity for constant back adding of elements, thus eliminating mixing errors and reducing the labor expenses. OASIS® Grower Solutions’ Hydroponic Fertilizer promotes vigorous plant growth and greater yield through a chelated micronutrient package, whereas traditional fertilizer blends may cause deficiency and struggling plant growth. The Hydroponic Fertilizer has a proprietary blend of iron chelates that helps keep iron available even as the pH increases up to a high of 8.0. It additionally contains a significant level of soluble calcium and magnesium. This blend is fortified by the formulation power of the JR Peters family, a leader in high-quality water soluble fertilizers. The Peters have been proudly innovating and manufacturing fertilizer in the USA for more than 67 years. When the Hydroponic Fertilizer is used with Horticubes® and Horticubes® XL foam mediums in the application of the initial watering, it improves the nutrient availability and the uptake to increase seedling growth by 200%. FPO Per Tray
    [Show full text]
  • Fertilizer Fact Sheet
    TIMING FERTILIZER APPLICATION ON LONG ISLAND Green Practices for Green Grass ▐ Overview Grass can only absorb fertilizer when it is actively growing. Turfgrass plants stop growing - become dormant - when the soil temperature is below 55°F or in the heat of the summer. Cooler soil temperatures also slow the bacterial action that makes some fertilizer nutrients available to the plants. Fertilizer not absorbed by grass leaches into the subsoil and makes its way into groundwater or runs off into surface water, where it acts as a pollutant, contributing to algal blooms and poor water quality. ▐ Spring Application The University of Connecticut Turfgrass Nutrient Management Bulletin of 20171 describes why the timing of nitrogen applications is important to reducing nitrogen losses: Allow turfgrasses to come out of dormancy in the spring before applying fertilizers. Soils should be allowed to warm and dry out before fertilization. Application of nitrogen fertilizers to dormant or semi-dormant turf in the spring … increases the risk of nitrogen loss. In the spring, soil temperatures on Long Island typically reach 55°F by April 12. In the absence of measuring soil temperature, mid-April is a good start date if fertilizer is found to be necessary. KEY POINTS Summer Application Careful fertilizer use is important to Fertilizer application is not recommended during the summer when heat and protect Long Island’s water. drought stress turfgrass leading to low or no growth and minimal if any need for Pay attention to soil temperatures – fertilizer.3 grass must be active to benefit from fertilizer. When using slow release fertilizer allow adequate time for grass to ▐ Fall Application absorb the fertilizer before going The University of Connecticut Turfgrass Nutrient Management Bulletin dormant in the fall.
    [Show full text]
  • Fertilizer Fertilizer Fertilizer
    Stormwater Stormwater Stormwater and Your Lawn- and Your Lawn- and Your Lawn- Issue 1: Issue 1: Issue 1: Fertilizer Fertilizer Fertilizer When it rains, the water washes fertiliz- When it rains, the water washes fertiliz- When it rains, the water washes fertiliz- er and other pollutants from our lawns er and other pollutants from our lawns er and other pollutants from our lawns over our driveways, sidewalks, and over our driveways, sidewalks, and over our driveways, sidewalks, and roads, into our storm drains where it roads, into our storm drains where it roads, into our storm drains where it flows directly – and untreated – into our flows directly – and untreated – into our flows directly – and untreated – into our rivers, lakes, and streams. rivers, lakes, and streams. rivers, lakes, and streams. City of Woburn City of Woburn City of Woburn Engineering Department Engineering Department Engineering Department 1o Common St Woburn, MA 01801 1o Common St Woburn, MA 01801 1o Common St Woburn, MA 01801 (781) 897-5880 (781) 897-5880 (781) 897-5880 Fertilizer Fertilizer Fertilizer Phosphorus – commonly found in fertilizers – Phosphorus – commonly found in fertilizers – Phosphorus – commonly found in fertilizers – can cause toxic algae blooms and fish kill. Under can cause toxic algae blooms and fish kill. Under can cause toxic algae blooms and fish kill. Under Massachusetts law, you can only apply fertilizer Massachusetts law, you can only apply fertilizer Massachusetts law, you can only apply fertilizer with phosphorus if a soil test shows that with phosphorus if a soil test shows that with phosphorus if a soil test shows that phosphorus is needed or during the first phosphorus is needed or during the first phosphorus is needed or during the first growing season for a newly established lawn.
    [Show full text]
  • Sewage Sludge and Wastewater for Use in Agriculture
    IAEA-TECDOC-971 Sewage sludge and wastewater for use in agriculture Proceedings of consultants meetings organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture and the IAEA Division Physicalof Chemicaland Sciences, and held Vienna,in December5-9 1994 <> INTERNATIONAL ATOMIC ENERGY AGENCY The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies of these reports can be obtained from IN IS Clearinghouse International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria Orders shoul accompaniee db prepaymeny db f Austriao t n Schillings 100, in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse. The originating Sections of this publication in the IAEA were Soil Fertility, Irrigatio Crod nan p Production Section Joint FAO/IAEA Division and Industrial Application Chemistrd san y Section International Atomic Energy Agency Wagramerstrasse5 PO Box 100 A-1400 Vienna, Austria SEWAGE SLUDG WASTEWATED AGRICULTUREN AN I E US R RFO E IAEA, VIENNA, 1997 IAEA-TECDOC-971 ISSN 1011-4289 ©IAEA, 1997 Printed by the IAEA in Austria October 1997 FOREWORD Wastes have been produced by mankind since ancient nomadic tribes settled into villages and started utilizing cultivatinfird ean g land. Archaeological evidence trace practice sth wastf eo e disposal back to antiquity. However, the concept of community-wide systematic collection, treatment, and disposa solif o l d waste wastewated san t evolvno d erdi unti late th le 19th century. The disposal of sewage sludge is a serious problem in many countries due to rapid urbanization Agriculture offers one solution: land application of municipal sewage sludge is practised throughout the world, with beneficial effects on crop yields, soil organic matter, cation exchange capacity, water holding capacit soid yan l fertilit generalym .
    [Show full text]
  • Suters Glen Permaculture Farm Picture Tour of a Homestead with Edible Gardens and Natural Lawn Care Solutions
    Suters Glen Permaculture Farm Picture tour of a homestead with edible gardens and natural lawn care solutions By: Cory Suter Permaculture Farmer, Co-chair of Urban Ag Work Group for Fairfax Food Council (Hobby gardeners: Hala Elbarmil & Allison Suter assist with weeding, and some planting) Suters Glen Permaculture Farm 5.34 acre homestead just off Popes Head Rd near 123 in Fairfax, VA 22030 Orchard in partial bloom March 17, 2020 Lambs: Monty & Clover born March 30, 2020 The magic of any place is best experienced over multiple seasons using all five senses The taste of just picked produce is so good, kids like to eat fruits and vegetables from our garden We hope this tour will be a feast for your eyes and imagination for what is possible This picture was taken Spring 2016, a year after we bought Suters Glen Picture of annual garden taken four years later, April 6, 2020 at sunset View of half of rear pasture taken from top of roof November 2016 Entrance to Suters Glen March 2018 Following driveway past guest cottage April 2020 Remodeled 1925 Farmhouse that was on a 100+ acre plot for most of its’ life Unless otherwise labeled, all pictures in this slideshow are from different perspectives of the 5.34 acre remaining lot we bought. Rear of home as seen from wildflower meadow with bachelor’s buttons and blackberries in bloom Cory found his philosophy of gardening in the permaculture literature that calls us to mimic natural systems so that we can produce more with less work. Since we bought Suters Glen in 2015, we have never tilled this garden, and as far as we know, zero chemicals have been used in this garden for at least 24 years.
    [Show full text]
  • Spatiotemporal Characteristics of Drought in the North China Plain Over the Past 58 Years
    atmosphere Article Spatiotemporal Characteristics of Drought in the North China Plain over the Past 58 Years Yanqiang Cui 1, Bo Zhang 1,*, Hao Huang 1 , Jianjun Zeng 2, Xiaodan Wang 1 and Wenhui Jiao 1 1 College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, China; [email protected] (Y.C.); [email protected] (H.H.); [email protected] (X.W.); [email protected] (W.J.) 2 College of Geography and Environmental Engineering, Lanzhou City University, Lanzhou 730070, China; [email protected] * Correspondence: [email protected] Abstract: Understanding the spatiotemporal characteristics of regional drought is of great significance in decision-making processes such as water resources and agricultural systems management. The North China Plain is an important grain production base in China and the most drought-prone region in the country. In this study, the monthly standardized precipitation evapotranspiration index (SPEI) was used to monitor the spatiotemporal variation of agricultural drought in the North China Plain from 1960 to 2017. Seven spatial patterns of drought variability were identified in the North China Plain, such as Huang-Huai Plain, Lower Yangtze River Plain, Haihe Plain, Shandong Hills, Qinling Mountains Margin area, Huangshan Mountain surroundings, and Yanshan Mountain margin area. The spatial models showed different trends in different time stages, indicating that the drought conditions in the North China Plain were complex and changeable in the past 58 years. As an important agricultural area, the North China Plain needs more attention since this region shows a remarkable trend of drought and, as such, will definitely increase the water demand for Citation: Cui, Y.; Zhang, B.; Huang, H.; Zeng, J.; Wang, X.; Jiao, W.
    [Show full text]