Development of Nickel-Catalyzed Cycloaddition and Coupling Reactions

Total Page:16

File Type:pdf, Size:1020Kb

Development of Nickel-Catalyzed Cycloaddition and Coupling Reactions DEVELOPMENT OF NICKEL-CATALYZED CYCLOADDITION AND COUPLING REACTIONS by Ananda H. B. Herath-Mudiyansela A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemistry) in The University of Michigan 2008 Doctoral Committee: Professor John Montgomery, Chair Professor Edwin Vedejs Associate Professor Melanie S. Sanford Assistant Professor Jason E. Gestwicki To my mother Tikirimenike and my wife Shyama ii ACKNOWLEDGMENTS I would like to thank my advisor, Professor John Montgomery for his encouragement, guidance and financial support during my study at University of Michigan and Wayne State University. Many thanks to my wonderful colleagues in the Montgomery group, both present and past for their assistance and friendship. My special thanks goes to Dr. Minsoo Song for his assistance at the initial stage of my research work. I would like to thank Zachary Buchan and Dr. John Phillips for proofreading the manuscript of this dissertation and for all the valuable discussions about chemistry. I would also like to thank Wei Li and Benjamin Thompson for their contribution to my research work. I wish to extend my thanks to my committee members, Dr. Edwin Vedejs, Dr. Melanie S. Sanford and Dr. Jason E. Gestwicki for their time and attention in regards to my work. I wish to thank my former committee members Dr. Jin K. Cha and Dr. Dana Spence for their time and help given when I was at Wayne State University. My special thanks also goes to my friends, Ruchira, Irine, Chamani, Sandamali, Saroja and Apsara for their encouragement and support. iii I would like to extend my appreciation to Aiko Nakatani and Linda Deitert at University of Michigan and Sharon Kelly, Mary Wood and Debbie McCreless at Wayne State University for their excellent job, which has made my stay here easy and enjoyable. Finally, and most importantly I would like to thank my mother, Tikrimenike, my brothers Nalin and Dheera and my wife Shyama for their love, support, understanding and patience. iv TABLE OF CONTENTS DEDICATION………………………………………………………………………ii ACKNOWLEDGMENTS………………………………………………………….iii LIST OF TABLES………………………………………………………………….x LIST OF SCHEMES………………………………………………………………xii ABBREVIATIONS.........................................................................................xix ABSTRACT ..................................................................................................xxiv CHAPTERS CHAPTER 1 – NICKEL-CATALYZED [3+2] REDUCTIVE CYCLOADDITION OF ENALS AND ALKYNES 1.1 Introduction.............................................................................................1 1.1.1 [3+2] Cycloaddition ...........................................................................2 1.1.1.1 Anionic [3+2] Cycloaddition.........................................................3 1.1.1.2 Cationic [3+2] Cycloaddition........................................................4 1.1.1.3 Transition Metal Catalyzed [3+2] Cycloaddition ..........................6 v 1.1.1.4 Involvement of Dianionic and Dicationic Building Blocks in [3+2] Cycloaddition................................................................................14 1.1.2 [2+2+1] Cycloaddition .......................................................................16 1.1.3 [4+1] Cycloaddition ...........................................................................19 1.1.4 Nickel-Catalyzed Cyclization of Alkynyl Enones ...............................22 1.1.5 Nickel Catalyzed [3+2] Cycloaddition................................................27 1.2 Results and Discussion…………………………………………………….. 30 1.2.1 Development of a Catalytic Version of the [3+2] Cycloaddition…….30 1.2.2 Intermolecular Nickel Catalyzed [3+2] Cycloaddition of Alkynes and Enals…………………………………………………………………38 1.2.3 Effect of Ligand Structure on Product Distribution…………………...48 1.2.4 Unusual Regioselectivity with Alkynol…………………………………51 1.3 Summary……………………………………………………………………..54 CHAPTER 2 – NICKEL-CATALYZED INTERMOLECULAR REDUCTIVE COUPLING OF ENONES AND ALKYNES 2.1 Introduction ………………………………………………………………… 55 2.1.1 Conjugate Addition of Organocopper Reagents ..............................55 2.1.2 Conjugate Addition of Organozirconium Reagents………………….61 2.1.3 Transition Metal Catalyzed Coupling of Enones and Alkynes..........64 vi 2.1.4 Synthesis of Silyl Enol Ethers ..........................................................72 2.1.5 Nickel-Catalyzed Processes Involving Trialkylsilanes......................84 2.2 Results and Discussion ..........................................................................89 2.2.1 Nickel-Catalyzed Intermolecular Reductive Coupling of Alkynes and Enones........................................................................89 2.2.2 Summary of Reductive Coupling of Alkynes and Enones...............98 2.2.3 Nickel-Catalyzed Intermolecular Reductive Coupling of Alkynes and Enals ...........................................................................98 2.2.4 Summary of Reductive Coupling of Alkynes and Enals...................106 CHAPTER 3 – INTERMOLECULAR NICKEL-CATALYZED THREE- COMPONENT COUPLINGS VIA INTERNAL REDOX 3.1 Introduction.............................................................................................108 3.1.1 Organocatalyzed Internal Redox Reactions ...................................109 3.1.2 Transition Metal-Catalyzed Internal Redox Reactions....................114 3.1.2.1 Isomerization of Allylic Alcohols...............................................115 3.1.2.2 Cycloisomerization of Enynes..................................................117 3.1.2.3 Hydroacylation.........................................................................121 3.2 Carbenes................................................................................................129 vii 3.2.1 Nucleophilic Carbenes....................................................................130 3.2.2 N-Heterocyclic Carbenes vs. Phosphine ligands ............................131 3.3 Nickel-Catalyzed Reactions Involving N-Heterocyclic Carbenes ............134 3.4 Results and Discussion ..........................................................................137 3.4.1 Nickel-Catalyzed Three-Component Couplings of Alkynes, Enones and Aldehydes..................................................................137 3.4.2 Intermolecular Nickel-Catalyzed Three-Component Couplings via Internal Redox...........................................................................140 3.5 Summary ................................................................................................150 0BCHAPTER 4 – EXPERIMENTAL SECTION 4.1 Reaction Procedures and Spectral Data of Chapter 1............................152 4.1.1 General Procedure for the Ni(COD)2/DPEphos or DPPF Promoted [3+2] Cycloaddition of Enals and Alkynes .......................................153 4.1.2 General Procedure for the Ni(COD)2/PBu3 Promoted [3+2] Cycloaddition of Enals and Alkynes................................................159 4.2 Reaction Procedures and Spectral Data of Chapter 2............................175 4.2.1 General Procedure for the Ni(COD)2/PBu3 Promoted Reductive Coupling of Enones and Alkynes...................................................176 viii 4.2.2 General Procedure for the Ni(COD)2/PCy3 Promoted Reductive Coupling of Enals and Alkynes .....................................191 4.3 Reaction Procedures and Spectral Data of Chapter 3............................205 4.3.1 General Procedure for the Ni(COD)2/PBu3 Promoted Three- Component Coupling of Enones, Alkynes, and Aldehydes.............207 4.3.2 General Procedure for the Ni(COD)2/IPr Promoted Three- Component Coupling of Enones, Alkynes, and Aldehydes.............209 4.3.3 General Procedure for the Ni(COD)2/PCy3 Promoted Three- Component Coupling of Enones, Alkynes, and Aldehydes.............215 APPENDIX ...................................................................................................224 REFERENCES.............................................................................................312 ix LIST OF TABLES Table 1. Substrate Scope of [3+2] Cycloaddition..........................................27 Table 2. Optimization of Catalytic Version of the [3+2] Cycloaddition ..........32 Table 3. Scope of Ligands............................................................................33 Table 4. Substrate Scope with DPEphos......................................................34 Table 5. Substrate Scope with DPPF ...........................................................35 Table 6. The Influence of the Ligand Structure on the Enantioselectivity .....37 Table 7. Scope of Ligands for Intermolecular Version ..................................38 Table 8. Scope of Enals ...............................................................................40 Table 9. Scope of Alkynes............................................................................41 Table 10. Effect of Ligand Structure on Product Distribution ........................49 Table 11. Substrate Scope of Intramolecular Alkylative and Reductive Coupling ........................................................................................68 Table 12. Ligand Dependence on Product Distribution of the Crossover Reaction ........................................................................................87 Table 13. Intermolecular Crossover Reaction...............................................88 Table 14. Scope of Enones ..........................................................................92
Recommended publications
  • Organic Chemistry –II
    Subject Chemistry Paper No and Title Paper 5: Organic Chemistry –II Module No and Title Module 5: Methods of determining mechanisms and Isotope effects Module Tag CHE_P5_M5_e-Text CHEMISTRY PAPER No. 5: Organic Chemistry -II MODULE No. 5: Methods of determining mechanisms and Isotope effects TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Methods of determining mechanism 3.1 Determination of the products formed 3.2 Study of Intermediate formed 3.3 Study of catalyst 3.4 Stereochemical Evidence 3.5 Kinetic evidence 3.6 Isotope Labelling 4. Isotopic Effects 5. Summary CHEMISTRY PAPER No. 5: Organic Chemistry -II MODULE No. 5: Methods of determining mechanisms and Isotope effects 1. Learning Outcomes After studying this module, you shall be able to • Know what do we mean by mechanism of a reaction • Learn the ways to determine mechanism of a reaction • Identify the reactants, products and intermediates involved in a reaction • Evaluate the steps involved in a reaction 2. Introduction In scientific experiments and chemical reactions, all we can do is try to account for the observations by proposing theories and mechanisms. Reaction mechanisms have been an integral part of the teaching of organic chemistry and in the planning of routes for organic syntheses for about 50 years. The first sentence of Hammett’s influential book, Physical Organic Chemistry, states, “A major part of the job of the chemist is the prediction and control of the course of chemical reactions” In a chemical reaction, mechanism depicts the actual process by which the reaction has taken place. It indicates which bonds are broken, in what order, the steps involved and the relative rate of each step.
    [Show full text]
  • Carbonylation of Protected Or Non-Protected 2-Bromobenzaldehyde Catalyzed by Cobalt Carbonyl
    772 Bull. Korean Chem. Soc. 1994, Vol. 15, No. 9 Sang Chui Shim et al. Carbonylation of Protected or Non-protected 2-Bromobenzaldehyde Catalyzed by Cobalt Carbonyl Sang Chui S버 m*, Dong Yub Lee, Heung Jin Choi, Chil Hoon Doh1, and Keun Tai Huh* ^Department of Industrial Chemistry, Kyungpook National University, Taegu 701-702, Korea ^Department of Materials Science and Engineering Kyungsung University, Pusan 608-736, Korea Korea Electrotechnology Research Institute, Changwon, Korea Received May 11, 1994 The cobalt catalyzed carbonylation of bromobenzene having protected aldehyde group gives the corresponding ester in good yields, but 2-bromobenzaldehyde gives 3-alkoxyphthalide in the noticeable yield instead of alkyl 2-formylben- zoates. Introduction Table 1. Carbonylation of 2-Bromobenzenes Having Protected Aldehyde Groups to 2-Substituted Alkyl Benzoates Catalyzed by The metal-catalyzed carbonyl가 ion of aryl halides has ver­ Cobalt CarbonyF satile utility in the preparative organic chemistry1. Of many Run Reactant catalysts2 used in the carbonylation of aryl halides cobalt Alcohol Product Yield (%y carbonyl species have been conducted under mild conditions, 1 1 CH3CH2OH 2b 88 room temperature and one atmospheric pressure of carbon 2 1 CH3CH2OH 2b 75 。 monoxide. More recently, using dicobalt octacarbonyl at room 3 1 CH3CH2OH 2b 38d temperature under one atmospheric pressure of carbon mo­ 4 1 CH3OH 2a 80 noxide many applications were reported on the carbonylation 5 1 CH3CH2CH2OH 2c 85 of benzal halides,3-5 and halo (halomethyl)benzenes6-8. 6 (CH3)2CHOH 21 However, studies2,9-11 on the carbonylation of aryl halides 1 2d 7 CH3CH2CH2CH2OH having other reactive functional groups are rare.
    [Show full text]
  • Perspectives on How Nature Employs the Principles of Organometallic Chemistry in Dihydrogen Activation in Hydrogenases†
    4682 Organometallics 2010, 29, 4682–4701 DOI: 10.1021/om100436c Perspectives on How Nature Employs the Principles of Organometallic Chemistry in Dihydrogen Activation in Hydrogenases† John C. Gordon* and Gregory J. Kubas* Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States Received May 6, 2010 Relatively recent developments in metalloenzyme and organometallic chemistry have targeted a growing link between these outwardly incongruous fields, giving birth to a merger now popularly termed “bio-organometallic” chemistry. The astonishing discovery of CO and CN ligands bound to dinuclear iron sites in billion-year-old hydrogenase enzymes has led to a new paradigm and triggered an explosion of research on bioinspired chemistry. The article will focus on the impressive array of organometallic chemistry principles that work in concert in the structure and function of H2ases. Molecular H2 is at the forefront of bioinspired energy, and its production and storage are critical for renewable energy systems. Biomimetic inorganic chemistry and photochemistry involving water splitting for H2 production has erupted in the past decade and will also be reflected upon here. I. Introduction be despised and avoided by nature. This view was shattered by the relatively recent discovery, initially spectroscopically2,3 then At the macroscopic level, nature displays dazzling beauty crystallographically,4 of CO and CN ligands bound to dinuclear and surprises on a regular basis. On the molecular level, its iron sites in hydrogenase (H2ase) enzymes that have existed in mystique is even more fascinating to biologists and chemists numerous microorganisms for over a billion years. It is now in all their subfields.
    [Show full text]
  • Organic Chemistry
    Wisebridge Learning Systems Organic Chemistry Reaction Mechanisms Pocket-Book WLS www.wisebridgelearning.com © 2006 J S Wetzel LEARNING STRATEGIES CONTENTS ● The key to building intuition is to develop the habit ALKANES of asking how each particular mechanism reflects Thermal Cracking - Pyrolysis . 1 general principles. Look for the concepts behind Combustion . 1 the chemistry to make organic chemistry more co- Free Radical Halogenation. 2 herent and rewarding. ALKENES Electrophilic Addition of HX to Alkenes . 3 ● Acid Catalyzed Hydration of Alkenes . 4 Exothermic reactions tend to follow pathways Electrophilic Addition of Halogens to Alkenes . 5 where like charges can separate or where un- Halohydrin Formation . 6 like charges can come together. When reading Free Radical Addition of HX to Alkenes . 7 organic chemistry mechanisms, keep the elec- Catalytic Hydrogenation of Alkenes. 8 tronegativities of the elements and their valence Oxidation of Alkenes to Vicinal Diols. 9 electron configurations always in your mind. Try Oxidative Cleavage of Alkenes . 10 to nterpret electron movement in terms of energy Ozonolysis of Alkenes . 10 Allylic Halogenation . 11 to make the reactions easier to understand and Oxymercuration-Demercuration . 13 remember. Hydroboration of Alkenes . 14 ALKYNES ● For MCAT preparation, pay special attention to Electrophilic Addition of HX to Alkynes . 15 Hydration of Alkynes. 15 reactions where the product hinges on regio- Free Radical Addition of HX to Alkynes . 16 and stereo-selectivity and reactions involving Electrophilic Halogenation of Alkynes. 16 resonant intermediates, which are special favor- Hydroboration of Alkynes . 17 ites of the test-writers. Catalytic Hydrogenation of Alkynes. 17 Reduction of Alkynes with Alkali Metal/Ammonia . 18 Formation and Use of Acetylide Anion Nucleophiles .
    [Show full text]
  • Solvent Effects on Structure and Reaction Mechanism: a Theoretical Study of [2 + 2] Polar Cycloaddition Between Ketene and Imine
    J. Phys. Chem. B 1998, 102, 7877-7881 7877 Solvent Effects on Structure and Reaction Mechanism: A Theoretical Study of [2 + 2] Polar Cycloaddition between Ketene and Imine Thanh N. Truong Henry Eyring Center for Theoretical Chemistry, Department of Chemistry, UniVersity of Utah, Salt Lake City, Utah 84112 ReceiVed: March 25, 1998; In Final Form: July 17, 1998 The effects of aqueous solvent on structures and mechanism of the [2 + 2] cycloaddition between ketene and imine were investigated by using correlated MP2 and MP4 levels of ab initio molecular orbital theory in conjunction with the dielectric continuum Generalized Conductor-like Screening Model (GCOSMO) for solvation. We found that reactions in the gas phase and in aqueous solution have very different topology on the free energy surfaces but have similar characteristic motion along the reaction coordinate. First, it involves formation of a planar trans-conformation zwitterionic complex, then a rotation of the two moieties to form the cycloaddition product. Aqueous solvent significantly stabilizes the zwitterionic complex, consequently changing the topology of the free energy surface from a gas-phase single barrier (one-step) process to a double barrier (two-step) one with a stable intermediate. Electrostatic solvent-solute interaction was found to be the dominant factor in lowering the activation energy by 4.5 kcal/mol. The present calculated results are consistent with previous experimental data. Introduction Lim and Jorgensen have also carried out free energy perturbation (FEP) theory simulations with accurate force field that includes + [2 2] cycloaddition reactions are useful synthetic routes to solute polarization effects and found even much larger solvent - formation of four-membered rings.
    [Show full text]
  • N-Heterocyclic Carbenes (Nhcs)
    Baran Lab N - H e t e r o c y c l i c C a r b e n e s ( N H C s ) K. J. Eastman An Introduction to N-heterocyclic Carbenes: How viable is resonance contributer B? Prior to 1960, a school of thought that carbenes were too reactive to be smaller isolated thwarted widespread efforts to investigate carbene chemistry. base ! N N N N R R R R Perhaps true for the majority of carbenes, this proved to be an inaccurate X- assessment of the N-heterocyclic carbenes. H longer Kirmse, W. Angerw. Chem. Int. Ed. 2004, 43, 1767-1769 In the early 1960's Wanzlick (Angew. Chem. Int. Ed. 1962, 1, 75-80) first investigated the reactivity and stability of N-heterocyclic carbenes. Attractive Features of NHCs as Ligands for transition metal catalysts: Shortly thereafter, Wanzlick (Angew. Chem. Int. Ed. 1968, 7, 141-142) NHCs are electron-rich, neutral "#donor ligands (evidenced by IR frequency of reported the first application of NHCs as ligands for metal complexes. CO/metal/NHC complexes). Surprisingly, the field of of NHCs as ligands in transition metal chemistry Electron donating ability of NHCs span a very narrow range when compared to remained dormant for 23 years. phosphine ligands In 1991, a report by Arduengo and co-workers (J. Am. Chem. Soc. 1991, Electronics can be altered by changing the nature of the azole ring: 113, 361-363) on the extraodinary stability, isolation and storablility of benzimidazole<imidazole<imidazoline (order of electron donating power). crystalline NHC IAd. NHC-metal complex stability: NaH, DMSO, MeOH N N N N + H2 + NaCl NHCs form very strong bonds with the majority of metals (stronger than Cl- phosphines!) H IAd N-heterocyclic carbenes are electronically (orbital overlap) and sterically (Me vs.
    [Show full text]
  • FAROOK COLLEGE (Autonomous)
    FAROOK COLLEGE (Autonomous) M.Sc. DEGREE PROGRAMME IN CHEMISTRY CHOICE BASED CREDIT AND SEMESTER SYSTEM-PG (FCCBCSSPG-2019) SCHEME AND SYLLABI 2019 ADMISSION ONWARDS 1 CERTIFICATE I hereby certify that the documents attached are the bona fide copies of the syllabus of M.Sc. Chemistry Programme to be effective from the academic year 2019-20 onwards. Date: Place: P R I N C I P A L 2 FAROOK COLLEGE (AUTONOMOUS) MSc. CHEMISTRY (CSS PATTERN) Regulations and Syllabus with effect from 2019 admission Pattern of the Programme a. The name of the programme shall be M.Sc. Chemistry under CSS pattern. b. The programme shall be offered in four semesters within a period of two academic years. c. Eligibility for admission will be as per the rules laid down by the College from time to time. d. Details of the courses offered for the programme are given in Table 1. The programme shall be conducted in accordance with the programme pattern, scheme of examination and syllabus prescribed. Of the 25 hours per week, 13 hours shall be allotted for theory and 12 hours for practical; 1 theory hour per week during even semesters shall be allotted for seminar. Theory Courses In the first three semesters, there will be four theory courses; and in the fourth semester, three theory courses. All the theory courses in the first and second semesters are core courses. In the third semester there will be three core theory courses and one elective theory course. College can choose any one of the elective courses given in Table 1.
    [Show full text]
  • Organometallic Compounds
    Chapter 11 Organometallic compounds Organometallics Reactions using organometallics Organometallic compounds Ch 11 #2 = comp’s containing a carbon-metal bond δ− δ+ C in organometallic comp’ds are nucleophilic. C in organic comp’d (like ROH, RNH , and RX) 2 δ+ δ are electrophilic. − due to ∆EN Ch 11 #3 in substitution reactions a carbon Nu: R-Li and R-MgX Ch 11 #4 (used to be) the two most common organometallics organolithium comp’ds BuLi = an alkyl lithium organomagnesium comp’ds = Grignard reagents 1912 Nobel Prize R, Ar, vinyl all possible; Br (as X) popular Ether (solvent) coordinates Mg, stabilizing it. Reactions of R-Li and R-MgX Ch 11 #5 reacts like a carbanion C:– ~ a C Nu: reactions as C Nu: (like SN(2)) nucleophilic addition to carbonyls ~ more often Chapt 16 Ch 11 #6 R-Li and R-MgX are very strong B: how strong? pKa? − − react even with very weak acid stronger than OH? NH2? useful for preparing deuterated HC Storage and reaction must be acid- and moisture-free. Transmetal(l)ation Ch 11 #7 R-Li is more reactive than R-MgX is. C–Li more polar than C–Mg C of R-Li more nu-philic [better Nu:] transmetalation [metal exchange] to less reactive [more stable] organometallic Coupling using Gilman reagent Ch 11 #8 coupling reaction (in organic chemistry) two hydrocarbon fragments are coupled (to form C–C) with the aid of a (transition) metal catalyst Gilman reagent coupling of R of R-X and R’ of Gilman reagent RX + R’2CuLi R–R’ mechanism? substitution of X with R’? not clear Ch 11 #9 R can be alkyl, aryl, or alkenyl [vinyl] which is not possible by R-Li or R-MgX Is R of Gilman why? they are SN(2).
    [Show full text]
  • Direct Carboniiatiom of Aromatic Nttriles Using
    DIRECT CARBONIIATIOM OF AROMATIC NTTRILES USING DICOBALT OCTACARBONIL by JOSEPH EDMUND GERVAX B..Sc Honours, University of Montreal, Loyola College, l?6l A THESIS SUBMITTED IN PARTIAL FUIFIIMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Department of Chemistry We accept this; thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA June, 1963 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that per• mission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying, or publi• cation of this thesis for financial gain shall not be allowed without my written permission. Department of CHEMISTRY The University of British Columbia,. Vancouver 8, Canada. Date June 2°» W ABSTRACT A new method of synthesizing N-substituted phthalimidines is described. When benzonitrile was reacted with carbon monoxide containing about 0.0k volume percent of hydrogen and in the presence of dicobalt octacarbonyl and pyridine in benzene solution at 235° and 3U00 p.s.i. pressure the following compounds were produced: MTbenzyphthalimidine (8$), N-phenylphthalimidine (3»7%), and benzamide (3*9%)- When lj.0 p.s.i. hydrogen was added under the same reaction conditions, the yield of N-benzylphthalimidine increased (16%)., When benzonitrile was subjected to the same reaction conditions using 2U0 p.s.d* hydrogen and no pyridine, N-benzylphthalimidine (1%%) and sym-dibenzylurea (8$) were produced.
    [Show full text]
  • Structures and Reaction Mechanisms of Organocuprate Clusters in Organic Chemistry
    REVIEWS Wherefore Art Thou Copper? Structures and Reaction Mechanisms of Organocuprate Clusters in Organic Chemistry Eiichi Nakamura* and Seiji Mori Organocopper reagents provide the principles. This review will summarize example of molecular recognition and most general synthetic tools in organic first the general structural features of supramolecular chemistry, which chemistry for nucleophilic delivery of organocopper compounds and the pre- chemists have long exploited without hard carbanions to electrophilic car- vious mechanistic arguments, and then knowing it. Reasoning about the bon centers. A number of structural describe the most recent mechanistic uniqueness of the copper atom among and mechanistic studies have been pictures obtained through high-level neighboring metal elements in the reported and have led to a wide variety quantum mechanical calculations for periodic table will be presented. of mechanistic proposals, some of three typical organocuprate reactions, which might even be contradictory to carbocupration, conjugate addition, Keywords: catalysis ´ conjugate addi- others. With the recent advent of and SN2 alkylation. The unified view tions ´ copper ´ density functional physical and theoretical methodolo- on the nucleophilic reactivities of met- calculations ´ supramolecular chemis- gies, the accumulated knowledge on al organocuprate clusters thus ob- try organocopper chemistry is being put tained has indicated that organocup- together into a few major mechanistic rate chemistry represents an intricate 1. Introduction 1 R Cu X The desire to learn about the nature of elements has been R or R1 R and will remain a main concern of chemists. In this review, we R Cu will consider what properties of copper make organocopper R1 chemistry so useful in organic chemistry.
    [Show full text]
  • Summary of Supportive Science Regarding Thimerosal Removal
    Summary of Supportive Science Regarding Thimerosal Removal Updated December 2012 www.safeminds.org Science Summary on Mercury in Vaccines (Thimerosal Only) SafeMinds Update – December 2012 Contents ENVIRONMENTAL IMPACT ................................................................................................................................. 4 A PILOT SCALE EVALUATION OF REMOVAL OF MERCURY FROM PHARMACEUTICAL WASTEWATER USING GRANULAR ACTIVATED CARBON (CYR 2002) ................................................................................................................................................................. 4 BIODEGRADATION OF THIOMERSAL CONTAINING EFFLUENTS BY A MERCURY RESISTANT PSEUDOMONAS PUTIDA STRAIN (FORTUNATO 2005) ......................................................................................................................................................................... 4 USE OF ADSORPTION PROCESS TO REMOVE ORGANIC MERCURY THIMEROSAL FROM INDUSTRIAL PROCESS WASTEWATER (VELICU 2007)5 HUMAN & INFANT RESEARCH ............................................................................................................................ 5 IATROGENIC EXPOSURE TO MERCURY AFTER HEPATITIS B VACCINATION IN PRETERM INFANTS (STAJICH 2000) .................................. 5 MERCURY CONCENTRATIONS AND METABOLISM IN INFANTS RECEIVING VACCINES CONTAINING THIMEROSAL: A DESCRIPTIVE STUDY (PICHICHERO 2002) ......................................................................................................................................................
    [Show full text]
  • Catalytic Asymmetric Di Hydroxylation
    Chem. Rev. 1994, 94, 2483-2547 2483 Catalytic Asymmetric Dihydroxylation Hartmuth C. Kolb,t Michael S. VanNieuwenhze,* and K. Barry Sharpless* Department of Chemistry, The Scripps Research Institute, 10666 North Torfey Pines Road, La Jolla, California 92037 Received Ju/y 28, 1994 (Revised Manuscript Received September 14, 1994) Contents 3.1.4. Differentiation of the Hydroxyl Groups by 2524 Selective, Intramolecular Trapping 1. Introduction and General Principles 2483 3.1.5. Miscellaneous Transformations 2525 2. Enantioselective Preparation of Chiral 1,2-Diols 2489 3.2. Preparation of Chiral Building Blocks 2527 from Olefins 3.2.1. Electrophilic Building Blocks 2527 2.1. Preparation of Ligands, Choice of Ligand, 2489 Scope, and Limitations 3.2.2. Chiral Diol and Polyol Building Blocks 2529 2.1.1. Preparation of the Ligands 2490 3.2.3. Chiral Monohydroxy Compounds Derived 2529 from Diols 2.1 -2. Ligand Choice and Enantioselectivity Data 2490 3.2.4. 5- and 6-Membered Heterocycles 2530 2.1.3. Limitations 2491 3.3. Preparation of Chiral Auxiliaries for Other 2530 2.2. Reaction Conditions 2493 Asymmetric Transformations 2.2.1. Asymmetric Dihydroxylation of the 2493 3.3.1. Preparation of 2530 “Standard Substrates” (1 R,2S)-trans-2-phenylcyclohexanol 2.2.2. Asymmetric Dihydroxylation of 2496 3.3.2. Optically Pure Hydrobenzoin (Stilbenediol) 2531 Tetrasubstituted Olefins, Including Enol and Derivatives Ethers 4. Recent Applications: A Case Study 2536 2.2.3. Asymmetric Dihydroxylation of 2496 Electron-Deficient Olefins 5. Conclusion 2538 2.2.4. Chemoselectivity in the AD of Olefins 2497 6. References and Footnotes 2542 Containing Sulfur 2.3.
    [Show full text]