Constant Time Algorithms for ROLLO-I-128
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Generalizing Block LU Factorization: a Lower–Upper–Lower Block Triangular Decomposition with Minimal Off-Diagonal Ranks
Linear Algebra and its Applications 509 (2016) 114–142 Contents lists available at ScienceDirect Linear Algebra and its Applications www.elsevier.com/locate/laa Generalizing block LU factorization: A lower–upper–lower block triangular decomposition with minimal off-diagonal ranks François Serre ∗, Markus Püschel Department of Computer Science, ETH Zurich, Switzerland a r t i c l e i n f o a b s t r a c t Article history: We propose a novel factorization of a non-singular matrix P , Received 6 March 2015 viewed as a 2 × 2-blocked matrix. The factorization Accepted 23 July 2016 decomposes P into a product of three matrices that are Available online 28 July 2016 lower block-unitriangular, upper block-triangular, and lower Submitted by A. Frommer block-unitriangular, respectively. Our goal is to make this MSC: factorization “as block-diagonal as possible” by minimizing 15A23 the ranks of the off-diagonal blocks. We give lower bounds 15A03 on these ranks and show that they are sharp by providing an algorithm that computes an optimal solution. The proposed Keywords: decomposition can be viewed as a generalization of the well- Block matrices known Block LU factorization using the Schur complement. Block triangular decomposition Finally, we briefly explain one application of this factorization: LU factorization the design of optimal circuits for a certain class of streaming Rank minimization permutations. Circuit complexity © 2016 Elsevier Inc. All rights reserved. Schur complement * Corresponding author. E-mail addresses: [email protected] (F. Serre), [email protected] (M. Püschel). http://dx.doi.org/10.1016/j.laa.2016.07.020 0024-3795/© 2016 Elsevier Inc. -
FACTORING POLYNOMIALS OVER NUMBER FIELDS Contents 1
FACTORING POLYNOMIALS OVER NUMBER FIELDS ANDREA MUNARO Graduate Seminar Contents 1. Introduction 1 2. Lattices 1 2.1. Two-dimensional lattice reduction 5 2.2. Lattice reduction in any dimension 6 3. Factoring over Q[X] 13 3.1. Zassenhaus' algorithm 14 3.2. Factoring using LLL algorithm 23 4. Factoring over number fields 26 References 27 1. Introduction The purpose of these notes is to give a substantially self-contained introduction to the factori- zation of polynomials over number fields. In particular, we present Zassenhaus' algorithm and a factoring algorithm using lattice reduction, which were, respectively, the best in practice and in theory, before 2002. We give references for the van Hoeij-Novocin algorithm, currently the best both in practice and in theory. The next section is devoted to introduce lattices, which are relevant for the algorithms. 2. Lattices n We consider R as a metric space with the Euclidean metric. Then, as in any topological space, we have the notion of discretness. We can reformulate it as follows. n Definition 1. A subset D of R is called discrete if it has no limit points, that is, for all x 2 D, there exists ρ > 0 such that B(x; ρ) \ D = fxg. n n n ∗ Example 1. Z is discrete (take ρ = 1=2), while Q and R are not. The set f1=n : n 2 N g is ∗ discrete but the set f0g [ f1=n : n 2 N g is not. n n Definition 2. A lattice L in R is a discrete subgroup of the additive group R . -
Constant-Time Algorithms for ROLLO
Constant-time algorithms for ROLLO Carlos Aguilar-Melchor2, Emanuele Bellini1, Florian Caullery1, Rusydi H. Makarim1, Marc Manzano1, Chiara Marcolla1, and Victor Mateu1 1 Darkmatter LLC, Abu Dhabi, UAE 2 ISAE-SUPAERO, Universit´e de Toulouse, France Table of Contents Constant-time algorithms for ROLLO :::::::::::::::::::::::::::::: 1 Carlos Aguilar-Melchor, Emanuele Bellini, Florian Caullery, Rusydi H. Makarim, Marc Manzano, Chiara Marcolla, and Victor Mateu 1 Introduction ................................................... 3 2 Preliminaries .................................................. 4 2.1 Ideal codes ............................................... 5 3 Description of the scheme ....................................... 6 4 Proposed algorithms ........................................... 8 4.1 Binary field arithmetic ..................................... 8 Carryless multiplication .................................... 9 Reduction ................................................ 11 Inversion ................................................. 11 4.2 Binary vector space arithmetic .............................. 12 Gauss elimination algorithm ................................ 12 Zassenhaus algorithm ...................................... 13 Generation of vectors of given rank .......................... 14 4.3 Composite Galois field arithmetic ........................... 14 Matrix multiplication with lazy reduction .................... 14 Polynomial inversion ....................................... 15 4.4 Rank Syndrome Recovery algorithm and