Ghrelin, Leptin and Obestatin Peptides Offered by Bachem

Total Page:16

File Type:pdf, Size:1020Kb

Ghrelin, Leptin and Obestatin Peptides Offered by Bachem GHRELIN, LEPTIN AND OBESTATIN Ghrelin, Leptin and Obestatin GHRELIN, LEPTIN AND OBESTATIN PEPTIDES OFFERED BY BACHEM Ghrelin is an endogenous peptide discovered by Kojima et al. in 1999 during the search for an unknown endogenous ligand of a receptor of known structure and function. It is a 28 amino acid peptide with an essential n-octanoyl modification on the hydroxy group of Ser3. It displays strong growth hormone-releasing activity mediated by the growth hormone secretagogue receptor 1a (GHS- R1a). Ghrelin participates in the regulation of energy homeostasis, increases food intake, and decreases energy expenditure by lower- ing the catabolism of fat. Several years after the isolation of ghre- lin a second peptide derived from preproghrelin was isolated from rat stomach. This 23 amino acid peptide named obestatin was ini- tially considered to oppose the orexigenic (appetite-stimulating) effects of ghrelin. It was also reported to be the cognate ligand for the G-protein-coupled receptor GPR39. Later studies, however, cast doubt on the initial findings as subsequent studies failed to confirm the anorexigenic effects of obestatin. Leptin, a satiety hor- mone produced by white adipose tissue, was discovered in 1994 and represents another appetite regulator. Leptin and ghrelin are supposed to share hypothalamic pathways regulating food intake and energy homeostasis. 2 Isolation of Ghrelin tion of ghrelin was discovered by Yang et al. Fig. 1. Studies on peptidyl growth hormone (GH) Ghrelin O-acyltransferase (GOAT) belongs Prepro-Ghrelin can be processed to ghrelin secretagogues (GHS), initially discovered by to the superfamily of membrane-bound and obestatin Bowers and Momany in 1976, led to the iden- O-acyltransferases (MBOATs). Human GOAT tification of the GHS receptor in 1996. is expressed in various tissues including The GHS receptor belongs to the family of G- stomach and pancreas and can also modify protein-coupled receptors containing seven ghrelin with other fatty acids such as dec- transmembrane (TM) domains and three anoate. intracellular and extracellular loops. Octanoylation of ghrelin is required for Despite intensive search by various groups, receptor binding and activation. Non- the endogenous ligand of the GHS receptor octanoylated ghrelin does not stimulate GH could not be isolated for a long time. Only secretion nor inhibit the activity of native synthetic ligands, such as growth hormone- ghrelin. Studies with synthetic ghrelin de- releasing peptide-6 (GHRP-6), or hexarelin rivatives indicated that the amino-terminal were known for this receptor. sequence Gly-Ser-Ser(octanoyl)-Phe-Leu The cloning of the GHS receptor in 1996 was appears to be the ‚core‘ structure necessary an important step towards the identifica- for ghrelin function. tion of the endogenous ligand. In 1999, a Interestingly, there is no structural homology Japanese group of scientists (Kojima et al.) between ghrelin and other growth hormone succeeded in the purification and identifica- secretagogues (GHRP-6 or hexarelin). tion of a peptide in rat stomach that could Non-acylated ghrelin is far more abundant stimulate the GHS receptor stably transfect- than acylated ghrelin and exists at signifi- ed into Chinese hamster ovary (CHO) cells. cant levels in both stomach and blood. The purified ligand was found to be a peptide Both acylated ghrelin and non-acylated of 28 amino acids, called ghrelin (‚ghre‘ is a ghrelin share some GHSR1a-independent word root in Proto-Indo-European languages, effects such as stimulation of lipid accumu- meaning ‚growth‘, the suffix ‚relin‘ indicates lation in human visceral adipocytes, inhibi- that a peptide is a releasing hormone). The tion of isoproterenol-induced lipolysis in rat side chain of serine in position 3 of ghrelin adipocytes, and inhibition of apoptosis in was demonstrated to be modified by an oc- cardiomyocytes and endothelial cells. tanoyl group. This unusual esterification has Recent studies indicate a role of ghrelin, des- not been described before. acyl ghrelin, and GOAT in glucose homeosta- By using the rat cDNA sequence for screen- sis. ing a human stomach cDNA library under low stringency conditions, the human ghrelin sequence was subsequently identified. Physiological Functions of Ghrelin The human ghrelin gene is localized on chro- mosome 3 at position p25-26 and comprises Regulation of growth hormone secretion five exons. Human ghrelin is derived from GH secretion from the pituitary gland is a 117 amino acid precursor (Fig. 1). Like its controlled primarily by two hypothalamic rat analog, the human peptide consists of peptides, growth hormone-releasing hor- 28 amino acids and is post-translationally mone (GHRH) (Bachem product H-3695) and modified with an octanoyl group on serine at somatostatin. With the isolation of ghrelin, position 3. It differs from the rat sequence in a third regulator of GH secretion has been two amino acids. discovered. In 2008, the enzyme catalyzing the O-acyla- Ghrelin acts as an antagonist of somatosta- Prepro-Ghrelin (human) 1 23 24 51 52 75 76 98 99 117 Ghrelin (human) Obestatin (human) 3 Ghrelin, Leptin and Obestatin tin that inhibits the secretion but not the the BBB is very low. Several studies sug- Fig. 2. synthesis of GH. Together with GHRH, ghrelin gested that the orexigenic signal of ghrelin Interrelationship of acts synergistically to stimulate the release secreted from the stomach is transmitted Ghrelin and Leptin. Activation of ghre- of GH from the somatotrophic cells of the to the brain via the vagal afferent nerve. This lin receptors causes hypophysis. was supported by the finding that vagotomy release of neuropeptide Amongst a range of tested neuropeptides inhibits the ability of ghrelin to stimulate Y (NPY) and agouti- only GHSs bound specifically to the GHS food intake. However, other studies con- related protein (AgRP) receptor. cluded that abdominal vagal afferents are thus stimulating hunger GHRH, somatostatin, and ghrelin mediate not required for the acute eating-stimulatory and food intake (orexi- their effects through G-protein-coupled effect of ghrelin. genic effect). Activa- tion of leptin receptors receptors. GHRH activates adenylyl cyclase, Ghrelin receptors are synthesized by a sub- increases expression cyclic AMP, and protein kinase A pathways, set of vagal afferent neurons of the nodose of proopiomelanocortin whereas ghrelin stimulates phospholipase ganglion and then transmitted to axon termi- (POMC), α-melanocyte- C activity leading to production of inositol- nals where they bind to ghrelin. Ghrelin can stimulating hormone 1,4,5-triphosphate and diacylglycerol, influence gastric satiety signaling by altering (α-MSH) and cocaine increase in cytosolic calcium levels, and the mechanosensitivity of gastric vagal af- and amphetamine-reg- GH release. Somatostatin acts through an ferents to distension. ulated transcript (CART) in the arcuate nucleus inhibitory G-protein-coupled receptor thus The ghrelin receptor is expressed in several (anorexigenic effect). blocking GH secretion. hypothalamic nuclei. Many of them are Leptin also inhibits the known to be involved in the regulation of food release of NPY and AgRP Influence of food intake and energy bal- intake and body weight. and prevents the sup- ance Ghrelin is also synthesized locally in neurons pressive effect of these Ghrelin not only stimulates GH secretion, it of hypothalamic areas such as the paraven- neurons on POMC/CART also increases food intake and weight gain in tricular and the arcuate nucleus but also in neurons. experimental animals and induces hunger in the sensorimotor area of the cerebral cortex humans. and in the cingulate gyrus. Ghrelin is part of a complex neuroendocrine In the arcuate nucleus, ghrelin-containing network involved in the regulation of appetite neurons send efferent fibers onto neu- and energy homeostasis. rons expressing neuropeptide Y (NPY) and Peripheral ghrelin may exert its effects on agouti-related protein (AgRP) to stimulate the CNS by crossing the blood brain barrier the release of these orexigenic peptides. (BBB) although the rate at which it passes This is complemented by a suppressive ef- Stomach Adipose Tissue Stomach Adipose Tissue Ghrelin Ghrelin Leptin Leptin GHS Receptor GHS Receptor Vagal Nerve Vagal Nerve Hypothalamus Hypothalamus Ghrelin Ghrelin Neurons Neurons Leptin Leptin GHS Receptor GABA GHS Receptor Leptin Receptor Leptin Receptor Leptin Receptor POMC/ POMC/ NPY/AgRP NPY/AgRP Neuron CART Neuron CART Neuron Neuron GABA Receptor GABA Receptor AgRP / NPY α-MSH / CART Orexigenic Effect Anorexigenic Effect 4 fect on proopiomelanocortin/cocaine- and tive axis in situations of energy deficit. amphetamine-regulated transcript (POMC/ CART)-expressing neurons via inhibitory γ-aminobutyric acid (GABA) inputs from NPY/ Identification of Leptin AgRP neurons. The hypothalamic NPY/Y1 Leptin has been discovered in 1994 by receptor pathway is shared by leptin. Ghrelin positional cloning of the mouse obese gene antagonizes the anorectic effect of leptin originally described in 1950. Mice which are through the activation of this pathway homozygous for the recessive obese muta- (Fig. 2). tion exhibit hyperphagia and increase rapidly in weight. The ob/ob phenotype is also char- Effects of ghrelin on the cardiovascular acterized by infertility and a form of diabetes system similar to human type-II diabetes. The mouse A study of the peripheral distribution of GHS obese gene was mapped to chromosome 6. It receptors has shown that ghrelin is also encodes
Recommended publications
  • Serum Levels of Spexin and Kisspeptin Negatively Correlate with Obesity and Insulin Resistance in Women
    Physiol. Res. 67: 45-56, 2018 https://doi.org/10.33549/physiolres.933467 Serum Levels of Spexin and Kisspeptin Negatively Correlate With Obesity and Insulin Resistance in Women P. A. KOŁODZIEJSKI1, E. PRUSZYŃSKA-OSZMAŁEK1, E. KOREK4, M. SASSEK1, D. SZCZEPANKIEWICZ1, P. KACZMAREK1, L. NOGOWSKI1, P. MAĆKOWIAK1, K. W. NOWAK1, H. KRAUSS4, M. Z. STROWSKI2,3 1Department of Animal Physiology and Biochemistry, Poznan University of Life Sciences, Poznan, Poland, 2Department of Hepatology and Gastroenterology & The Interdisciplinary Centre of Metabolism: Endocrinology, Diabetes and Metabolism, Charité-University Medicine Berlin, Berlin, Germany, 3Department of Internal Medicine, Park-Klinik Weissensee, Berlin, Germany, 4Department of Physiology, Karol Marcinkowski University of Medical Science, Poznan, Poland Received August 18, 2016 Accepted June 19, 2017 On-line November 10, 2017 Summary Corresponding author Spexin (SPX) and kisspeptin (KISS) are novel peptides relevant in P. A. Kolodziejski, Department of Animal Physiology and the context of regulation of metabolism, food intake, puberty and Biochemistry, Poznan University of Life Sciences, Wolynska Street reproduction. Here, we studied changes of serum SPX and KISS 28, 60-637 Poznan, Poland. E-mail: [email protected] levels in female non-obese volunteers (BMI<25 kg/m2) and obese patients (BMI>35 kg/m2). Correlations between SPX or Introduction KISS with BMI, McAuley index, QUICKI, HOMA IR, serum levels of insulin, glucagon, leptin, adiponectin, orexin-A, obestatin, Kisspeptin (KISS) and spexin (SPX) are peptides ghrelin and GLP-1 were assessed. Obese patients had lower SPX involved in regulation of body weight, metabolism and and KISS levels as compared to non-obese volunteers (SPX: sexual functions. In 2014, Kim and coworkers showed that 4.48±0.19 ng/ml vs.
    [Show full text]
  • Ghrelin, Desacyl Ghrelin and Obestatin - in Prostate Cancer
    THE ROLES OF THE PREPROGHRELIN-DERIVED PEPTIDES - GHRELIN, DESACYL GHRELIN AND OBESTATIN - IN PROSTATE CANCER Laura Miranda de Amorim Bachelor of Biomedical Science (Hons) Universidade Federal do Estado do Rio de Janeiro Institute of Health and Biomedical Innovation Faculty of Science and Technology Queensland University of Technology A thesis submitted for the degree of Doctor of Philosophy of the Queensland University of Technology 2012 KEYWORDS Ghrelin, desacyl ghrelin, obestatin, GHS-R1a, proliferation, signalling pathways, MAPK, ERK1/2, Akt, PKC, ghrelin O-acyltransferase, octanoic acid, prostate cancer. ii ABSTRACT Prostate cancer is the second most common cause of cancer related deaths in Western men. Despite the significant improvements in current treatment techniques, there is no cure for advanced metastatic, castrate-resistant disease. Early detection and prevention of progression to a castrate-resistant state may provide new strategies to improve survival. A number of growth factors have been shown to act in an autocrine/paracrine manner to modulate prostate cancer tumour growth. Our laboratory has previously shown that ghrelin and its receptors (the functional GHS- R1a and the non-functional GHS-R1b) are expressed in prostate cancer specimens and cell lines. We have shown that ghrelin increases cell proliferation in the PC3 and LNCaP prostate cancer cell lines through activation of ERK1/2, suggesting that ghrelin could regulate prostate cancer cell growth and play a role in the progression of the disease. Ghrelin is a 28 amino-acid peptide hormone, identified to be the natural ligand of the growth hormone secretagogue receptor (GHS-R1a). It is well characterised as a growth hormone releasing and as an orexigenic peptide that stimulates appetite and feeding and regulates energy expenditure and bodyweight.
    [Show full text]
  • Lack of Obestatin Effects on Food Intake: Should Obestatin Be Renamed Ghrelin-Associated Peptide (GAP)? ⁎ G
    Regulatory Peptides 141 (2007) 1–7 www.elsevier.com/locate/regpep Review Lack of obestatin effects on food intake: Should obestatin be renamed ghrelin-associated peptide (GAP)? ⁎ G. Gourcerol a, D.H. St-Pierre b, Y. Taché a, a CURE: Digestive Diseases Research Center, and Center for Neurovisceral Sciences & Women's Health, David Geffen School of Medicine at UCLA, Division of Digestive Diseases, University of California, Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA b Département de Nutrition, Université de Montréal, Montréal, Québec, Canada Received 4 November 2006; received in revised form 23 December 2006; accepted 23 December 2006 Available online 12 January 2007 Abstract Obestatin is a newly identified ghrelin-associated peptide (GAP) that is derived from post-translational processing of the prepro-ghrelin gene. Obestatin has been reported initially to be the endogenous ligand for the orphan receptor G protein-coupled receptor 39 (GPR39), and to reduce refeeding- and ghrelin-stimulated food intake and gastric transit in fasted mice, and body weight gain upon chronic peripheral injection. However, recent reports indicate that obestatin is unlikely to be the endogenous ligand for GPR39 based on the lack of specific binding on GRP39 receptor expressing cells and the absence of signal transduction pathway activation. In addition, a number of studies provided convergent evidence that ghrelin injected intracerebroventricularly or peripherally did not influence food intake, body weight gain, gastric transit, gastrointestinal motility, and gastric vagal afferent activity, as well as pituitary hormone secretions, in rats or mice. Similarly, obestatin did not alter ghrelin-induced stimulation of food intake or gastric transit.
    [Show full text]
  • Vascular Effects of Obestatin in Lean and Obese Subjects
    1214 Diabetes Volume 66, May 2017 Vascular Effects of Obestatin in Lean and Obese Subjects Francesca Schinzari,1 Augusto Veneziani,2 Nadia Mores,3 Angela Barini,4 Nicola Di Daniele,5 Carmine Cardillo,1 and Manfredi Tesauro5 Diabetes 2017;66:1214–1221 | DOI: 10.2337/db16-1067 Obese patients have impaired vasodilator reactivity and tone, predominantly resulting from enhanced endothe- increased endothelin 1 (ET-1)–mediated vasoconstriction, lin (ET)-1 activity (2,3), has been shown to importantly two abnormalities contributing to vascular dysfunction. contribute to their vascular dysfunction and damage. Obestatin, a product of the ghrelin gene, in addition to fa- Obestatin was identified in 2005 as a ghrelin-associ- vorable effects on glucose and lipid metabolism, has shown ated peptide derived from alternative splicing of the nitric oxide (NO)–dependent vasodilator properties in exper- common precursor prepro-ghrelin and was originally re- imental models. Given these premises, we compared the ported to reduce food intake and gastric emptying through fl effects of exogenous obestatin on forearm ow in lean activation of the G-protein–coupled receptor (GPCR) GPR39 fl – and obese subjects and assessed its in uence on ET-1 (4). Even though these effects on feeding behavior and gas- dependent vasoconstrictor tone in obesity. In both lean trointestinal motion have been subsequently disputed and and obese participants, infusion of escalating doses of the precise identity of its cognate receptor(s) is still a obestatin resulted in a progressive increase in blood flow matter of debate (5), obestatin indisputably exerts a from baseline (both P < 0.001). This vasodilation was pre- dominantly mediated by enhanced NO activity, because variety of effects in different cell types, including pan- G creatic b-cells, where it increases survival and prolifer- N -monomethyl-L-arginine markedly blunted the flow re- fl sponse to obestatin in both groups (both P < 0.05 vs.
    [Show full text]
  • Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide
    Henry Ford Hospital Medical Journal Volume 35 Number 2 Second International Workshop on Article 20 MEN-2 6-1987 Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide, and Somatostatin Regulation by Glucocorticoids in a Cell Culture of Human Medullary Thyroid Carcinoma Gilbert J. Cote Robert F. Gagel Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Cote, Gilbert J. and Gagel, Robert F. (1987) "Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide, and Somatostatin Regulation by Glucocorticoids in a Cell Culture of Human Medullary Thyroid Carcinoma," Henry Ford Hospital Medical Journal : Vol. 35 : No. 2 , 149-152. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol35/iss2/20 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. Different Mechanisms of Calcitonin, Calcitonin Gene-Related Peptide, and Somatostatin Regulation by Glucocorticoids in a Cell Culture of Human Medullary Thyroid Carcinoma Gilbert J. Cote, and Robert F. Gagel* We have employed the TT cell line, a model for the human medullary thyroid carcinoma cell, lo study the regulation of peptide hormone production by glucocorticoids. Complementary DNA probes were used to measure the calcitonin (CT), CT gene-related peptide (CGRP), and somatostatin (SRIF) mRNA levels. Dose-response experiments in serum-free medium showed that dexamethasone (six-day treatment) lowered somatostatin (to 1% of basal) and CGRP mRNA (to 50% of basal) and stimulated CT mRNA (threefold to thirteenfold) with a half-maximal effective concentration of 10 " M.
    [Show full text]
  • Mechanisms of Hormone Action: Peptide Hormones
    Frontiers in Reproductive Endocrinology Serono Symposia International Mechanisms of Hormone Action: Peptide Hormones Kelly Mayo Northwestern University Mechanisms of Cell Communication Endocrine Signaling Paracrine Signaling Autocrine Juxtacrine Signaling Signaling Endocrine Signaling 1 Emergence of Key Concepts in Hormone Action Berthold, 1849 Starling, 1905 Castrated cockerels and Stimulation of pancreatic restored male sex enzyme secretion by characteristics by replacing humoral factor (secretin) testes in the abdomen from intestinal extracts “Endocrinology” “Hormone” Langley, 1906 Sutherland, 1962 Action of nicotine and Glycogen metabolism and curare on the ‘receptive hormonal activation of substance’ of the liver phosphorylase neuromuscular junction enzyme by cAMP “Receptor” “Second Messenger” Structural Diversity in Reproductive Hormonal Signaling Molecules pyroGlu His Trp Ser HOOC OH Tyr Gly OH Leu N O Arg HO H Pro O OH Gly GlyNH2 FSH GnRH Estradiol PGF2a Nitric Oxide Protein Peptide Steroid Eicosanoid Gas 203 aa 10 aa MW 272 MW 330 MW 30 2 Measuring Receptor-Ligand Interaction ka R (receptor) + H (hormone)! ! RH (complex) Total Binding kd Specific Binding Ka = [RL] Kd = [R][L] ! [R][L] ! [RL] (units are moles -1) (units are moles) Nonspecific Binding Fractional Binding Total R, RT= [R] + [RL], so: Kd = [RT-RL][L] [Hormone] [RL] Rearrange to: [L] = [RL](Kd + [L] [RT] ~Kd Fraction of receptor [RL] = [L] = 1 ocupied by ligand: [RT] Kd + [L] 1 + Kd ! ! ! ! [L] Fractional Binding At 50% occupancy (1/2), Kd = [L] log [Hormone] General
    [Show full text]
  • Pancreatic Polypeptide — a Postulated New Hormone
    Diabetologia 12, 211-226 (1976) Diabetologia by Springer-Verlag 1976 Pancreatic Polypeptide - A Postulated New Hormone: Identification of Its Cellular Storage Site by Light and Electron Microscopic Immunocytochemistry* L.-I. Larsson, F. Sundler and R. H~ikanson Departments of Histology and Pharmacology, University of Lund, Lund, Sweden Summary. A peptide, referred to as pancreatic Key words: Pancreatic hormones, "pancreatic polypeptide (PP), has recently been isolated from the polypeptide", islet cells, gastrointestinal hormones, pancreas of chicken and of several mammals. PP is immunocytochemistry, fluorescence histochemistry. thought to be a pancreatic hormone. By the use of specific antisera we have demonstrated PP im- munoreactivity in the pancreas of a number of mam- mals. The immunoreactivity was localized to a popula- tion of endocrine cells, distinct from the A, B and D While purifying chicken insulin Kimmel and co- cells. In most species the PP cells occurred in islets as workers detected a straight chain peptide of 36 amino well as in exocrine parenchyma; they often predomi- acids which they named avian pancreatic polypeptide nated in the pancreatic portion adjacent to the (APP) [1, 2]. By radioimmunoassay APP was de- duodenum. In opossum and dog, PP cells were found tected in pancreatic extracts from a number of birds also in the gastric mucosa. In opossum, the PP cells and reptiles, and was found to circulate in plasma displayed formaldehyde- induced fluorescence typical where its level varied with the prandial state [3]. From of dopamine, whereas no formaldehyde-induced mammalian pancreas Chance and colleagues isolated fluorescence was detected in the PP cells of mouse, rat peptides that were very similar to APP [see 4].
    [Show full text]
  • Metals Influence C-Peptide Hormone Related to Insulin 17 May 2019, by Andy Fell
    Metals influence C-peptide hormone related to insulin 17 May 2019, by Andy Fell in the body. "A metal is an ingredient—what you do with it is what makes the difference," Heffern said. Her laboratory at UC Davis is using new techniques to understand how metals are distributed inside and outside cells, how they bind to proteins and other molecules and the subtle influences they have on those molecules. The new study looked at C-peptide, or connecting peptide, a short chain of amino acids. C-peptide is being investigated for potential in treating kidney disease and nerve damage in diabetes, so any better understanding of how it behaves in different conditions could be useful in drug development. UC Davis chemist Marie Heffern is pioneering a new field, metalloendocrinology, exploring how metals such Influencing shape and uptake by cells as iron, zinc and copper influence hormones. Credit: Gregory Urquiaga/UC Davis When the pancreas makes insulin, C-peptide connects two chains of insulin in a preliminary step. C-peptide is then cut out, stored along with insulin and released at the same time. C-peptide used to Metals such as zinc, copper and chromium bind to be considered a byproduct of insulin production but and influence a peptide involved in insulin now scientists know that it acts as a hormone in its production, according to new work from chemists own right. at the University of California, Davis. The research is part of a new field of "metalloendocrinology" that The researchers measured how readily zinc, takes a detailed look at the role of metals in copper and chromium bound to C-peptide in test biological processes in the body.
    [Show full text]
  • Insulin and Leptin As Adiposity Signals
    Insulin and Leptin as Adiposity Signals STEPHEN C. BENOIT,DEBORAH J. CLEGG,RANDY J. SEELEY, AND STEPHEN C. WOODS Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, Ohio 45267 ABSTRACT There is now considerable consensus that the adipocyte hormone leptin and the pancreatic hormone insulin are important regulators of food intake and energy balance. Leptin and insulin fulfill many of the requirements to be putative adiposity signals to the brain. Plasma leptin and insulin levels are positively correlated with body weight and with adipose mass in particular. Furthermore, both leptin and insulin enter the brain from the plasma. The brain expresses both insulin and leptin receptors in areas important in the control of food intake and energy balance. Consistent with their roles as adiposity signals, exogenous leptin and insulin both reduce food intake when administered locally into the brain in a number of species under different experimental paradigms. Additionally, central administration of insulin antibodies increases food intake and body weight. Recent studies have demonstrated that both insulin and leptin have additive effects when administered simulta- neously. Finally, we recently have demonstrated that leptin and insulin share downstream neuropep- tide signaling pathways. Hence, insulin and leptin provide important negative feedback signals to the central nervous system, proportional to peripheral energy stores and coupled with catabolic circuits. I. Overview When maintained on an ad libitum diet, most animals — including humans — are able to precisely match caloric intake with caloric expenditure, resulting in relatively stable energy stores as adipose tissue (Kennedy, 1953; Keesey, 1986). Growing emphasis has been placed on the role of the central nervous system (CNS) in controlling this precision of energy homeostasis.
    [Show full text]
  • Chemistry of Pancreatic Polypeptide Hormone with Official Preparation
    wjpmr, 2020,6(9), 102-114 SJIF Impact Factor: 5.922 WORLD JOURNAL OF PHARMACEUTICAL Review Article Arpan et al. World Journal of Pharmaceutical and Medical Research AND MEDICAL RESEARCH ISSN 2455-3301 www.wjpmr.com Wjpmr CHEMISTRY OF PANCREATIC POLYPEPTIDE HORMONE WITH OFFICIAL PREPARATION Arpan Chanda*1, Arunava Chandra Chandra2, Dr. Dhrubo Jyoti Sen2 and Dr. Dhananjoy Saha3 1Department of Pharmaceutical Chemistry, Netaji Subhas Chandra Bose Institute of Pharmacy, Roypara, Chakdaha Dist–Nadia, Pin‒741222, West Bengal, India. 2Department of Pharmaceutical Chemistry, School of Pharmacy, Techno India University, Salt‒Lake City, Sector‒V, EM‒4, Kolkata‒700091, West Bengal, India. 3Deputy Director of Technical Education, Directorate of Technical Education, Bikash Bhavan, Salt Lake City, Kolkata‒700091, West Bengal, India. *Corresponding Author: Arpan Chanda Department of Pharmaceutical Chemistry, Netaji Subhas Chandra Bose Institute of Pharmacy, Roypara, Chakdaha Dist–Nadia, Pin‒741222, West Bengal, India. Article Received on 05/07/2020 Article Revised on 26/07/2020 Article Accepted on 16/08/2020 ABSTRACT Insulin which is a peptide hormone is produced by β‒cells of the pancreatic islets and it is considered to be the main anabolic hormone of the body. It further regulates the metabolism of carbohydrates, fats and protein by promoting the absorption of glucose from the blood into liver, fat and skeletal muscle cells. In these tissues the absorbed glucose from the blood is thus converted into either glycogen via glycogenesis or fats (triglycerides) via lipogenesis, or, in the case of the liver both glycogenesis and lipogenesis. Glucose production and secretion by the liver is strongly supported by high concentrations of insulin in the blood.
    [Show full text]
  • Circulating Obestatin Levels and the Ghrelin/Obestatin Ratio in Obese Women
    European Journal of Endocrinology (2007) 157 295–301 ISSN 0804-4643 CLINICAL STUDY Circulating obestatin levels and the ghrelin/obestatin ratio in obese women Valentina Vicennati, Silvia Genghini, Rosaria De Iasio, Francesca Pasqui, Uberto Pagotto and Renato Pasquali Division of Endocrinology, Department of Internal Medicine, Centre for Applied Biomedical Research (CRBA), S Orsola-Malpighi Hospital, University Alma Mater Studiorum, Via Massarenti 9, 40138 Bologna, Italy (Correspondence should be addressed to R Pasquali; Email: [email protected]) Abstract Objective: We measured blood levels of obestatin, total ghrelin, and the ghrelin/obestatin ratio and their relationship with anthropometric and metabolic parameters, adiponectin and insulin resistance, in overweight/obese and normal-weight women. Design: Outpatients Unit of Endocrinology of the S Orsola-Malpighi Hospital of Bologna, Italy. Methods: Fasting obestatin, ghrelin, adiponectin and lipid levels, fasting and glucose-stimulated oral glucose tolerance test insulin, and glucose levels were measured in 20 overweight/obese and 12 controls. The fasting ghrelin/obestatin ratio was calculated; the homeostasis model assessment-IR (HOMA-IR) and insulin sensitivity index (ISIcomposite) were calculated as indices of insulin resistance. Results: Obese women had higher obestatin and lower ghrelin blood levels, and a lower ghrelin/obestatin ratio compared with controls. In all subjects, obestatin was significantly and positively correlated with total cholesterol and triglycerides, but not with ghrelin, anthropometric, and metabolic parameters. In the obese women, however, obestatin and ghrelin concentrations were positively correlated. By contrast, the ghrelin/obestatin ratio was significantly and negatively correlated with body mass index, waist, waist-to-hip ratio, fasting insulin, and HOMA-IR, and positively with ISIcomposite but not with adiponectin.
    [Show full text]
  • Prolactin-Releasing Peptide: Physiological and Pharmacological Properties
    International Journal of Molecular Sciences Review Prolactin-Releasing Peptide: Physiological and Pharmacological Properties Veronika Pražienková 1, Andrea Popelová 1, Jaroslav Kuneš 1,2 and Lenka Maletínská 1,* 1 Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences 16610 Prague, Czech Republic; [email protected] (V.P.); [email protected] (A.P.); [email protected] (J.K.) 2 Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +420-220-183-567 Received: 2 October 2019; Accepted: 23 October 2019; Published: 24 October 2019 Abstract: Prolactin-releasing peptide (PrRP) belongs to the large RF-amide neuropeptide family with a conserved Arg-Phe-amide motif at the C-terminus. PrRP plays a main role in the regulation of food intake and energy expenditure. This review focuses not only on the physiological functions of PrRP, but also on its pharmacological properties and the actions of its G-protein coupled receptor, GPR10. Special attention is paid to structure-activity relationship studies on PrRP and its analogs as well as to their effect on different physiological functions, mainly their anorexigenic and neuroprotective features and the regulation of the cardiovascular system, pain, and stress. Additionally, the therapeutic potential of this peptide and its analogs is explored. Keywords: prolactin-releasing peptide; GPR10; RF-amide peptides; food intake regulation; energy expenditure; neuroprotection; signaling 1. Introduction There is no doubt that the function of prolactin-releasing peptide (PrRP) in organisms is quite important as its structure is well conserved within different animal species.
    [Show full text]