Sensor Fusion and Tracking for Autonomous Systems

Total Page:16

File Type:pdf, Size:1020Kb

Sensor Fusion and Tracking for Autonomous Systems Sensor Fusion and Tracking for Autonomous Systems Marc Willerton Senior Application Engineer MathWorks © 2015 The MathWorks, Inc.1 Abstract ▪ There is an exponential growth in the development of increasingly autonomous systems. These systems range from road vehicles that meet the various NHTSA levels of autonomy, through consumer quadcopters capable of autonomous flight and remote piloting, package delivery drones, flying taxis, and robots for disaster relief and space exploration. Work on autonomous systems spans industries and includes academia as well as government agencies. ▪ In this talk, you will learn to design, simulate, and analyze systems that fuse data from multiple sensors to maintain position, orientation, and situational awareness. By fusing multiple sensors data, you ensure a better result than would otherwise be possible by looking at the output of individual sensors. ▪ Several autonomous system examples are explored to show you how to: – Define trajectories and create multiplatform scenarios – Simulate measurements from inertial and GPS sensors – Generate object detections with radar, EO/IR, sonar, and RWR sensor models – Design multi-object trackers as well as fusion and localization algorithms – Evaluate system accuracy and performance on real and synthetic data 2 Capabilities of an Autonomous System Sense 3 Capabilities of an Autonomous System Sense Perceive 4 Capabilities of an Autonomous System Sense Perceive Decide & Plan Learning Algorithms Optimization 5 Capabilities of an Autonomous System Sense Perceive Decide & Plan Act Control Algorithms 6 Agenda ▪ Introduction ▪ Technology overview of perception ▪ Sensor models for sensor fusion and tracking ▪ Building simulation scenarios ▪ Developing a Multi-Object Tracker ▪ Tracking from multiple platforms ▪ Connecting trackers to a control system ▪ Q&A 7 Agenda ▪ Introduction ▪ Technology overview of perception ▪ Sensor models for sensor fusion and tracking ▪ Building simulation scenarios ▪ Developing a Multi-Object Tracker ▪ Tracking from multiple platforms ▪ Connecting trackers to a control system ▪ Q&A 8 Sensor fusion and tracking is… Self- awareness Situational awareness Accelerometer, Magnetometer, Radar, Camera, IR, Sonar, Lidar, Gyro, GPS… … Signal and Image Sensor Fusion and Control Processing Tracking 9 Timeline of Technology Advances Multi-object tracking Air Traffic Control Computer Vision Multi-sensor Fusion for Transportation for Autonomous Systems Localization Military Commercial Ubiquitous Today Timeline 10 Fusion Combines the Strengths of Each Sensor Legend Vision measurement Down range at time step k Vision Measurement Radar measurement Radar at time step k measurement Fused Track (fused Predicted estimate estimate at estimate) at time step k time step k Ellipse represents uncertainty Fused estimate at time step k-1 Cross range 11 What is Localization? Inertial Sensor Attitude Position 12 Agenda ▪ Introduction ▪ Technology overview of perception ▪ Sensor models for sensor fusion and tracking ▪ Building simulation scenarios ▪ Developing a Multi-Object Tracker ▪ Tracking from multiple platforms ▪ Connecting trackers to a control system ▪ Q&A 13 Sensor Models for Sensor Fusion and Tracking 14 Exploring gyro model in Sensor Fusion and Tracking Toolbox 15 Exploring gyro model in Sensor Fusion and Tracking Toolbox Imposing ADC Quantisation Effects Imposing White Noise 16 Exploring gyro model in Sensor Fusion and Tracking Toolbox Imposing Brown Noise Imposing Pink Noise 17 Exploring gyro model in Sensor Fusion and Tracking Toolbox Imposing Temperature Scaled Bias For more information, see example. 18 Levels of Fidelity: Radar Detections vs. I/Q Samples Simulation radar = monostaticRadarSensor(‘Rotator’) radar = monostaticRadarSensor(‘Sector’) radar = monostaticRadarSensor(‘Mechanical Raster’) radar = monostaticRadarSensor(‘Electronic Raster’) 19 Generating Radar Detections in MATLAB Sensor ID Detections (time, measurement, etc…) Target positions Simulation time For more information, see example here TBC – we will see how to build this as a scenario later… 20 Fusing Sensor Data Improves Localization Ground truth vs. Estimate Sensors Error Measurements Example here 21 Fuse IMU & GPS for Self-Localization of a UAV Sense Perceive Locate Track Self Obstacles Decide & Plan Act Example here 22 Fuse IMU & Odometry for Self-Localization in GPS-Denied Areas VO estimate off by a scale factor IMU dead reckoning drift 24 Fuse IMU & Odometry for Self-Localization in GPS-Denied Areas Sense Perceive Locate Track Self Obstacles Decide & Plan Act 25 Flexible Workflows Ease Adoption: Wholesale or Piecemeal Recorded Sensor Data Scenario Definition and Sensor Simulation Algorithms Documented Documented Interface Interface Visualization Ownship INS Sensor for detections for tracks & Trajectory Simulation gnnTrackerINSgnnTracker Filter, Generation Tracker, etc.. Metrics Actors/ Radar, IR, Platforms & Sonar Sensor Simulation 26 Stream Data to MATLAB from IMUs Connected to Arduino MEMS Devices ▪ 9-axis (Gyro + Accelerometer + Compass) ▪ 6 axis (Gyro + Accelerometer) ▪ Up to 200 Hz sampling rate 27 New Hardware and Multisensor Positioning Examples 28 Agenda ▪ Introduction ▪ Technology overview of perception ▪ Sensor models for sensor fusion and tracking ▪ Building simulation scenarios ▪ Developing a Multi-Object Tracker ▪ Tracking from multiple platforms ▪ Connecting trackers to a control system ▪ Q&A 29 Building a Simulation Scenario Example here 30 Test Tracker Performance on Pre-Built Benchmark Trajectories Reference W.D. Blair, G. A. Watson, T. Kirubarajan, Y. Bar-Shalom, "Benchmark for Radar Allocation and Tracking in ECM." Aerospace and Electronic Systems IEEE Trans on, vol. 34. no. 4. 1998 31 To go further on localization, see also 32 Agenda ▪ Introduction ▪ Technology overview of perception ▪ Sensor models for sensor fusion and tracking ▪ Building simulation scenarios ▪ Developing a Multi-Object Tracker ▪ Tracking from multiple platforms ▪ Connecting trackers to a control system ▪ Q&A 33 A Multi-object Tracker is More than a Kalman Filter Multitarget Tracker Track Detections Association Tracking Tracks and Filter Management From various sensors at various update rates ▪ Assigns detections to tracks ▪ Creates new tracks ▪ Fuses measurements with ▪ Updates existing tracks the track state ▪ Removes old tracks 34 Tracking Algorithm Development Workflow Recorded objectDetection tracks Sensor Data Tracking Algorithms Scenario Definition and Sensor Simulation Visualization & Ownship INS Sensor GNN,gnnTrackergnnTracker MHT, etc.. Trajectory Simulation Metrics Generation Actors/ Radar, IR, & Platforms Sonar Sensor Simulation , JPDA, PHD 35 Components of a Multi-Object Tracker Inertial Navigation System provides radar sensor platform position, velocity and orientation Track Association and Management Tracking Filter More information here 36 Components of a Multi-Object Tracker Tracking Filter Covariance estimate assumes system is linear: time step process noise If y (t) = H{x }, y (t) = H{x }, then state 1 1 2 2 (e.g. model error) Ay1(t) + By2(t) = H{Ay1(t) + By2(t)} Linear Kalman Filter – Assumes linear system output Extended Kalman Filter – Linearizes the nonlinear Measurement system around state estimate (sensor) noise Unscented Kalman Filter – Samples the covariance Common assumption: distribution and propagates through non-linear model Gaussian noise => Kalman Filter Gaussian Sum Filter – good for partially observable cases (e.g. range only measurements) Linear Kalman Filter Example Interactive Multiple Model Filter – good for tracking manoeuvring targets Particle Filter – doesn’t require gaussian noise 1. Create the measured positions from a constant-velocity trajectory State Initialisation (e.g. constant velocity/acceleration/turn and Motion Models available or use your own 2. Specify initial position and velocity 3. Run Kalman Filter More information here 37 Components of a Multi-Object Tracker Track Association and Management One or more sensors generating multiple detections from multiple targets – detections must be: 1. Gated – determine which detections are valid candidates to update existing tracks Lowest 2. Assigned* – make a track to detection assignment. Assignment approaches include: Complexity > Global Nearest Neighbour – Minimise overall distance of track to detection assignments > Joint Probability Data Association – Soft assignment so all gated detections make weighted contributions to a track > Track Orientated Multiple Hypothesis Tracking – Allows data association to be postponed until more information is received Best Track maintenance is required for creation (tentative status), confirmation, deletion of tracks (after coasting) Performance > Can use history or score based logic Advanced Topic – Track to Track Fusion: * Some trackers (e.g. PHD More information here Filter) don’t require assignment 38 More information here Components of a Multi-Object Tracker Track Association and Management Data Track Creation Time Track Deletion 39 Example of Multi-Object Tracking: Multifunction Radar: Search and Track Search Track (confirm) Track (update) Example here 40 Example of Multi-Object Tracking: Multifunction Radar: Search and Track 41 Example of Multi-Object Tracking: Multifunction Radar: Search and Track Target 1 Detected 42 Example of Multi-Object Tracking: Multifunction Radar: Search and Track Detection Confirmed and Track 1 Created 43 Example of Multi-Object Tracking: Multifunction Radar: Search and Track Track 1 Updated 44 Example of Multi-Object
Recommended publications
  • Getting Started with Motionfx Sensor Fusion Library in X-CUBE-MEMS1 Expansion for Stm32cube
    UM2220 User manual Getting started with MotionFX sensor fusion library in X-CUBE-MEMS1 expansion for STM32Cube Introduction The MotionFX is a middleware library component of the X-CUBE-MEMS1 software and runs on STM32. It provides real-time motion-sensor data fusion. It also performs gyroscope bias and magnetometer hard iron calibration. This library is intended to work with ST MEMS only. The algorithm is provided in static library format and is designed to be used on STM32 microcontrollers based on the ARM® Cortex® -M0+, ARM® Cortex®-M3, ARM® Cortex®-M4 or ARM® Cortex®-M7 architectures. It is built on top of STM32Cube software technology to ease portability across different STM32 microcontrollers. The software comes with sample implementation running on an X-NUCLEO-IKS01A2, X-NUCLEO-IKS01A3 or X-NUCLEO- IKS02A1 expansion board on a NUCLEO-F401RE, NUCLEO-L476RG, NUCLEO-L152RE or NUCLEO-L073RZ development board. UM2220 - Rev 8 - April 2021 www.st.com For further information contact your local STMicroelectronics sales office. UM2220 Acronyms and abbreviations 1 Acronyms and abbreviations Table 1. List of acronyms Acronym Description API Application programming interface BSP Board support package GUI Graphical user interface HAL Hardware abstraction layer IDE Integrated development environment UM2220 - Rev 8 page 2/25 UM2220 MotionFX middleware library in X-CUBE-MEMS1 software expansion for STM32Cube 2 MotionFX middleware library in X-CUBE-MEMS1 software expansion for STM32Cube 2.1 MotionFX overview The MotionFX library expands the functionality of the X-CUBE-MEMS1 software. The library acquires data from the accelerometer, gyroscope (6-axis fusion) and magnetometer (9-axis fusion) and provides real-time motion-sensor data fusion.
    [Show full text]
  • D2.1 Sensor Data Fusion V1
    Grant Agreement Number: 687458 Project acronym: INLANE Project full title: Low Cost GNSS and Computer Vision Fusion for Accurate Lane Level Naviga- tion and Enhanced Automatic Map Generation D2.1 Sensor Data Fusion Due delivery date: 31/12/2016 Actual delivery date: 30/12/2016 Organization name of lead participant for this deliverable: TCA Project co-funded by the European Commission within Horizon 2020 and managed by the European GNSS Agency (GSA) Dissemination level PU Public x PP Restricted to other programme participants (including the GSA) RE Restricted to a group specified by the consortium (including the GSA) CO Confidential , only for members of the consortium (including the GSA) Document Control Sheet Deliverable number: D2.1 Deliverable responsible: TeleConsult Austria Workpackage: 2 Editor: Axel Koppert Author(s) – in alphabetical order Name Organisation E-mail Axel Koppert TCA [email protected] Document Revision History Version Date Modifications Introduced Modification Reason Modified by V0.1 18/11/2016 Table of Contents Axel Koppert V0.2 05/12/2016 Filling the document with content Axel Koppert V0.3 19/12/2016 Internal Review François Fischer V1.0 23/12/2016 First final version after internal review Claudia Fösleitner Abstract This Deliverable is the first release of the Report on the development of the sensor fusion and vision based software modules. The report presents the INLANE sensor-data fusion and GNSS processing approach. This first report release presents the status of the development (tasks 2.1 and 2.5) at M12. Legal Disclaimer The information in this document is provided “as is”, and no guarantee or warranty is given that the information is fit for any particular purpose.
    [Show full text]
  • Multi-Sensor Perceptual System for Mobile Robot and Sensor Fusion-Based Localization
    2012 International Conference on Control, Automation and Information Sciences (ICCAIS) Multi-Sensor Perceptual System for Mobile Robot and Sensor Fusion-based Localization T. T. Hoang, P. M. Duong, N. T. T. Van, D. A. Viet and T. Q. Vinh Department of Electronics and Computer Engineering University of Engineering and Technology Vietnam National University, Hanoi Abstract - This paper presents an Extended Kalman Filter (EKF) dealing with Dirac delta function [1]. Al-Dhaher and Makesy approach to localize a mobile robot with two quadrature proposed a generic architecture that employed an standard encoders, a compass sensor, a laser range finder (LRF) and an Kalman filter and fuzzy logic techniques to adaptively omni-directional camera. The prediction step is performed by incorporate sensor measurements in a high accurate manner employing the kinematic model of the robot as well as estimating [2]. In [3], a Kalman filter update equation was developed to the input noise covariance matrix as being proportional to the obtain the correspondence of a line segment to a model, and wheel’s angular speed. At the correction step, the measurements this correspondence was then used to correct position from all sensors including incremental pulses of the encoders, line estimation. In [4], an extended Kalman filter was conducted to segments of the LRF, robot orientation of the compass and fuse the DGPS and odometry measurements for outdoor-robot deflection angular of the omni-directional camera are fused. navigation. Experiments in an indoor structured environment were implemented and the good localization results prove the In our work, one novel platform of mobile robot with some effectiveness and applicability of the algorithm.
    [Show full text]
  • Sensor Fusion and Deep Learning for Indoor Agent Localization
    Rochester Institute of Technology RIT Scholar Works Theses 6-2017 Sensor Fusion and Deep Learning for Indoor Agent Localization Jacob F. Lauzon [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Lauzon, Jacob F., "Sensor Fusion and Deep Learning for Indoor Agent Localization" (2017). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Sensor Fusion and Deep Learning for Indoor Agent Localization By Jacob F. Lauzon June 2017 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computer Engineering Approved by: Dr. Raymond Ptucha, Assistant Professor Date Thesis Advisor, Department of Computer Engineering Dr. Roy Melton, Principal Lecturer Date Committee Member, Department of Computer Engineering Dr. Andres Kwasinski, Associate Professor Date Committee Member, Department of Computer Engineering Department of Computer Engineering Acknowledgments Firstly, I would like to sincerely thank my advisor Dr. Raymond Ptucha for his unrelenting support throughout the entire process and for always pushing me to better my work and myself. Without him, and his mentorship, none of this would have been possible. I would also like to thank my committee, Dr. Roy Melton and Dr. Andres Kwasinski for their added support and flexibility. I also must thank the amazing team of people that I have worked with on the Milpet project, both past and present, that has dedicated many long hours to making the project a success.
    [Show full text]
  • An Overview of Iot Sensor Data Processing, Fusion, and Analysis Techniques
    sensors Review An Overview of IoT Sensor Data Processing, Fusion, and Analysis Techniques Rajalakshmi Krishnamurthi 1, Adarsh Kumar 2 , Dhanalekshmi Gopinathan 1, Anand Nayyar 3,4,* and Basit Qureshi 5 1 Department of Computer Science and Engineering, Jaypee Institute of Information Technology, Noida 201309, India; [email protected] (R.K.); [email protected] (D.G.) 2 School of Computer Science, University of Petroleum and Energy Studies, Dehradun 248007, India; [email protected] 3 Graduate School, Duy Tan University, Da Nang 550000, Vietnam 4 Faculty of Information Technology, Duy Tan University, Da Nang 550000, Vietnam 5 Department of Computer Science, Prince Sultan University, Riyadh 11586, Saudi Arabia; [email protected] * Correspondence: [email protected] Received: 21 August 2020; Accepted: 22 October 2020; Published: 26 October 2020 Abstract: In the recent era of the Internet of Things, the dominant role of sensors and the Internet provides a solution to a wide variety of real-life problems. Such applications include smart city, smart healthcare systems, smart building, smart transport and smart environment. However, the real-time IoT sensor data include several challenges, such as a deluge of unclean sensor data and a high resource-consumption cost. As such, this paper addresses how to process IoT sensor data, fusion with other data sources, and analyses to produce knowledgeable insight into hidden data patterns for rapid decision-making. This paper addresses the data processing techniques such as data denoising, data outlier detection, missing data imputation and data aggregation. Further, it elaborates on the necessity of data fusion and various data fusion methods such as direct fusion, associated feature extraction, and identity declaration data fusion.
    [Show full text]
  • Heterogeneous Sensor Fusion for Accurate State Estimation of Dynamic Legged Robots
    Heterogeneous Sensor Fusion for Accurate State Estimation of Dynamic Legged Robots Simona Nobili1∗, Marco Camurri2∗, Victor Barasuol2, Michele Focchi2, Darwin G. Caldwell2, Claudio Semini2 and Maurice Fallon3 1 School of Informatics, 2 Advanced Robotics Department, 3 Oxford Robotics Institute, University of Edinburgh, Istituto Italiano di Tecnologia, University of Oxford, Edinburgh, UK Genoa, Italy Oxford, UK [email protected] ffi[email protected] [email protected] Abstract—In this paper we present a system for the state estimation of a dynamically walking and trotting quadruped. The approach fuses four heterogeneous sensor sources (inertial, kinematic, stereo vision and LIDAR) to maintain an accurate and consistent estimate of the robot’s base link velocity and position in the presence of disturbances such as slips and missteps. We demonstrate the performance of our system, which is robust to changes in the structure and lighting of the environment, as well as the terrain over which the robot crosses. Our approach builds upon a modular inertial-driven Extended Kalman Filter which incorporates a rugged, probabilistic leg odometry component Fig. 1: Left: the Hydraulic Quadruped robot (HyQ) with the Carnegie with additional inputs from stereo visual odometry and LIDAR Robotics Multisense SL sensor head at the front. Right: the main registration. The simultaneous use of both stereo vision and coordinate frames used in this paper. LIDAR helps combat operational issues which occur in real applications. To the best of our knowledge, this paper is the first In this paper, we demonstrate how inertial, kinematic, stereo to discuss the complexity of consistent estimation of pose and ve- vision and LIDAR sensing can be combined to produce a locity states, as well as the fusion of multiple exteroceptive signal sources at largely different frequencies and latencies, in a manner modular, low-latency and high-frequency state estimate which which is acceptable for a quadruped’s feedback controller.
    [Show full text]
  • Utility of Sensor Fusion of GPS and Motion Sensor in Android Devices in GPS-Deprived Environment
    Utility of Sensor Fusion of GPS and Motion Sensor in Android Devices In GPS-Deprived Environment Suresh Shrestha, Amrit Karmacharya, Dipesh Suwal Introduction • The use of Global Positioning System (GPS) signals to deliver location based services • Implemented by smart phones • Smart city Introduction • antennae needs a clear view of the sky • GPS-deprived conditions – Urban settlements – Indoor(inside hotels,malls) Application in GPS • GPS accuracies of smart phones have not been studied nearly as thoroughly as typical GPS receivers • Median horizontal error in static outdoor environment is around 5.0 to 8.5 m. • In dense and crowded areas with more buildings it is even worse. • Most android devices are equipped with motion sensors • This can be used to complement GPS accuracy INS (Inertial Navigation System) • continuously updates the position, orientation and velocity of the moving object from motion sensor readings. • typically contain – gyroscope : measuring angular velocity – accelerometer : measuring linear acceleration • immune to jamming and deception Drawbacks of INS • Measurement of acceleration and angular velocity cannot be free of error. • Integration drift • unrestrained positioning errors in the absence of coordinate updates from external source • GPS can be used for updating • Solution – Hybrid Positioning System GPS INS integrate other non-GPS methods in GPS-denied environments in order to enhance the availability and robustness of positioning solutions Kalman Filter • Estimating Algorithm • uses a series of measurements (with some inaccuracies) observed over time • produce more precise estimates by reducing noise Algorithm • The algorithm works in a two-step process. – Prediction Phase: Kalman filter produces estimates of the current state variables, along with their uncertainties.
    [Show full text]
  • Sensor Fusion Using Fuzzy Logic Enhanced Kalman Filter for Autonomous Vehicle Guidance in Citrus Groves
    SENSOR FUSION USING FUZZY LOGIC ENHANCED KALMAN FILTER FOR AUTONOMOUS VEHICLE GUIDANCE IN CITRUS GROVES V. Subramanian, T. F. Burks, W. E. Dixon ABSTRACT. This article discusses the development of a sensor fusion system for guiding an autonomous vehicle through citrus grove alleyways. The sensor system for path finding consists of machine vision and laser radar. An inertial measurement unit (IMU) is used for detecting the tilt of the vehicle, and a speed sensor is used to find the travel speed. A fuzzy logic enhanced Kalman filter was developed to fuse the information from machine vision, laser radar, IMU, and speed sensor. The fused information is used to guide a vehicle. The algorithm was simulated and then implemented on a tractor guidance system. The guidance system's ability to navigate the vehicle at the middle of the path was first tested in a test path. Average errors of 1.9 cm at 3.1 m s-1 and 1.5 cm at 1.8 m s-1 were observed in the tests. A comparison was made between guiding the vehicle using the sensors independently and using fusion. Guidance based on sensor fusion was found to be more accurate than guidance using independent sensors. The guidance system was then tested in citrus grove alleyways, and average errors of 7.6 cm at 3.1 m s-1 and 9.1 cm at 1.8 m s-1 were observed. Visually, the navigation in the citrus grove alleyway was as good as human driving. Keywords. Autonomous vehicle, Fuzzy logic, Guidance, Kalman filter, Sensor fusion, Vision.
    [Show full text]
  • Deep Learning Sensor Fusion for Autonomous Vehicles Perception and Localization: a Review Jamil Fayyad, Mohammad a Jaradat, Dominique Gruyer, Homayoun Najjaran
    Deep Learning Sensor Fusion for Autonomous Vehicles Perception and Localization: A Review Jamil Fayyad, Mohammad A Jaradat, Dominique Gruyer, Homayoun Najjaran To cite this version: Jamil Fayyad, Mohammad A Jaradat, Dominique Gruyer, Homayoun Najjaran. Deep Learning Sensor Fusion for Autonomous Vehicles Perception and Localization: A Review. Sensors - special issue ”Sen- sor Data Fusion for Autonomous and Connected Driving”, 2020, 20 (15), 35p. 10.3390/s20154220. hal-02942600 HAL Id: hal-02942600 https://hal.archives-ouvertes.fr/hal-02942600 Submitted on 18 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. sensors Review Deep Learning Sensor Fusion for Autonomous Vehicle Perception and Localization: A Review Jamil Fayyad 1, Mohammad A. Jaradat 2,3, Dominique Gruyer 4 and Homayoun Najjaran 1,* 1 School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada; [email protected] 2 Department of Mechanical Engineering, American University of Sharjah, Sharjah, UAE; [email protected] 3 Department of Mechanical Engineering, Jordan University of Science & Technology, Irbid 22110, Jordan 4 PICS-L, COSYS, University Gustave Eiffel, IFSTTAR, 25 allée des Marronniers, 78000 Versailles, France; dominique.gruyer@univ-eiffel.fr * Correspondence: [email protected] Received: 16 June 2020; Accepted: 24 July 2020; Published: 29 July 2020 Abstract: Autonomous vehicles (AV) are expected to improve, reshape, and revolutionize the future of ground transportation.
    [Show full text]
  • Freescale Sensor Fusion Library for Kinetis Mcus Updated for Freescale Sensor Fusion Release 5.00
    Freescale Semiconductor Document Number: FSFLK_DS DATA SHEET: PRODUCT PREVIEW Rev. 0.7, 9/2015 Freescale Sensor Fusion Library for Kinetis MCUs Updated for Freescale Sensor Fusion Release 5.00 Contents 1 Introduction .................................................................................................................................... 3 2 Functional Overview ...................................................................................................................... 6 2.1 Introduction ............................................................................................................................... 6 2.2 Accelerometer Only .................................................................................................................. 6 2.3 Accelerometer Plus Magnetometer ........................................................................................... 7 2.4 Accelerometer Plus Gyroscope ................................................................................................. 7 2.5 Accelerometer Plus Magnetometer Plus Gyroscope ................................................................. 7 3 Additional Support ......................................................................................................................... 8 3.1 Freescale Sensor Fusion Toolbox for Android .......................................................................... 9 3.2 Freescale Sensor Fusion Toolbox for Windows ........................................................................ 9 3.3
    [Show full text]
  • Sensor Fusion
    RD02: Sensor Fusion for System Wellbeing (Sensor Fusion 101) Learning Objectives You will learn: • What is sensor fusion • Sensor Tradeoffs • Frames of Reference • Introduction to Sensor Fusion, focusing on motion sensors – Magnetic Calibration – Electronic Compass – Separating gravity and linear acceleration – Virtual Gyro – Kalman Filters • Review & Wrap-up About Me • Michael Stanley • Formal training is in electrical engineering • B.S.E. from Michigan State, 1980 • MS from Arizona State 1986 • Employed at Motorola / Freescale Semiconductor from June 1980 to the present, where I’ve had multiple careers. Most recently: • SoC Integration / MCU Architecture • Sensors Architecture / Algorithms / Product Definition • basically, solving systems level problems • I blog on sensor related topics at •http://www.freescale.com/blogs/mikestanley and http://memsblog.wordpress.com/ • Email = [email protected] What is sensor fusion? Sensor fusion encompasses a variety of techniques which can: • Trade off strengths and weaknesses of the various sensors to compute something more than can be calculated using the individual components; • Improve the quality and noise level of computed results by taking advantage of: • Known data redundancies between sensors • Knowledge of system transfer functions, dynamics and/or kinematics Sensor Fusion is Everywhere • Google augmented reality headset photo from: http://commons.wikimedia.org/wiki/File:Google_Glass_Explorer_Edition.jpeg • Image of Surface Windows 8 Pro with Type Cover used with permission of
    [Show full text]
  • Intelligent Real-Time MEMS Sensor Fusion and Calibration," in IEEE Sensors Journal, Vol
    This is the accepted version of the manuscript: D. Nemec, A. Janota, M. Hruboš and V. Šimák, "Intelligent Real-Time MEMS Sensor Fusion and Calibration," in IEEE Sensors Journal, vol. 16, no. 19, pp. 7150-7160, Oct.1, 2016, doi: 10.1109/JSEN.2016.2597292, URL: http://ieeexplore.ieee.org/document/7529156 Intelligent real-time MEMS sensor fusion and calibration Dušan Nemec, Aleš Janota, Marián Hruboš, and Vojtech Šimák example of velocity measurement when the sensor is Abstract—This paper discusses an innovative adaptive measuring time derivative of desired variable. Main heterogeneous fusion algorithm based on estimation of the mean disadvantage of this method is great sensitivity of the output square error of all variables used in real time processing. The quality to the precision of the sensor measurements (especially algorithm is designed for a fusion between derivative and sensor bias will cause increasing drift of the integrated result). absolute sensors and is explained by the fusion of the 3-axial gyroscope, 3-axial accelerometer and 3-axial magnetometer into First step of elimination of the integrated error is calibration of attitude and heading estimation. Our algorithm has similar error the sensor. A standard way of calibration measures raw output performance in the steady state but much faster dynamic of the sensor as a response to stimulus with known amplitude. response compared to the fixed-gain fusion algorithm. In Relation between raw and real sensor outputs is formed into comparison with the extended Kalman filter the proposed the transfer function (calibration curve) and its parameters are algorithm converges faster and takes less computational time.
    [Show full text]