Process for the Preparation of Dodecanedioic Acid

Total Page:16

File Type:pdf, Size:1020Kb

Process for the Preparation of Dodecanedioic Acid (19) & (11) EP 2 407 444 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 18.01.2012 Bulletin 2012/03 C07C 29/16 (2006.01) C07C 31/133 (2006.01) C07C 45/53 (2006.01) C07C 49/413 (2006.01) (2006.01) (2006.01) (21) Application number: 11173087.5 C07C 51/31 C07C 53/126 (22) Date of filing: 18.03.2009 (84) Designated Contracting States: (72) Inventor: Rajendran, Gurusamy AT BE BG CH CY CZ DE DK EE ES FI FR GB GR League City, TX 77573 (US) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR (74) Representative: Cockerton, Bruce Roger Carpmaels & Ransford (30) Priority: 19.03.2008 US 37861 P One Southampton Row London (62) Document number(s) of the earlier application(s) in WC1B 5HA (GB) accordance with Art. 76 EPC: 09721453.0 / 2 257 516 Remarks: This application was filed on 07-07-2011 as a (71) Applicant: Invista Technologies S.a r.l. divisional application to the application mentioned 9000 St. Gallen (CH) under INID code 62. (54) Process for the preparation of dodecanedioic acid (57) The present disclosure provides processes for the preparation of dodecanedioic acid (DDDA) EP 2 407 444 A2 Printed by Jouve, 75001 PARIS (FR) EP 2 407 444 A2 Description CROSS-REFERENCE TO RELATED APPLICATION 5 [0001] This application claims priority to U.S. provisional application entitled, "CYCLODODECATRIENE AND CHEM- ICAL PROCESS", having serial number 61/037,861, filed on March 19, 2008, which is entirely incorporated herein by reference. FIELD OF THE INVENTION 10 [0002] The disclosure herein relates to a process for forming a mixture containing dodecanedioic acid (DDDA). BACKGROUND 15 [0003] It is known to produce dodecanedioic acid (DDDA) using a chemical process starting with the conversion of 1,3-butadiene (trimerization) to 1,5,9-cyclododecatriene (CDDT). This trimerization process employs a Ziegler-Natta catalyst (TiCl4 and aluminum chloride) and mild 70 to 80°C conditions at ca. 2 bar pressure absolute. Followed by reduction of the CDDT to cyclododecane using hydrogen and Raney Nickel catalyst at 170 to 180°C and 26 - 28 bar pressure absolute, the cyclododecane is oxidized with air to a mixture comprising cyclododecanol (CDDA) and cyclodo- 20 decanone (CDDK) in the presence of a boric acid catalyst at 160 to 180°C and 1 - 2 bar pressure absolute. The CDDK and CDDA mixture contains about 80-90% CDDA and 10-20% CDDK. This mixture is oxidized using nitric acid and catalysts comprising copper and vanadium to obtain a mixture comprising DDDA. SUMMARY 25 [0004] Briefly described, embodiments of this disclosure include processes of making dodecanedioic acid (DDDA), and the like. One exemplary process for making dodecanedioic acid, among others, includes: contacting 1,3-butadiene with a first catalyst and forming cyclododeca-1,5,9-triene; oxidizing the cyclododeca-1,5,9-triene using an oxygen con- taining reagent to form epoxycyclododeca-5,9-diene, converting the epoxycyclododeca-5,9-diene into a first mixture 30 comprising cyclododecanol and cyclododecanone; and contacting the first mixture with reactants comprising a third catalyst and nitric acid to form a second mixture comprising dodecanedioic acid. [0005] One exemplary process for making laurolactone, among others, includes: providing a reaction vessel including a solution of cyclododecanone (CDDK) that is dissolved in about an equal weight of an acid anhydride; providing to the vessel an acid catalyst in an amount effective to promote the reaction, wherein the acid catalyst is selected on the basis 35 of its pKa such that its pKa is about 0 to about 5; and introducing hydrogen peroxide to the reaction vessel to promote the Baeyer-Villiger oxidation, wherein about 20% or more of the cyclododecanone (CDDK) is converted to laurolactone. [0006] One exemplary process for making laurolactone, among others, includes: contacting 1,3- butadiene with a first catalyst and forming cyclododeca-1,5,9-triene; oxidizing the cyclododeca-1,5,9-triene using an oxygen containing rea- gent to form epoxycyclododeca-5,9-diene, converting the epoxycyclododeca-5,9-diene into a first mixture comprising 40 cyclododecanol and cyclododecanone; disposing the cyclododecanone (CDDK) from the first mixture in a reaction vessel, wherein the CDDK is dissolved in about an equal weight of an acid anhydride; providing to the vessel an acid catalyst in an amount effective to promote the reaction, wherein the acid catalyst is selected on the basis of its pK a such that its pKa is about 0 to about 5; and introducing hydrogen peroxide to the reaction vessel to promote the Baeyer-Villiger oxidation, wherein about 20% or more of the (CDDK) is converted to laurolactone. 45 DETAILED DESCRIPTION [0007] Before the present disclosure is described in greater detail, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology 50 used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims. [0008] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although any methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, the 55 preferred methods and materials are now described. [0009] All publications and patents cited in this specification are herein incorporated by reference as if each individual publication or patent were specifically and individually indicated to be incorporated by reference and are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are 2 EP 2 407 444 A2 cited. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admissi on that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided could be different from the actual publication dates that may need to be independently confirmed. [0010] Embodiments of the present disclosure will employ, unless otherwise indicated, techniques of chemistry, chem- 5 ical engineering, and the like, which are within the skill of the art. Such techniques are explained fully in the literature. [0011] It must be noted that, as used in the specification and the appended claims, the singular forms "a", "an", and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a support" includes a plurality of supports. In this specification and in the claims that follow, reference will be made to a number of terms that shall be defined to have the following meanings unless a contrary intention is apparent. 10 Discussion [0012] Embodiments of the present disclosure provide for a process for making dodecanedioic acid (DDDA). Embod- iments of the present disclosure may have certain advantages in energy consumption versus other methods. In general, 15 embodiments of the present disclosure require less energy in the conversion of cyclododeca-1,5,9-triene to cyclodo- decanol (CDDA) or cyclododecanone (CDDK) in comparison to a process disclosed by Welton in his U.S. Patent Number 3,607,948 (assigned to E. I. du Pont de Nemours and Co.); the disclosure of Welton are herein incorporated by reference in their entirety. [0013] In general, embodiments of this disclosure relate to processes for the preparation of dodecanedioic acid (DDDA) 20 by oxidizing cyclododeca-1,5,9-triene with an oxygen containing reagent to form epoxycyclododeca-5,9-diene, forming a mixture containing cyclododecanol and cyclododecanone, and oxidizing the mixture with nitric acid to form a DDDA containing mixture of diacids. [0014] Embodiments of this disclosure relate to processes of chemical transformation employing the steps of polym- erizing (trimerization) of 1,3-butadiene to cyclododeca-1,5,9-triene, which is subsequently oxidized to form epoxycy- 25 clododeca-5,9-diene. Then, epoxycyclododeca-5,9-diene is converted by selective reduction and/or rearrangement to a first mixture containing cyclododecanol (CDDA) and cyclododecanone (CDDK). Next, the first mixture is oxidized to a second mixture comprising dodecanedioic acid (DDDA). Reduction of the cyclododeca-1,5,9-triene (CDDT) to cy- clododecane with hydrogen over a heterogeneous Raney Nickel catalyst is not performed in this process and no catalyst is employed in the intermediate steps of this transformation as compared with the known method of employing air 30 oxidation in the presence of boric acid. Ways to perform the oxidation of cyclododeca- 1,5,9-triene to the epoxycyclodo- deca-5,9-diene are known from T. Sridharet al. (Department of Chemical Engineering, Monash University, Victoria 3800, Australia) found in Ind. Eng. Chem. Res., 46 (10), 3057 -3062, 2007 "Uncatalyzed Oxidation of 1,5,9-Cyclodo- decatriene with Molecular Oxygen." [0015] In an embodiment, the process includes contacting 3-butadiene (BD) with a first Ziegler-Natta type catalyst 35 effective for trimerizing BD and forming cyclododeca-1,5,9-triene (CDDT). Next, the process includes oxidizing the cyclododeca-1,5,9-triene (CDDT), using an oxygen containing reagent, to form epoxycyclododeca- 5,9-diene (ECDDD). In an embodiment, the oxidization can be conducted in the presence of a second catalyst. Subsequently, the process includes converting epoxycyclododeca- 5,9-diene (ECDDD) into a first mixture comprising cyclododecanol (CDDA) ( e.g., about 30% to 70% of the first mixture) and cyclododecanone (CDDK) ( e.g., about 70% to 30% of the first mixture).
Recommended publications
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • 1 Transformer Oil 2 Residual Fuel Oil 3 Diesel Oil Heavy 4
    1 TRANSFORMER OIL 2 RESIDUAL FUEL OIL 3 DIESEL OIL HEAVY 4 SPINDLE OIL MIXTURES CONTAINING 5 CRUDE OIL 6 MOTOR OIL 7 ROAD OIL 8 FUEL OIL NO.4 9 FUEL OIL NO.5 10 FUEL OIL NO.6 LUBRICATING OILS AND 11 BLENDING STOCKS 12 PENETRATING OIL 13 TURBINE OIL 3 14 ROOFERS FLUX 15 CRUDE OIL 16 STRAIGHT RUN RESIDUE OCTAMETHYLCYCLOTETRA 17 SILOXANE BENZENEPROPANOIC ACID, 3,5- 1,1- 3,5-BIS(1,1-DIMETHYLETHYL 18 4- ), -C7-C9 4-HYDROXY-C7-C9ALCOHOL S BRANCHED AND LINEAR 19 1- -1- 1-PHENYL-1-XYLYL ETHANE BENZENETRICARBOXYLIC 20 ACID, TRIOCTYL ESTER 21 CASTOR OIL IMIDAZOLIUM COMPOUNDS, 1- -4,5- -1- 1-BENZYL-4,5-DIHYDRO-1-(H 22 -2- YDROXYETHYL)-2-NORCOC O ALKYL, CHLORIDES 4 2-PROPENOIC ACID 2- POLYMER WITH 4- 1,1- 4-(1,1-DIMETHYLETHYL)PHE 2,5- NOL,FORMALDEHYDE, 23 2- 2,5-FURANDIONE, 65% / 2-METHYLOXIRANE AND OXIRANE (65% IN NAPHTHA/XYLENE) 24 n-PENTYL PROPIONATE 25 -2- 2-ETHYLHEXYL ACRYLATE 26 DECYL ACRYLATE 27 RAPESEED OIL RAPESEED OIL (low erucic acid 4% 28 containing less than 4% free fatty acids) RAPE SEED OIL FATTY ACID 29 METHYL ESTERS ALCOHOLS (C12-C13), C12-C13 30 PRIMARY, LINEAR AND ESSENTIALLY LINEAR 31 C13+ ALCOHOLS (C13+) 5 ALCOHOLS (C14-C18), C14-C18 32 PRIMARY, LINEAR AND ESSENTIALLY LINEAR ALCOHOLS (C8-C11), C8-C11 33 PRIMARY, LINEAR AND ESSENTIALLY LINEAR ACID OIL MIXTURE FROM SOYABEAN, CORN (maize) 34 AND SUNFLOWER OIL REFINING NAPHTHALENE CRUDE 35 (MOLTEN) 36 SOYABEAN OIL SOYBEAN OIL FATTY ACID 37 METHYL ESTER 38 BUTYLBENZENE (all isomers) 39 TALLOW 40 TALLOW FATTY ACID (2- BIS(2-ETHYLHEXYL) 41 ) TEREPHTHALATE 42 -(2- ) DI-(2-ETHYLHEXYL)
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) NASA CR - 159480 EXXON/GRUS. 1KWD. 78 NIGH PERFORMANCE, HIGH DENSITY HYDROCARBON FUELS J. W. Frankenfeld, T. W. Hastings, M. Lieberman and W. F. Taylor EXXON RESEARCH AND ENGINEERING COMPANY prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA-CR-159''PO) HIGH PEPPOFMANCF, HIGH V79-20267 DENSTTv HYDR I-CARBON FTIELS (Exxon P.esearch and Engineering Co.) 239 rp HC A11/MF A01 CSCL 21D 'Inclas G3/28 19456 NASA Lewis Research Center Contract NAS 3-20394 Qnr{l,,Y^ ^'Pr I€ ^i NASA CR - 159480 EXXON/GRUS . 1KWD . 78 L: HIGH PERFORMANCE, HIGH DENSITY HYDROCARBON FUELS J. W. Frankenfeld, T. W. Hastings, M. Lieberman and W. F. Taylor EXXON RESEARCH AND ENGINEERING COMPANY prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Lewis Research Center Contract NAS 3-20394 FOREWARD The research described in this report was performed at Exxon Research and Engineering Company, Linden, New Jersey and Contract NAS 320394 with Mr.
    [Show full text]
  • Dibasic Acids for Nylon Manufacture
    - e Report No. 75 DIBASIC ACIDS FOR NYLON MANUFACTURE by YEN-CHEN YEN October 1971 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA CONTENTS INTRODUCTION, ....................... 1 SUMMARY .......................... 3 General Aspects ...................... 3 Technical Aspects ..................... 7 INDUSTRY STATUS ...................... 15 Applications and Consumption of Sebacic Acid ........ 15 Applications and Consumption of Azelaic Acid ........ 16 Applications of Dodecanedioic and Suberic Acids ...... 16 Applications of Cyclododecatriene and Cyclooctadiene .... 17 Producers ......................... 17 Prices ........................... 18 DIBASIC ACIDS FOR MANUFACTURE OF POLYAMIDES ........ 21 CYCLOOLIGOMERIZATIONOF BUTADIENE ............. 29 Chemistry ......................... 29 Ziegler Catalyst ..................... 30 Nickel Catalyst ..................... 33 Other Catalysts ..................... 34 Co-Cyclooligomerization ................. 34 Mechanism ........................ 35 By-products and Impurities ................ 37 Review of Processes .................... 38 A Process for Manufacture of Cyclododecatriene ....... 54 Process Description ................... 54 Process Discussion .................... 60 Cost Estimates ...................... 60 A Process for Manufacture of Cyclooctadiene ........ 65 Process Description ................... 65 Process Discussion .................... 70 Cost Estimates ...................... 70 A Process for Manufacture of Cyclodecadiene
    [Show full text]
  • Transparent Amorphous Polyamides Based on Diamines and on Tetradecanedioic Acid
    Europäisches Patentamt *EP001595907A1* (19) European Patent Office Office européen des brevets (11) EP 1 595 907 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: C08G 69/02, C08G 69/26, 16.11.2005 Bulletin 2005/46 C08L 77/00, C08L 77/06 (21) Application number: 05290988.4 (22) Date of filing: 09.05.2005 (84) Designated Contracting States: • Bussi, Philippe AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 78000 Versailles (FR) HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR • Blondel, Philippe Designated Extension States: 27300 Bernay (FR) AL BA HR LV MK YU (74) Representative: Neel, Henry (30) Priority: 14.05.2004 FR 0405259 ARKEMA Département Propriété Industrielle (71) Applicant: Arkema 4-8, cours Michelet, 92800 Puteaux (FR) La Défense 10 92091 Paris La Défense Cedex (FR) (72) Inventors: • Linemann, Annett 27550 Nassandres (FR) (54) Transparent amorphous polyamides based on diamines and on tetradecanedioic acid (57) The present invention relates to a transparent prising, by weight, 1 to 100% of the preceding polyamide amorphous polyamide which results from the conden- and 99 to 0% of a semicrystalline polyamide. sation: The invention also relates to the objects composed of the composition of the invention, such as panels, • of at least one diamine chosen from aromatic, ary- films, sheets, pipes, profiles or objects obtained by in- laliphatic and cycloaliphatic diamines, jection moulding. • of tetradecanedioic acid or of a mixture comprising The invention also relates to objects covered with a at least 50 mol% of tetradecanedioic acid and at transparent protective layer composed of the composi- least one diacid chosen from aliphatic, aromatic and tion of the invention.
    [Show full text]
  • Production of Malonic Acid Through the Fermentation of Glucose
    University of Pennsylvania ScholarlyCommons Department of Chemical & Biomolecular Senior Design Reports (CBE) Engineering 4-20-2018 Production of Malonic Acid through the Fermentation of Glucose Emily P. Peters University of Pennsylvania, [email protected] Gabrielle J. Schlakman University of Pennsylvania, [email protected] Elise N. Yang University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cbe_sdr Part of the Biochemical and Biomolecular Engineering Commons Peters, Emily P.; Schlakman, Gabrielle J.; and Yang, Elise N., "Production of Malonic Acid through the Fermentation of Glucose" (2018). Senior Design Reports (CBE). 107. https://repository.upenn.edu/cbe_sdr/107 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cbe_sdr/107 For more information, please contact [email protected]. Production of Malonic Acid through the Fermentation of Glucose Abstract The overall process to produce malonic acid has not drastically changed in the past 50 years. The current process is damaging to the environment and costly, requiring high market prices. Lygos, Inc., a lab in Berkeley, California, has published a patent describing a way to produce malonic acid through the biological fermentation of genetically modified easty cells. This proposed technology is appealing as it is both better for the environment and economically friendly. For the process discussed in this report, genetically modified Pichia Kudriavzevii yeast cells will be purchased from the Lygos lab along with the negotiation of exclusive licensing rights to the technology. The cells will be grown in fermentation vessels, while being constantly fed oxygen, glucose and fermentation media. The cells will excrete malonic acid in the 101 hour fermentation process.
    [Show full text]
  • Flammable Liquids and Solids Chemical Class Standard Operating Procedure
    1 Flammable Liquids and Solids Chemical Class Standard Operating Procedure Flammable Liquids and Solids H224 H225 H226 H227 H228 This SOP is not a substitute for hands-on training. Print a copy and insert into your laboratory SOP binder. Department: Chemistry Date SOP was written: Thursday, July 1, 2021 Date SOP was approved by PI/lab supervisor: Thursday, July 1, 2021 Name: F. Fischer Principal Investigator: Signature: ______________________________ Name: Matthew Rollings Internal Lab Safety Coordinator or Lab Manager: Lab Phone: 510.301.1058 Office Phone: 510.643.7205 Name: Felix Fischer Emergency Contact: Phone Number: 510.643.7205 Tan Hall 674, 675, 676, 679, 680, 683, 684 Location(s) covered by this SOP: Hildebrand Hall: D61, D32 1. Purpose This SOP covers the precautions and safe handling procedures for the use of Flammable Liquids and Solids. For a list of Flammable Liquids and Solids covered by this SOP and their use(s), see “List of Chemicals”. Procedures described in Section 12 apply to all materials covered in this SOP. A change to the “List of Chemicals” does not constitute a change in the SOP requiring review or retraining. If you have questions concerning the applicability of any recommendation or requirement listed in this procedure, contact the Principal Investigator/Laboratory Supervisor or the campus Chemical Hygiene Officer at [email protected]. Rev. Date: 2021-06-29 2 Flammable Liquids and Solids Chemical Class Standard Operating Procedure 2. Physical & Chemical Properties/Definition of Chemical Group Flammable liquid means a liquid having a flash point1 of not more than 199.4 °F (93 °C).
    [Show full text]
  • Federal Register / Vol. 60, No. 123 / Tuesday, June 27, 1995 / Notices 33203
    Federal Register / Vol. 60, No. 123 / Tuesday, June 27, 1995 / Notices 33203 Chemical Substances Removed from the TSCA Inventory CASRN CAS Index Name 67989±80±4 1,3-Benzenedicarboxylic acid, polymer with 2-(dimethylamino)ethanol, 2,2-dimethyl-1,3- propanediol, 2,2-dimethylpropanoic acid and nonanedioic acid 68002±78±8 Fatty acids, C16-18 and C18-unsatd., triesters with trimethylolpropane 68479±21±0 Poly(oxy-1,2-ethanediyl), α-hydro-ω-hydroxy-, ether with N-[2-[bis(2- hydroxyethyl)methylammonio]ethyl]-N,N'-bis(2-hydroxyethyl)-N'-[2-hydroxy-3-(9- octadecenyloxy)propyl]-N,N'-dimethyl-1,2-ethanediaminium tris(methyl sulfate) (4:1), (Z)- 68551±46±2 Carboxylic acids, C6-18 and C9-15-di-, polymers with adipic acid, ethylene glycol, glutaric acid and succinic acid, 2-ethylhexyl esters 68607±79±4 Silica gel, reaction products with chlorodimethyloctylsilane 68610±78±6 Acetic acid, anhydride, reaction products with boron trifluoride and 1,5,9-trimethyl-1,5,9- cyclododecatriene 68814±84±6 Fatty acids, tall-oil, polymers with isophthalic acid and 1,3,5-tris(2-hydroxyethyl)-1,3,5-triazine- 2,4,6(1H,3H,5H)-trione 68958±73±6 Hexanedioic acid, polymer with 1,6-diisocyanato-2,2,4-trimethylhexane, oxybis[propanol] and α,α',α''-1,2,3-propanetriyltris[ω-hydroxypoly[oxy(methyl-1,2-ethanediyl)]] 70528±75±5 Cashew, nutshell liq., polymer with formaldehyde, linseed oil and phenol 71243±48±6 Amines, C14-18 and C16-18-unsatd. alkyl, ethoxylated, compds. with polyethylene glycol mono(nonylphenyl) ether phosphate 71735±58±5 Chromate(2-), [1-[(5-chloro-2-hydroxyphenyl)azo]-2-naphthalenolato(2-)][3-hydroxy-4-[(2- hydroxy-3,5-dinitrophenyl)azo]-7-[(4-methoxyphenyl)amino]-2-naphthalenesulfonato(3-)]-, disodium 71735±65±4 Cuprate(4-), [8-hydroxy-7-[[2-hydroxy-7-sulfo-6-[[4-[(2,5,6-trichloro-4- pyrimidinyl)amino]phenyl]azo]-1-naphthalenyl]azo]-1,3,6-naphthalenetrisulfonato(6-)]-, tetrasodium 72245±32±0 Propanoic acid, 2-hydroxy-, compds.
    [Show full text]
  • Accuracy and Methodologic Challenges of Volatile Organic Compound–Based Exhaled Breath Tests for Cancer Diagnosis: a Systematic Review and Pooled Analysis
    1 Supplementary Online Content Hanna GB, Boshier PR, Markar SR, Romano A. Accuracy and Methodologic Challenges of Volatile Organic Compound–Based Exhaled Breath Tests for Cancer Diagnosis: A Systematic Review and Pooled Analysis. JAMA Oncol. Published online August 16, 2018. doi:10.1001/jamaoncol.2018.2815 Supplement. eTable 1. Search strategy for cancer systematic review eTable 2. Modification of QUADAS-2 assessment tools eTable 3. QUADAS-2 results eTable 6. STARD assessment of each study eTable 7. Summary of factors reported to influence levels of volatile organic compounds within exhaled breath eFigure 1. Risk of bias and applicability concerns using QUADAS-2 eFigure 2. PRISMA flowchart of literature search eTable 4. Details of studies on exhaled volatile organic compounds in cancer eTable 5. Cancer VOCs in exhaled breath and their chemical class. eFigure 3. Chemical classes of VOCs reported in different tumor sites. This supplementary material has been provided by the authors to give readers additional information about their work. © 2018 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 2 eTable 1. Search strategy for cancer systematic review # Search 1 (cancer or neoplasm* or malignancy).ab. 2 limit 1 to abstracts 3 limit 2 to cochrane library [Limit not valid in Ovid MEDLINE(R),Ovid MEDLINE(R) Daily Update,Ovid MEDLINE(R) In-Process,Ovid MEDLINE(R) Publisher; records were retained] 4 limit 3 to english language 5 limit 4 to human 6 limit 5 to yr="2000 -Current" 7 limit 6 to humans 8 (cancer or neoplasm* or malignancy).ti. 9 limit 8 to abstracts 10 limit 9 to cochrane library [Limit not valid in Ovid MEDLINE(R),Ovid MEDLINE(R) Daily Update,Ovid MEDLINE(R) In-Process,Ovid MEDLINE(R) Publisher; records were retained] 11 limit 10 to english language 12 limit 11 to human 13 limit 12 to yr="2000 -Current" 14 limit 13 to humans 15 7 or 14 16 (volatile organic compound* or VOC* or Breath or Exhaled).ab.
    [Show full text]
  • United States Patent Office Patented Oct
    3,842,045 United States Patent Office Patented Oct. 15, 1974 1. 2 about 45 to 75 mole percent, preferably about 50 to 70 3,842,045 mole percent, dodecanedioic acid and about 25 to 55 mole AMORPHOUS POLYAMIDES FROM BIS(4-AMNO percent, preferably about 30 to 50 mole percent, suberic CYCLOHEXYL)METHANE AND A MIXTURE OF and/or azelaic acid. A particularly outstanding property STRAIGHT CHAN DICARBOXYLIC ACDS Robert W. Campbell, Bartlesville, Okla., assignor to of these polyamides is toughness, as evidenced by the high Phillips Petroleum Company values obtained for tensile elongation and Izod impact No Drawing. Filed July 5, 1972, Ser. No. 269,095 strength. Although the polyamides of this invention are Int. C. C08g 20/20 especially valuable as molding resins, they also can be U.S. C. 260- 78 R 8 Claims used in the production of fibers. The low permeability of 10 the polyamides to gases makes them useful as packaging materials. The bis(4-aminocyclohexyl)methane suitable ABSTRACT OF THE DISCLOSURE for use in this invention can be represented by the for Substantially amorphous, optically clear polyamides mula: are produced from bis(4-aminocyclohexyl)methane (PACM) and a mixture of straight chain dicarboxylic 15 H acids comprising dodecanedioic acid and at least one of suberic and azelaic acids. The resulting polymers are useful as fibers as well as molding resins. Although any of the geometric isomers or mixtures there of can be employed, it is preferred that at least 40 percent This invention relates to production of polyamides. In 20 of the PACM be of the trans,trans configuration.
    [Show full text]
  • Overview and Assessment of Priority Substances Globally and Regionally Addressed and Related Emission Limit Value (Elvs)
    UNEP(DEPI)/MED WG. 328/Inf. 1 10 November 2008 ENGLISH MEDITERRANEAN ACTION PLAN MED POL Meeting on the Implementation of NAPs and the Preparation of Legally Binding Measures and Timetables required by Art. 15 of the LBS Protocol Aix-en-Provence (France), 27-28 November 2008 Overview and assessment of priority substances globally and regionally addressed and related Emission Limit Value (ELVs) Background document UNEP/MAP Athens, 2008 Table of Contents 1. INTRODUCTION..................................................................................................... 1 1.1 BACKGROUND................................................................................................... 1 1.2 OBJECTIVES AND SCOPE ................................................................................... 1 2. SUBSTANCES OF CONCERN IN THE MARINE ENVIRONMENT ....................... 2 2.1 ADDRESSING SUBSTANCES OF CONCERN IN THE MEDITERRANEAN: THE LBS PROTOCOL AND THE SAP ............................................................................................. 2 2.2 IDENTIFICATION OF PRIORITY SUBSTANCES: INTERNATIONAL COMPARISON.......... 3 2.2.1 European Union .......................................................................................... 4 2.2.1.1 First initiatives protect the aquatic environment from dangerous substances.......................................................................................................... 4 2.2.1.2 The Water Framework Directive (WFD).............................................. 5 2.2.1.3 The Marine
    [Show full text]
  • The Synthesis of a Water-Soluble Molecule
    THE SYNTHESIS OF A WATER-SOLUBLE MOLECULE CONTAINING A HYDROPHOBIC CAVITY by W. HARRY MANDEVILLE B. S. Colorado School of Mines (1971) SUBMITTED IN PARTIAL FULFILLMENT OF'THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY May 16, 1975 Signature of Author / Department of Chemistry May , 1975 Certified by K Thesis Supervisor Accepted by --~~~~~~~~~ ( Chairman, Departmental ARCHIVES Committee JUN 11 1975 -2- This Doctoral. Thesis has been examined by a committee of the Department of Chemistry as follows: Professor Dietmar Seyferth I/ Chairman Professor George MI.Whitesides \K. u- '|Thesis Supervisor Professor K. Barry Sharpless -3- to SUSIE... 143 for CHRISTMAS and SNOW and to MY PARENTS -4- "You know how when you stand in the rain with your mouth open how rarely the raindrops hit your tongue... Chemistry is a lot like that. I like standing in the rain." April 30, 1975 -5- THE SYNTHESIS of a WATER-SOLUBLE MOLECULE CONTAINING a HYDROPHOBIC CAVITY by W. Harry Mandeville Submitted to the Department of Chemistry at the Massachusetts Institute of Technology, May 16, 1975, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ABSTRACT Part I: The Synthesis of a Water-Soluble Molecule Containing a Hydrophobic Cavity The syntheses and characterization of three macrocyclic compounds, cyclohexatriaconta[l,2,13,14,25,26-b,b',b"]tris- quinoxaline (1) cyclohexatriaconta[l,2,13,14,25,26-b,b',b"] tris(diethyl 1H,3H,2-oxoimadazo[4,5-g]quinoxalino-l,3-di- a-acetate) (2) and cyclopentatetraconta[1,2,16,17,31,32-b, b',b"]trisqu'lnoxaline (3 are described.
    [Show full text]