Organocatalysis and Biocatalysis Hand in Hand: Combining Catalysts

Total Page:16

File Type:pdf, Size:1020Kb

Organocatalysis and Biocatalysis Hand in Hand: Combining Catalysts REVIEWS DOI:10.1002/adsc.201700158 Organocatalysis and Biocatalysis Hand in Hand:Combining Catalysts in One-Pot Procedures Fabricio R. Bisogno,a,*MartínG.López-Vidal,a and Gonzalo de Gonzalob,* a Facultad de CienciasQuímicas,Instituto de Investigaciones en Físico-Química Córdoba(INFIQC-CONICET), Universidad Nacional de Córdoba, 5000 Córdoba, Argentina E-mail:[email protected] b Departamento de QuímicaOrgµnica, Universidad de Sevilla, c/ Profesor GarcíaGonzµlez 1, 41012 Sevilla, Spain E-mail:[email protected] Received:February 8, 2017; Revised:April 5, 2017;Publishedonline:May 11, 2017 DedicatedtoProf.Vicente Gotoronthe occasion of his 70th birthday. Abstract: Multi-stepprocesses catalysed by several 1Introduction catalysts working concurrently have been developed 2Sequential Reactions Employing Organocata- in nature,thusimproving reactionefficiency.The lysts and Biocatalysts quest for novel and improvedcatalytic systems has 3Simultaneous One-Pot ProcessesCombining led to the development of biocatalytic and later to Organocatalysts and Biocatalysts organocatalytic procedures as very valuable tools in 4One-Pot ProcessesCombining Biocatalysts and asymmetric synthesis while using mild reactioncon- Non-TraditionalOrganic Catalysts ditionsinthe absence of metal catalysts.Asatimeless 4.1 Reactions Catalysed by Enzymesand Base Cat- challenge,chemists are facing the need for process alysts designs in which different sorts of catalysts can oper- 4.2 Enzymatic Regeneration of aRedox Catalyst ate successfully in aone-pot concurrentfashion. in aOne-Pot Procedure Likewise,such designs bring about the best of each 4.3 One-Pot Catalytic CombinedRedox Processes catalyst and, in certain cases,enable us to improve Driven by Light problematic issues,such as reactivity,selectivity,solu- 5Outlook bility,inhibition, etc. Specifically, to combine these two types of catalysts in one-pot, achieving high yields and selectivity,isafascinating aspect of cataly- sis.Thisreview covers representativeadvancesin this field, in particular those in which biocatalysts Keywords: concurrent processes;enantioselectivity; and organocatalysts are employed either in sequen- enzyme catalysis;multistep synthesis;one-pot proce- tial reactions or in simultaneous processes. dures;organic catalysis 1Introduction of one reactionisthe substrate of the following one, avoiding intermediate accumulation and, therefore, In nature,the optimisationofagiven process is side reactions.[1] driven by evolutionary pressures.Resource- and Often, chemists employconsecutive multistep energy-savingmaximisation became evolutionary chemical synthesiswith catalytically efficientreactions pressures; hence,cellular machineries,i.e.,enzymatic thus improving the overall“atom economy” of the networks dedicated to aspecificorgeneralcellular process.[2] These methodologies have been widely task, have evolved.Inorder to improvemetabolic ef- adopted in the industrial manufacture of fine chemi- ficiency,living systems make use of several extremely cals and pharmaceutical intermediates.Inthis frame- selectivecatalysts working at the same time,thus work, strategies where multiplecatalysts simultane- forming complex biochemical networks.Toachieve ously work in “one-pot”, avoiding the costly isolation such adegree of success,aperfectregulation of the and purificationofchemical intermediates,are named different catalysts working concomitantly,often in the concurrent.[1a,3] Therefore,reactions taking place in same compartment, became of utmost importance.In the cellular environment are in fact considered as this way, for agiven biosynthetic pathway, the product concurrent. In organic chemistry,ithas been largely Adv.Synth. Catal. 2017, 359,2026 –2049 2026 2017 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim REVIEWS asc.wiley-vch.de Fabricio R. Bisogno obtained Gonzalo de Gonzalo ob- his degree in biochemistry tained his Ph.D.in2003 (2004) at SanLuis National (Prof.Vicente Gotor, Univer- University(Argentina). In sity of Oviedo) working on 2007, he spent half ayear at the field of biocatalysis em- the Weizmann Instituteof ployinglipases andoxynitri- Sciences (Israel, Prof.Meir lases.Hespent his postdoc- Lahav) involved in research toral research at Consiglio on the origin of homochirali- Nazionale delle Ricerche ty.Then, he pursuedPh.D. (ICRM, Milano, Italy,Dr. studies at University of Giacomo Carrea), moving Oviedo (Spain, Prof.Ivµn back to University of Oviedo Lavandera andProf.VicenteGotor), dealing with with aJuan de la Cierva Fellowship.After aone- biocatalytic redox processes(2010). Besides,in2012 year postdoctoral stage at Universityof Groningen he obtained another Ph.D.degree at San Luis Na- (The Netherlands,Prof.Marco W. Fraaije) working tional University(Argentina,Prof.Marcela Kurina- in the research of noveloxidative biocatalysts,he Sanz) working on fungal biotransformation of bioac- spent two years at the R&D Department of the tive compounds. After postdocperiods in Oviedo pharmaceutical company Antibióticos S.A.U.(León, and Córdoba(Argentina), in 2013 he joined Prof Spain). He is currently aRamónand Cajal Re- Alicia PeÇØÇorysgroup as researcher at Córdoba searcher (MINECO) at UniversityofSevilla. His re- National Universityand INFIQC-CONICET (Ar- search is focused on asymmetric synthesis by using gentina).His research interest comprisescombina- different approaches,including biocatalytic andor- tion of biocatalysis with metal catalysisand organo- ganocatalytic procedures, as wellasthe development catalysisfor the constructionofcooperativesystems, of concurrent chemo- and biocatalytic reactions. along with exploration of novel reactivities for organo-sulfur-and organo-selenium-containingcom- pounds in enzymatic or biomimetic processes. MartínG.López-Vidal ob- tained his degree in biochem- istry at Córdoba National University(2014, Argentina). In 2015, he joined Prof Alicia PeÇØÇorysgroup as aPh.D. CONICET-fellow,under the guidance of Fabricio R. Bi- sogno at Córdoba National University. In 2016 he spent athree-months stay in the Laboratory of Biocatalysis at the UniversityofGraz (Austria) exploringthe reactivity of sulfur-contain- ing compoundswith ene-reductases under the super- vision of Prof MØlanie Hall. His researchinterest is focused on the development of novel chemoenzy- matic cascades for stereoselective preparation of or- ganochalcogen-compounds. demonstrated that running multiplereactions in one- agents are addedatthe beginning, thus requiring only pot, either in sequential (also known as stepwise, one operational step) mode,ischallenging to agreat when operationssuch as addition of catalysts/re- extent given the diverging reactionconditions suitable agents,temperature/atmosphere modification, etc. are for each single transformation.[4] Thus,tremendous ef- made during the course of the process to ensure the forts are made in order to find proper conditions to proper reactivity mode) or simultaneous (also known harmonically combine multiple catalytic reactions as cascade or domino reactions,inwhich conditions with no cross-spoiling effects.[5] are not modified during the process and catalysts/re- Adv.Synth. Catal. 2017, 359,2026 –2049 2027 2017 Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim REVIEWS asc.wiley-vch.de In abroad sense,organocatalysis can be definedas the acceleration of achemical reactionusing an or- 2SequentialReactions Employing ganic compound in substoichiometric amounts in the Organocatalystsand Biocatalysts absence of (transition) metals.[6] On the other hand, an acceptable definition of biocatalysis in organic syn- Initially,weshall deal with processes in which the or- thesis can be the employment of abiomolecule (pro- ganocatalyst andthe biocatalyst are able to catalyse tein, antibody,ribozyme) or aliving organism to carry sequential reactions in order to have multistep one- out the transformation of a(non-)natural organic pot procedures(Figure 1).[12] Theselectivity of the compound.[7] final productswhen chiral compounds are synthes- Nowadays,bothorganocatalysis and biocatalysis ised, can be induced by only the organocatalyst,by are becoming mature and amechanistic understand- only the biocatalyst or by both catalysts performing ing of enzymatic reactions alongwith catalytically- selectivereactions in the sequential process. productive organic associations have been deeply in- vestigated. It is rather remarkable that the number of examples where both sorts of catalysis working con- currently were successfully applied is limitedwhen comparedwith the far more explored combination of metal catalysed processesand biocatalysis.[8] Some re- ports have been published based on the combination of transition metals and organocatalysts;[9] but not so many examples are availabledealing with the combi- nation of organocatalysis andbiocatalysis in one-pot procedures.[10] It must be takeninto account that organic substan- ces are not always soluble in aqueous media, so aproper solvent selection is usually an issue in both Figure1.Schematic representation of asequential one-pot organo- and biocatalytic systems.Notwithstanding, process using organocatalysis and biocatalysis. the use of cosolvents or additives (in the frame of a“medium engineering” concept), is acommon prac- tice in those catalytic methodologies,thus circumvent- One of the first examples described in the literature ing solubility and, in certain cases,reactivity prob- of asequential multistep one-pot process combining lems.[11] Foracombination of organo- andbiocatalytic organocatalystsand enzymes, was published in 2004
Recommended publications
  • Thiourea Derivatives of Tröger's Base
    General Papers ARKIVOC 2009 (xiv) 124-134 Thiourea derivatives of Tröger’s base: synthesis, enantioseparation and evaluation in organocatalysis of Michael addition to nitroolefins Delphine Didiera and Sergey Sergeyeva,b* a Université Libre de Bruxelles (ULB), Laboratoire de Chimie des Polymères, CP 206/01, Boulevard du Triomphe, 1050 Brussels, Belgium b University of Antwerp, Department of Chemistry, Groenenborgerlaan 171, 2020 Antwerp, Belgium E-mail: [email protected] Abstract The catalytic activity of racemic thiourea derivatives of Tröger’s base (±)-2–4 in Michael additions of malonate derivatives to trans-β-nitrostyrene was studied. Due to the low basicity of Tröger’s base, the outcome of the addition reactions was strongly dependent on the pKa of the nucleophile. Thiourea catalysts (±)-2, 3 were resolved on the chiral stationary phase Whelk O1. Unfortunately, enantiopure catalysts 2 and 3 showed no stereoselectivity in the Michael addition. Keywords: Tröger’s base, thiourea, Michael addition, catalysis, WhelkO1 Introduction In the recent years, asymmetric organocatalysis has emerged as a competitive, environment- friendlier alternative to catalysis with transition metal complexes. While simple molecules such as derivatives of proline have been receiving a great deal of attention due to their availability, considerable effort has been directed towards searching for novel chiral scaffolds for asymmetric organocatalysis.1 Tröger’s base 1 is a chiral diamine bearing two stereogenic bridge-head nitrogen atoms (Figure 1). The two aromatic rings fused to the central bicyclic framework are almost perpendicular to each other, creating a rigid, V-shaped C2-symmetrical molecular scaffold with a distance of ca. 1nm between the two extremities.2 Due to its chirality and relatively rigid geometry, one would intuitively expect a considerable interest for analogues of Tröger’s base in the field of asymmetric synthesis and catalysis.
    [Show full text]
  • – with Novozymes Enzymes for Biocatalysis
    Biocatalysis Pregabalin case study Smarter chemical synthesis – with Novozymes enzymes for biocatalysis The new biocatalytic route results in process improvements, reduced organic solvent usage and substantial reduction of waste streams in Pregabalin production. Introduction Biocatalysis is the application of enzymes to replace chemical Using Lipolase®, a commercially available lipase, rac-2- catalysts in synthetic processes. In recent past, the use of carboxyethyl-3-cyano-5-methylhexanoic acid ethyl ester biocatalysis has gained momentum in the chemical and (1) can be resolved to form (S)-2-carboxyethyl-3-cyano-5- pharmaceutical industries. Today, it’s an important tool for methylhexanoic acid (2). Compared to the first-generation medicinal, process and polymer chemists to develop efficient process, this new route substantially improves process and highly attractive organic synthetic processes on an efficiency by setting the stereocenter early in the synthesis and industrial scale. enabling the facile racemization and reuse of (R)-1. The biocatalytic process for Pregabalin has been developed It outperforms the first-generation manufacturing process also by Pfizer to boost efficiency in Pregabalin production using by delivering higher yields of Pregabalin and by resulting in Novozymes Lipolase®. substantial reductions of waste streams, corresponding to a 5-fold decrease in the E-Factor from 86 to 17. Development of the biocatalytic process for Pregabalin involves four stages: • Screening to identify a suitable enzyme • Performing optimization of the enzymatic reaction to optimize throughput and reduce enzyme loading • Exploring a chemical pathway to preserve the enantiopurity of the material already obtained and lead to Pregabalin, and • Developing a procedure for the racemization of (R)-1 Process improvements thanks to the biocatalytic route Pregabalin chemical synthesis H Knovenagel CN condensation cyanation KOH 0 Et02C CO2Et Et02C CO2Et Et02C CO2Et CNDE (1) CN NH2 1.
    [Show full text]
  • Part I Principles of Enzyme Catalysis
    j1 Part I Principles of Enzyme Catalysis Enzyme Catalysis in Organic Synthesis, Third Edition. Edited by Karlheinz Drauz, Harald Groger,€ and Oliver May. Ó 2012 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2012 by Wiley-VCH Verlag GmbH & Co. KGaA. j3 1 Introduction – Principles and Historical Landmarks of Enzyme Catalysis in Organic Synthesis Harald Gr€oger and Yasuhisa Asano 1.1 General Remarks Enzyme catalysis in organic synthesis – behind this term stands a technology that today is widely recognized as a first choice opportunity in the preparation of a wide range of chemical compounds. Notably, this is true not only for academic syntheses but also for industrial-scale applications [1]. For numerous molecules the synthetic routes based on enzyme catalysis have turned out to be competitive (and often superior!) compared with classic chemicalaswellaschemocatalyticsynthetic approaches. Thus, enzymatic catalysis is increasingly recognized by organic chemists in both academia and industry as an attractive synthetic tool besides the traditional organic disciplines such as classic synthesis, metal catalysis, and organocatalysis [2]. By means of enzymes a broad range of transformations relevant in organic chemistry can be catalyzed, including, for example, redox reactions, carbon–carbon bond forming reactions, and hydrolytic reactions. Nonetheless, for a long time enzyme catalysis was not realized as a first choice option in organic synthesis. Organic chemists did not use enzymes as catalysts for their envisioned syntheses because of observed (or assumed) disadvantages such as narrow substrate range, limited stability of enzymes under organic reaction conditions, low efficiency when using wild-type strains, and diluted substrate and product solutions, thus leading to non-satisfactory volumetric productivities.
    [Show full text]
  • Screening of Macromolecular Cross-Linkers and Food-Grade Additives for Enhancement of Catalytic Performance of MNP-CLEA-Lipase of Hevea Brasiliensis
    IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Screening of macromolecular cross-linkers and food-grade additives for enhancement of catalytic performance of MNP-CLEA-lipase of hevea brasiliensis To cite this article: Nur Amalin Ab Aziz Al Safi and Faridah Yusof 2020 IOP Conf. Ser.: Mater. Sci. Eng. 932 012019 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.202.226 on 23/09/2021 at 18:45 1st International Conference on Science, Engineering and Technology (ICSET) 2020 IOP Publishing IOP Conf. Series: Materials Science and Engineering 932 (2020) 012019 doi:10.1088/1757-899X/932/1/012019 Screening of macromolecular cross-linkers and food-grade additives for enhancement of catalytic performance of MNP- CLEA-lipase of hevea brasiliensis. Nur Amalin Ab Aziz Al Safi1 and Faridah Yusof1 1 Department of Biotechnology Engineering, International Islamic University Malaysia. Abstract. Skim latex from Hevea brasiliensis (rubber tree) consist of many useful proteins and enzymes that can be utilized to produce value added products for industrial purposes. Lipase recovered from skim latex serum was immobilized via cross-linked enzyme aggregates (CLEA) technology, while supported by magnetic nanoparticles for properties enhancement, termed ‘Magnetic Nanoparticles CLEA-lipase’ (MNP-CLEA-lipase). MNP-CLEA-lipase was prepared by chemical cross-linking of enzyme aggregates with amino functionalized magnetic nanoparticles. Instead of using glutaraldehyde as cross-linking agent, green, non-toxic and renewable macromolecular cross-linkers (dextran, chitosan, gum Arabic and pectin) were screened and the best alternative based on highest residual activity was chosen for further analysis.
    [Show full text]
  • Organocatalytic Cyclopropanation of (E)-Dec-2-Enal: Synthesis, Spectral Analysis and Mechanistic Understanding
    Organocatalytic Cyclopropanation of (E)-Dec-2-enal: Synthesis, Spectral Analysis and Mechanistic Understanding. Marta Meazza, Agnieszka Kowalczuk, Sarah Watkins, Simon Holland, Thomas A. 5 Logothetis, Ramon Rios Faculty of Natural & Environmental Sciences, Department of Chemistry, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, United Kingdom In memoriam Klaus Burger ABSTRACT 10 An undergraduate experiment combining synthesis, NMR analysis and mechanistic understanding is reported. The students perform an organocatalyzed cyclopropanation reaction of (E)-dec-2-enal and are then required to determine the diastereoselectivity and assign the relative configuration of each product using NMR spectroscopy. 15 ABSTRACT GRAPHIC Journal of Chemical Education 8/20/18 Page 1 of 21 KEYWORDS Upper Division Undergraduate, Organic Chemistry, Hands-On Learning/Manipulatives, Inquiry-Based/Discovery Learning, Asymmetric Synthesis, 20 NMR Spectroscopy, Diastereomers. BACKGROUND In recent years, catalysis has had a huge impact on the nature of organic synthesis. With the increasing emphasis on green chemistry and sustainable processes, the development of new, highly enantioselective methodologies for the 25 synthesis of new, 3D scaffolds has become of paramount importance for organic chemists. A clear example is the 2001 Nobel Prize awarded to K. B. Sharpless, R. Noyori and W. S. Knowles for their contributions to this field. A further step towards the development of greener methodologies was made in 2000 with the “renaissance” of organocatalysis by the pioneering works of B. List1 and D.W.C. 30 MacMillan.2 List et al.1 developed the first intermolecular enantioselective aldol reaction catalyzed by proline through enamine activation, while MacMillan and coworkers2 developed the first organocatalyzed enantioselective Diels-Alder reaction through iminium activation.
    [Show full text]
  • Asymmetric Organocatalysis Revisited: Taming Hydrindanes with Jørgensen–Hayashi Catalyst
    SYNTHESIS0039-78811437-210X Georg Thieme Verlag Stuttgart · New York 2019, 51, 1123–1134 feature 1123 en Syn thesis Y. Stöckl et al. Feature Asymmetric Organocatalysis Revisited: Taming Hydrindanes with Jørgensen–Hayashi Catalyst Yannick Stöckl O Michael addition Wolfgang Frey O Aldol [4+2] cat. 1 H H H Johannes Lang N R H Birgit Claasen + H Angelika Baro O O O O O H H Sabine Laschat* 0000-0002-1488-3903 R R O R O O Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany [email protected] Published as part of the 50 Years SYNTHESIS – Golden Anniversary Issue Received: 12.11.2018 amples are amaminol A (2),9 the tricyclic unit of Accepted: 15.11.2018 ikarugamycin (3),10 or the CD ring unit of deoxycholic acid Published online: 14.12.2018 11 DOI: 10.1055/s-0037-1610409; Art ID: ss-2018-z0760-fa (4) (Figure 1). License terms: H Abstract The organocatalytic Michael reaction of easily available 1-cy- clopentene-1-carbaldehyde and 1,3-dicarbonyl compounds led to cy- H clopentanecarbaldehydes on a gram scale with low catalyst loading (2 1 (hydrindane) mol%) and high enantioselectivity. The synthetic potential of 4-acyl- H2N hexahydroindenones from intramolecular aldol condensation was OH demonstrated by Diels–Alder reaction to a tetracyclic derivative with seven stereogenic centers. The diastereofacial preference of the tetra- 2 (amaminol A) H H cyclic product was confirmed by DFT calculations. The described reac- R1 tion sequence is characterized by few redox-economic steps and high degree of molecular complexity.
    [Show full text]
  • Enamine-Based Organocatalysis with Proline And
    Acc. Chem. Res. 2004, 37, 580-591 carbon bond in a stereospecific fashion. These same Enamine-Based Organocatalysis features are typically absent in traditional synthetic asym- with Proline and Diamines: The metric aldol methodologies.2,3 Our ideal synthetic catalyst would be one that could Development of Direct Catalytic generate enamines from any number of aldehydes or ketones and then direct bond-forming reactions with a Asymmetric Aldol, Mannich, wide variety of electrophiles beyond the carbonyl elec- Michael, and Diels-Alder trophiles of the aldol reaction. Further, since these cata- lysts also generate imines as part of their reaction mech- Reactions anism, electrophilic catalysis might facilitate diverse WOLFGANG NOTZ, FUJIE TANAKA, AND reactions with nucleophiles. Such an antibody might be termed an ªopen-active siteº catalytic antibody. Indeed, CARLOS F. BARBAS, III* The Skaggs Institute for Chemical Biology and the we were able to demonstrate that our aldolase antibodies Departments of Chemistry and Molecular Biology, The could catalyze not only a wide range of intra- and Scripps Research Institute, 10550 North Torrey Pines Road, intermolecular aldol reactions but also decarboxylation La Jolla, California 92037 reactions via imine catalysis and certain Michael reactions Received February 2, 2004 as well.2 Significantly for what would become our studies in organocatalysis, in our search for ªopen-active siteº ABSTRACT antibody catalysis, we studied the potential of aldolase Enamines and imines have long been recognized as key intermedi- antibodies to catalyze the addition of ketones to nitrosty- ates in enzyme catalysis, particularly within a class of enzymes renes in Michael reactions, the addition of ketones to organic chemists would very much like to emulate, the aldolases.
    [Show full text]
  • Chapter 2 Immobilization of Enzymes
    Chapter 2 Immobilization of Enzymes: A Literature Survey Beatriz Brena , Paula González-Pombo , and Francisco Batista-Viera Abstract The term immobilized enzymes refers to “enzymes physically confi ned or localized in a certain defi ned region of space with retention of their catalytic activities, and which can be used repeatedly and continuously.” Immobilized enzymes are currently the subject of considerable interest because of their advantages over soluble enzymes. In addition to their use in industrial processes, the immobilization techniques are the basis for making a number of biotechnology products with application in diagnostics, bioaffi nity chromatography, and biosensors. At the beginning, only immobilized single enzymes were used, after 1970s more complex systems including two-enzyme reactions with cofactor regeneration and living cells were developed. The enzymes can be attached to the support by interactions ranging from reversible physical adsorp- tion and ionic linkages to stable covalent bonds. Although the choice of the most appropriate immobilization technique depends on the nature of the enzyme and the carrier, in the last years the immobilization tech- nology has increasingly become a matter of rational design. As a consequence of enzyme immobilization, some properties such as catalytic activity or thermal stability become altered. These effects have been demonstrated and exploited. The concept of stabilization has been an important driving force for immobilizing enzymes. Moreover, true stabilization at the molecular level has been demonstrated, e.g., proteins immobilized through multipoint covalent binding. Key words Immobilized enzymes , Bioaffi nity chromatography , Biosensors , Enzyme stabilization , Immobilization methods 1 Background Enzymes are biological catalysts that promote the transformation of chemical species in living systems.
    [Show full text]
  • Applications of Enzyme Catalysis – Biocatalysis
    10.542 – Biochemical Engineering Spring 2005 Applications of Enzyme Catalysis – Biocatalysis • Working definition – the use of an enzyme-catalyzed reaction to convert a single starting compound to a single product o distinguished from the use of whole cells for multi-step synthetic pathways, which also use enzymes to catalyze each conversion Why use enzyme catalysis over traditional (usu. solvent-based) organic synthesis? ( Rozzell, J. D. "Commercial scale biocatalysis: myths and realities." Bioorg Med Chem 7, no. 10 (October 1999): 2253-61.) • Catalyst selectivity/specificity • Mild reaction conditions • Environmentally friendly, “green chemistry” • High catalytic efficiency ¾ Greatest interest industrially is for production of chiral compounds (see handout for examples) Substrate selectivity versus substrate range • Industrial emphasis on selectivity is most often in the context of stereoselectivity, i.e., selective conversion or production of one enantiomer, but • The best industrial enzymes will have a broad substrate range, i.e., the ability the catalyze the same type of reaction (attack the same functional group) with a variety of substrates. Example – Subtilisin (serine protease) Natural reaction: peptide bond hydrolysis, though activity against esters was known O O R2 O R2 O NH NH NH NH OH NH H2N O R R1 3 R1 O R3 Unnatural reaction: resolution of a racemic ester mixture for production of a pharmaceutical intermediate (Courtesy of Merck & Co. Used with permission.) F F F F F F O O O H + H MeO N HO N MeO N N O N O N O OMe OMe OMe DHP Methyl Ester R-DHP Acid S-DHP MethylEster See “Survey of Biocatalytic Reactions” handout for additional examples.
    [Show full text]
  • One-Pot Two-Step Organocatalytic Asymmetric Synthesis of Spirocyclic Piperidones Via Wolff Rearrangement–Amidation–Michael– Hemiaminalization Sequence
    catalysts Article One-Pot Two-Step Organocatalytic Asymmetric Synthesis of Spirocyclic Piperidones via Wolff Rearrangement–Amidation–Michael– Hemiaminalization Sequence Yanqing Liu 1,†, Liang Ouyang 2,†, Ying Tan 3, Xue Tang 1, Jingwen Kang 1, Chunting Wang 2, Yaning Zhu 3, Cheng Peng 1,* and Wei Huang 1,* 1 State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; [email protected] (Y.L.); [email protected] (X.T.); [email protected] (J.K.) 2 State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; [email protected] (L.O.); [email protected] (C.W.) 3 China Resources Sanjiu (Ya’an) Pharmaceutical Company Limited, Ya’an 625000, China; [email protected] (Y.T.); [email protected] (Y.Z.) * Correspondence: [email protected] (C.P.); [email protected] (W.H.); Tel.: +86-28-861-800-234 (C.P.); +86-28-861-800-231 (W.H.) † These authors contributed equally to this work. Academic Editor: Aurelio G. Csákÿ Received: 14 December 2016; Accepted: 22 January 2017; Published: 4 February 2017 Abstract: A highly enantioselective organocatalytic Wolff rearrangement–amidation–Michael– hemiaminalization stepwise reaction is described involving a cyclic 2-diazo-1,3-diketone, primary amine and α,β-unsaturated aldehyde. Product stereocontrol can be achieved by adjusting the sequence of steps in this one-pot multicomponent reaction. This approach was used to synthesize various optically active spirocyclic piperidones with three stereogenic centers and multiple functional groups in good yields up to 76%, moderate diastereoselectivities of up to 80:20 and high enantioselectivities up to 97%.
    [Show full text]
  • Organocatalytic Asymmetric Synthesis Using Proline and Related Molecules
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kochi University Repository HETEROCYCLES, Vol. , No. , , pp. -. © The Japan Institute of Heterocyclic Chemistry Received, , Accepted, , Published online, . COM-06- (Please do not delete.) ORGANOCATALYTIC ASYMMETRIC SYNTHESIS USING PROLINE AND RELATED MOLECULES. PART 2. Hiyoshizo Kotsuki,* Hideaki Ikishima, and Atsushi Okuyama Laboratory of Natural Product Chemistry, Faculty of Science, Kochi University, Akebono-cho, Kochi 780-8520, Japan e-mail: [email protected] Abstract – Organocatalytic asymmetric synthesis has been extensively studied and several important procedures for preparing optically active organic compounds have been developed. Research activities in this area have progressed rapidly in the last ten years. This review addresses the most significant advances in asymmetric synthesis using proline and related chiral organocatalysts, mainly from the viewpoint of synthetic applications. This includes (1) Mannich reactions, (2) Michael addition reactions, (3) α-oxidation, (4) α-amination, (5) α-sulfenylation / selenenylation, (6) α-halogenation, (7) cycloaddition reactions, and (8) miscellaneous reactions such as C-C bond formation, epoxidation / oxidation, and reduction. 1. MANNICH REACTIONS The Mannich reaction is one of the most important multi-component condensation reactions using aldehyde, ketone and amine for the preparation of β-amino carbonyl compounds. This type of reaction is considered to be analogous to aldol condensation, and hence several approaches using organocatalytic systems have been reported to date.1 In 2000, List and coworkers reported the first example of the asymmetric Mannich reaction using L-proline as an organocatalyst.2 For example, the reaction of acetone (excess), p-nitrobenzaldehyde, and p-anisidine in the presence of L-proline (35 mol%) gave the desired adduct in 50% yield with 94% ee (Scheme 1).
    [Show full text]
  • Immobilization of Cellulase for Industrial Production Gordana Hojnik Podrepšek, Mateja Primožiþ, Željko Knez, Maja Habulin*
    A publication of CHEMICAL ENGINEERING TRANSACTIONS The Italian Association VOL. 27, 2012 of Chemical Engineering Online at: www.aidic.it/cet Guest Editors: Enrico Bardone, Alberto Brucato, Tajalli Keshavarz Copyright © 2012, AIDIC Servizi S.r.l., ISBN 978-88-95608-18-1; ISSN 1974-9791 Immobilization of Cellulase for Industrial Production Gordana Hojnik Podrepšek, Mateja Primožiþ, Željko Knez, Maja Habulin* University of Maribor, Faculty of Chemistry and Chemical Engineering, Laboratory for Separation Processes and Product Design, Smetanova ul. 17, 2000 Maribor, Slovenia [email protected] Immobilized enzymes are used in analytical chemistry and as catalysts for the production of chemicals, pharmaceuticals and food. Because of their particular structure, immobilized enzymes require optimal conditions, different from those of soluble enzymes. Particle size, particle-size distribution, mechanical and chemical structure, stability and the catalytic activity, used for immobilization, must be considered. Generally, cellulases are used in various industries, including food, brewery and wine, agriculture, textile, detergent, animal feed, pulp and paper, and in research development. For the industrial application of cellulase, its immobilization, which allows the conditions of repeated use of the enzyme alongside retaining its activity, has been recently investigated. Celullase was immobilized with the use of glutaraldehyde, a covalent cross-linking agent in to cross-linked enzyme aggregates (CLEAs). The stability and activity of cross-linked cellulase, exposed to carbon dioxide under high pressure, were studied. Efficiency of enzyme immobilization was determined using Bradford method (Bradford, 1976). The activity of cross-linked cellulase was determined by spectrophotometric method. 1. Introduction Cellulase, a multicomponent enzyme, consisting of three different enzymes (endocellulase, cellobiohydrolase and ß-glucosidase) is responsible for bioconversion of cellulose into soluble sugar (Zhou et al., 2009).
    [Show full text]