Basic Arterial Anatomy and Interpretation of CT Angiography For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gross Anatomical Studies on the Arterial Supply of the Intestinal Tract of the Goat
IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS) e-ISSN: 2319-2380, p-ISSN: 2319-2372. Volume 10, Issue 1 Ver. I (January. 2017), PP 46-53 www.iosrjournals.org Gross Anatomical Studies on the Arterial Supply of the Intestinal Tract of the Goat Reda Mohamed1, 2*, ZeinAdam2 and Mohamed Gad2 1Department of Basic Veterinary Sciences, School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, Trinidad and Tobago. 2Anatomy and Embryology Department, Faculty of Veterinary Medicine, Beni Suef University Egypt. Abstract: The main purpose of this study was to convey a more precise explanation of the arterial supply of the intestinal tract of the goat. Fifteen adult healthy goats were used. Immediately after slaughtering of the goat, the thoracic part of the aorta (just prior to its passage through the hiatus aorticus of the diaphragm) was injected with gum milk latex (colored red) with carmine. The results showed that the duodenum was supplied by the cranial pancreaticoduodenal and caudal duodenal arteries. The jejunum was supplied by the jejunal arteries. The ileum was supplied by the ileal; mesenteric ileal and antimesenteric ileal arteries. The cecum was supplied by the cecal artery. The ascending colon was supplied by the colic branches and right colic arteries. The transverse colon was supplied by the middle colic artery. The descending colon was supplied by the middle and left colic arteries. The sigmoid colon was supplied by the sigmoid arteries. The rectum was supplied by the cranial; middle and caudal rectal arteries. Keywords: Anatomy,Arteries, Goat, Intestine I. Introduction Goats characterized by their high fertility rate and are of great economic value; being a cheap meat, milk and some industrial substances. -
Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers
ORIGINAL ARTICLE Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers Imelda A. Luna Department of Anatomy, College of Medicine, University of the Philippines Manila ABSTRACT Objectives. This is a descriptive study to determine the origin of abnormal obturator arteries, the drainage of abnormal obturator veins, and if any anastomoses exist between these abnormal vessels in Filipino cadavers. Methods. A total of 54 cadaver halves, 50 dissected by UP medical students and 4 by UP Dentistry students were included in this survey. Results. Results showed the abnormal obturator arteries arising from the inferior epigastric arteries in 7 halves (12.96%) and the abnormal communicating veins draining into the inferior epigastric or external iliac veins in 16 (29.62%). There were also arterial anastomoses in 5 (9.25%) with the inferior epigastric artery, and venous anastomoses in 16 (29.62%) with the inferior epigastric or external iliac veins. Bilateral abnormalities were noted in a total 6 cadavers, 3 with both arterial and venous, and the remaining 3 with only venous anastomoses. Conclusion. It is important to be aware of the presence of these abnormalities that if found during surgery, must first be ligated to avoid intraoperative bleeding complications. Key Words: obturator vessels, abnormal, corona mortis INtroDUCTION The main artery to the pelvic region is the internal iliac artery (IIA) with two exceptions: the ovarian/testicular artery arises directly from the aorta and the superior rectal artery from the inferior mesenteric artery (IMA). The internal iliac or hypogastric artery is one of the most variable arterial systems of the human body, its parietal branches, particularly the obturator artery (OBA) accounts for most of its variability. -
A New Anatomic and Staging-Oriented Classification Of
cancers Perspective A New Anatomic and Staging-Oriented Classification of Radical Hysterectomy Mustafa Zelal Muallem Department of Gynecology with Center for Oncological Surgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Virchow Campus Clinic, Charité Medical University, 13353 Berlin, Germany; [email protected]; Tel.: +49-30-450-664373; Fax: +49-30-450-564900 Simple Summary: The main deficits of the available classifications of radical hysterectomy are the facts that they are based only on the lateral extension of resection, do not depend on the precise anatomy of parametrium and paracolpium and do not correlate with the tumour stage, size or infiltration in the vagina. This new suggested classification depends on the 3-dimentional concept of parametrium and paracolpium and the comprehensive description of the anatomy of parametrium, paracolpium and the pelvic autonomic nerve system. Each type in this classification tailored to the tumour stage according to FIGO- classification from 2018, taking into account the tumour size, localization and infiltration in the vaginal vault, which may make it the most suitable tool for planning and tailoring the surgery of radical hysterectomy. Abstract: The current understanding of radical hysterectomy more is centered on the uterus and little is being discussed about the resection of the vaginal cuff and the paracolpium as an essential part of this procedure. This is because that the current classifications of radical hysterectomy are based only on the lateral extent of resection. This way is easier to be understood but does not reflect Citation: Muallem, M.Z. -
PERIPHERAL VASCULATURE Average Vessel Diameter
PERIPHERAL VASCULATURE Average Vessel Diameter A Trio of Technologies. Peripheral Embolization Solutions A Single Solution. Fathom™ Steerable Guidewires Total Hypotube Tip Proximal/ UPN Length (cm) Length (cm) Length (cm) Distal O.D. Hepatic, Gastro-Intestinal and Splenic Vasculature 24 8-10 mm Common Iliac Artery 39 2-4 mm Internal Pudendal Artery M00150 900 0 140 10 10 cm .016 in 25 6-8 mm External Iliac Artery 40 2-4 mm Middle Rectal M00150 901 0 140 20 20 cm .016 in 26 4-6 mm Internal Iliac Artery 41 2-4 mm Obturator Artery M00150 910 0 180 10 10 cm .016 in 27 5-8 mm Renal Vein 42 2-4 mm Inferior Vesical Artery 28 43 M00150 911 0 180 20 20 cm .016 in 15-25 mm Vena Cava 2-4 mm Superficial Epigastric Artery 29 44 M00150 811 0 200 10 10 cm pre-shaped .014 in 6-8 mm Superior Mesenteric Artery 5-8 mm Femoral Artery 30 3-5 mm Inferior Mesenteric Artery 45 2-4 mm External Pudendal Artery M00150 810 0 200 10 10 cm .014 in 31 1-3 mm Intestinal Arteries M00150 814 0 300 10 10 cm .014 in 32 Male 2-4 mm Superior Rectal Artery A M00150 815 0 300 10 10 cm .014 in 33 1-3 mm Testicular Arteries 1-3 mm Middle Sacral Artery B 1-3 mm Testicular Veins 34 2-4 mm Inferior Epigastric Artery Direxion™ Torqueable Microcatheters 35 2-4 mm Iliolumbar Artery Female 36 2-4 mm Lateral Sacral Artery C 1-3 mm Ovarian Arteries Usable 37 D UPN Tip Shape RO Markers 3-5 mm Superior Gluteal Artery 1-3 mm Ovarian Veins Length (cm) 38 2-4 mm Inferior Gluteal Artery E 2-4 mm Uterine Artery M001195200 105 Straight 1 M001195210 130 Straight 1 M001195220 155 Straight 1 Pelvic -
Common and Separate Origins of the Left and Right Inferior Phrenic Artery with a Review of the Literature H
Folia Morphol. Vol. 76, No. 3, pp. 408–413 DOI: 10.5603/FM.a2017.0025 O R I G I N A L A R T I C L E Copyright © 2017 Via Medica ISSN 0015–5659 www.fm.viamedica.pl Common and separate origins of the left and right inferior phrenic artery with a review of the literature H. Terayama1, S.-Q. Yi2, O. Tanaka1, T. Kanazawa1, K. Suyama1, N. Kosemura1, S. Tetsu3, H. Yamazaki3, R. Sakamoto3, S. Kawakami4, T. Suzuki3, K. Sakabe1 1Department of Anatomy, Division of Basic Medicine, Tokai University School of Medicine, Japan 2Laboratory of Functional Morphology, Department of Frontier Health Science, Tokyo Metropolitan University, Japan 3Department of Anaesthesiology, Division of Surgery, Tokai University School of Medicine, Japan 4Division of Oral and Craniofacial Anatomy, Graduate School of Dentistry, Tohoku University, Japan [Received: 16 August 2016; Accepted: 18 August 2016] In a 94-year-old male cadaver, upon which routine dissection was being conducted, a rare variation was found in the gastrophrenic trunk (GPT), the common trunk of the left gastric artery (LGA), right inferior phrenic artery (RIPA), and left inferior phrenic artery (LIPA); the GPT arises from the abdominal aorta. A hepatosplenic trunk accompanied the variation. In this variation, the RIPA first branched from the GPT and then to the LIPA and LGA. Variations in the common trunk of the LIPA and RIPA in the GPT are common, but to our knowledge, a variation (separate inferior phrenic artery in the GPT) similar to our findings has not been previously reported. We discuss the incidence and developmental and clinical significance of this variation with a detailed review of the literature. -
A Rare Combined Variation of the Coeliac Trunk, Renal and Testicular Vasculature
A rare combined variation of the coeliac trunk, renal and testicular vasculature Abstract The authors report a rare variation of the coeliac trunk, renal and testicular vasculature in a 27-year- old male cadaver. In the present case, the coeliac trunk and superior mesenteric artery was replaced by a modified coeliacomesenteric trunk formed by hepato-gastric and superior mesenteric arteries. Here the hepato-gastric artery or trunk contributed towards the total hepatic inflow as well as a gastro-duodenal artery. A separate right gastric artery and an additional superior pancreatico- duodenal artery was also found in addition with a retro-aortic left renal vein and a bilateral double renal arterial supply. The aforementioned coeliac trunk variation, to our knowledge, has never been reported before and this variation combined with the renal vasculature requires careful surgical consideration. Key words: Coeliacomesenteric trunk, coeliac trunk, hepato-gastric trunk, pancreatico-duodenal artery, retro-aortic left renal vein The typical trifurcation of the coeliac trunk into the left gastric, common hepatic and splenic arteries was first described by Albrecht von Haller (1708-1777) [1]. Haller, born in Berne, Switzerland, studied medicine at University of Tübingen in 1723. Haller felt dissatisfied with his progress at Tübingen and became a student of Boerhaave and Albinus at Leyden University in 1727. The young prodigy with a wide-ranging intellect received his medical degree at nineteen [2]. The coeliac branches (tripos Halleri) represents the normal configuration of the blood supply of the foregut viscera within the abdominal cavity. Knowledge of any deviation from the norm, as a result embryologic changes in the development of the ventral splanchnic arteries, proves indispensable in the planning and execution surgical operations. -
Vessels and Circulation
CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels. -
Rare Variation in Arterial Branching of Celiac Trunk with Three Aberrant Hepatic Arteries – Case Report
Case report http://dx.doi.org/10.4322/jms.067114 Rare variation in arterial branching of celiac trunk with three aberrant hepatic arteries – Case report RACHANA K.1, SAMPATH MADHYASTHA2*,VASUDHA SARALAYA3, TERESA JOY3, DIVYA PREMCHANDRAN3 and SANTHOSH RAI4 1Department of Anatomy, Kasturba Medical College, 576104, Mangalore, Manipal University, INDIA 2Additional professor, Department of Anatomy, Kasturba Medical College, Mangalore, INDIA-576104 3Department of Anatomy, Kasturba Medical College, 576104, Mangalore, Manipal University, INDIA 4Department of Radiodiagnosis, Kasturba Medical College, 576104, Mangalore, Manipal University, INDIA *E-mail: [email protected] Abstract The celiac trunk shows a trifurcate division which branches to supply the hepatobiliary system, stomach, parts of the digestive tract. The celiac trunk usually exhibits regular pattern of branching with few variations reported. This case report highlights on the vitality of anomalous branching of the celiac trunk and it branches. Surgical complications involving these organs would be partially explained by studying the anomalous branching of the vascular components supplying it. Here we have reported anomalous origin of three aberrant hepatic arteries, one accessory hepatic artery and an aberrant cystic artery. These variations are of importance to radiologists and hepatic surgeons. Keywords: aberrant hepatic artery, anomalous branching, celiac trunk, inferior phrenic artery, cystic artery. 1 Introduction Celiac trunk takes its origin from the ventral aspect by these authors, was more precise and it was universally of abdominal aorta at level of T12 vertebrae measuring accepted. However, the case we reported here was different about 1.5 cms to 2 cms from its origin. After its origin it from the classically explained pattern of branching of the normally trifurcates into left gastric, splenic and the common hepatic artery. -
Introduction to Anatomy of the Abdomen the Region Between: Diaphragm and Pelvis
Introduction to Anatomy of the Abdomen The region between: Diaphragm and pelvis. Boundaries: • Roof: Diaphragm • Posterior: Lumbar vertebrae, muscles of the posterior abdominal wall • Infrerior: Continuous with the pelvic cavity, superior pelvic aperture • Anterior and lateral: Muscles of the anterior abdominal wall Topography of the Abdomen (PLANES)..1/2 TRANSVERSE PLANES • Transpyloric plane : tip of 9th costal cartilages; pylorus of stomach, L1 vertebra level. • Subcostal plane: tip of 10th costal cartilages, L2-L3 vertebra. • Transtubercular plane: L5 tubercles if iliac crests; L5 vertebra level. • Interspinous plane: anterior superior iliac spines; promontory of sacrum Topography of the Abdomen (PLANES)..2/2 VERTICAL PLANES • Mid-clavicular plane: midpoint of clavicle- mid-point of inguinal ligament. • Semilunar line: lateral border of rectus abdominis muscle. Regions of the Abdomen..1/2 4 2 5 9 regions: • Umbilical (1) 8 1 9 • Epigastric (2) • Hypogastric (Suprapubic) (3) • Right hypochondriacum (4) 6 3 7 • Left hypochondrium (5) • Right Iliac (Inguinal) (6) • Left Iliac (Inguinal) (7) • Right lumbar (8) • Left lumbar (9) Regions of the Abdomen..2/2 1 2 4 Quadrants: • Upper right quadrant (1) 3 4 • Upper left quadrant (2) • Lower right quadrant (3) • Lower left quadrant (4) Dermatomes Skin innervation: • lower 5 intercostal nerves • Subcostal nerve • L1 spinal nerve (ilioinguinal+iliohypogastric nerves). Umbilical region skin = T10 Layers of Anterior Abdominal Wall Skin Fascia: • Superficial fascia: • Superficial fatty layer(CAMPER’S -
Anatomical Variations of Cystic Artery: Telescopic Facts
ORIGINAL ARTICLE Anatomical Variations Of Cystic Artery: Telescopic Facts Muhammad Zubair, FRCS*, Lubna Habib, FCPS**, Masoom Raza Mirza, FRCS**, Muhammad Ali Channa, FCPS**, Mahmood Yousuf, FRCS**, Muhammad Saeed Quraishy, FRCS* *Dow University of Health Sciences, Civil Hospital, Karachi, Pakistan, **Hamdard College of Medicine & Dentistry, Hamdard University Hospital, Surgery, R-374, Secter 15-A-5, Buffer Zone, North-Karachi, Karachi, Sindh 75850, Pakistan divided the different vascular patterns into 3 groups: INTRODUCTION The introduction of laparoscopic cholecystectomy has stimulated a renewed interest in the anatomy of Calot’s Group 1 triangle 1. This triangle is a focal area of anatomical Cystic artery or arteries seen in Calot’s triangle and no other importance in cholecystectomy and a good knowledge of its source of supply is present. This group is further sub-divided anatomy is essential for both open and laparoscopic into two groups: cholecystectomy 2, 3 . This triangle was described by Calot in 1a Single artery is seen in Calot’s triangle (normal 1891 as bounded by the cystic duct, the right hepatic duct anatomy). and lower edge of liver 4. In its present interpretation the 1b Two vessels are identified in Calot’s triangle. upper border is formed by the inferior surface of the liver with the other two boundaries being the cystic duct and the Cystic artery syndrome (figure 1) is described as a variation common hepatic duct 2,5 . Its contents usually include the right in group 1. This is a single cystic artery originating from the hepatic artery (RHA), the cystic artery, the cystic lymph node right hepatic and then hooking round the cystic duct from (of Lund), connective tissue and lymphatics 5,6 . -
Colon Operative Standards
282 SECTION IV | COLON F G E F FIGURE 16-7 (Continued). patients with hereditary nonpolyposis colon cancer, as they have a higher incidence of synchronous and metachronous colonic tumors than do patients with sporadic colorectal cancer. As calculated by life table analysis, the risk for metachronous cancer among patients with hereditary nonpolyposis is as high as 40% at 10 years. Simi- larly, for colon cancer patients with familial adenomatous polyposis, surgical resec- tion should consist of either total abdominal colectomy or total proctocolectomy. The choice between these two operations depends on the burden of polypoid disease in the rectum and the patient’s preference for close surveillance. 7,8,9 Finally, individuals who develop colon cancer in the setting of long-standing ulcerative colitis require a total proctocolectomy. The oncologic principles of colon cancer surgery as outlined in this chapter, including the attention to surgical margins and the need for proximal vascular ligation, should be adhered to bilaterally, not just for the portion of colon in which the tumor has been identifi ed.10,11 3. PROXIMAL VASCULAR LIGATION AND REGIONAL LYMPHADENECTOMY Recommendation: Resection of the tumor-bearing bowel segment and radical lymphadenectomy should be performed en bloc with proximal vascular ligation at the origin of the primary feeding vessel(s). Copyright © 2015 Wolters Kluwer Health, Inc. Unauthorized reproduction of the article is prohibited. 226_ACS_Ch16.indd6_ACS_Ch16.indd 228282 44/3/15/3/15 22:58:58 AAMM CHAPTER 16 | Colon Resection 283 Type of Data: Prospective and retrospective observational studies. Strength of Recommendation: Moderate. Rationale The standard of practice for the treatment of stage I to III (nonmetastatic) colon can- cer is complete margin-negative resection (R0 resection) of the tumor-bearing bowel combined with en bloc resection of the intact node-bearing mesentery (i.e., regional lymphadenectomy). -
Anomalous Vascular Peritoneal Band Causing Small Bowel Obstruction in an Adult
CASE REPORT Anomalous Vascular Peritoneal Band Causing Small Bowel Obstruction in an Adult Suzanne Nyakirugumi, Mathenge Nduhiu Nyeri County Referral Hospital, Nyeri, Kenya Correspondence to: Dr. Suzanne Nyakirugumi; Email:[email protected] Summary Peritoneal bands resulting in small bowel obstruction in band. This is the first reported case in Sub-Saharan adults are rare. We present a case study of a 39-year-old Africa. male who presented with a 10-day history of signs and symptoms of intestinal obstruction. The patient had no history of abdominal trauma or surgery. Intraoperatively, Keywords: Small bowel obstruction, Congenital bands, the small bowel obstruction was caused by a vascularized Peritoneal bands, Vascular bands, Inferior mesenteric peritoneal band that had a membrane. The band formed a artery, Superior mesenteric artery closed loop and caused the small bowel to herniate and Ann Afr Surg. 2020; 17(2):85-87 lead to mechanical obstruction. In the band was an DOI: http://dx.doi.org/10.4314/aas.v17i2.10 anomalous artery that connected the ileocolic artery to Conflicts of Interest: None the descending branch of the left colic artery. The Funding: None mainstay for diagnosis is an exploratory laparoscopy or © 2020 Author. This work is licensed under the Creative laparotomy. The definitive treatment is transection of the Commons Attribution 4.0 International License. Introduction past. He also had no comorbidity. The patient was alert We present a case study of a 39-year-old male with a 10- and sick looking on physical examination. His pulse rate day history of obstipation resulting from a vascular was 109 beats per minute, respiratory rate was 22 breaths anomalous peritoneal band.