Linguistic Evaluation of Support Verb Constructions by Openlogos and Google Translate

Total Page:16

File Type:pdf, Size:1020Kb

Linguistic Evaluation of Support Verb Constructions by Openlogos and Google Translate Linguistic Evaluation of Support Verb Constructions by OpenLogos and Google Translate A. Barreiro1, J. Monti2, B. Orliac3, S. Preuß4, K. Arrieta3, W. Ling1,5, F. Batista1,6, I. Trancoso1 1 INESC-ID, Rua Alves Redol 9, 1000-029, Lisboa, Portugal 2 University of Sassari, Italy 3 Logos Institute, USA 4 University of Saarlandes, Germany 5 Carnegie Mellon University - Instituto Superior Tecnico,´ USA-Portugal 6 ISCTE-IUL - Instituto Universitario´ de Lisboa, Portugal [email protected], [email protected] Abstract This paper presents a systematic human evaluation of translations of English support verb constructions produced by a rule-based ma- chine translation (RBMT) system (OpenLogos) and a statistical machine translation (SMT) system (Google Translate) for five languages: French, German, Italian, Portuguese and Spanish. We classify support verb constructions by means of their syntactic structure and semantic behavior and present a qualitative analysis of their translation errors. The study aims to verify how machine translation (MT) systems translate fine-grained linguistic phenomena, and how well-equipped they are to produce high-quality translation. Another goal of the linguistically motivated quality analysis of SVC raw output is to reinforce the need for better system hybridization, which leverages the strengths of RBMT to the benefit of SMT, especially in improving the translation of multiword units. Taking multiword units into ac- count, we propose an effective method to achieve MT hybridization based on the integration of semantico-syntactic knowledge into SMT. Keywords: Machine Translation, MT Evaluation, Support Verb Constructions, Multiword Units, Semantico-Syntactic Knowledge, MT Hybridization. 1. Introduction evaluation efforts involving MT systems of different nature was our main motivation for evaluating the performance of MT researchers and developers have a common goal of cre- RBMT and SMT when dealing with a very specific linguis- ating robust translation systems that can produce high qual- tic phenomenon. ity translation. However, MT is a work-in-progress. Af- This paper describes an evaluation exercise that consisted ter six decades of research on MT models, tools and lin- of the linguistic analysis of the translations of 100 sup- guistic resources, translations produced by widely used MT port verb constructions (SVC), such as make a presenta- systems show unfortunate errors which require significant tion. The sentences in our SVC corpus were randomly post-editing effort if the result is to be used by professional collected from the news and the Internet and hand-picked translators or for purposes other than gisting. A notice- for the task. The corpus was translated into 5 languages: able trend is that of linguistically enhancing SMT mod- French, German, Italian, Portuguese and Spanish by the els, to produce systems that combine linguistic resources OpenLogos (OL) and the Google Translate (GT) MT sys- and analysis with statistical techniques. While this is a tems. Five MT expert linguists, native speakers of the target promising direction, making significant advances towards languages, evaluated the translations of the SVC consider- hybrid MT (HMT) systems requires a deep understanding ing their meaning in context, and classified the translation of different approaches, their weaknesses and strengths. errors based on a SVC typology, as illustrated in Table 1. Bringing different approaches together, contrasting them The remaining of the paper is organized as follows: Section and measuring which modules need improvement seems to 2. presents the state-of-the-art HMT. Section 3. describes be an effective method for achieving the desired end result. the main characteristics of the OL and the GT models. Sec- In pursuing the creation of an HMT model and improving tion 4. describes the corpus, datasets, and the evaluation existing translation technology, a systematic fine-grained task. Section 5. discusses the linguistic challenges found linguistic analysis of the performance of individual models in the translations for the 5 language pairs contemplated appears to us as an important first step. To our knowledge, in this research. Section 7. proposes a method to achieve no major effort has been made to combine the strengths MT hybridization based on the integration of semantico- of different approaches with the purpose of overcoming syntactic knowledge into SMT. Finally, Section 8. presents known weaknesses on the basis of a joint linguistic eval- the main conclusions and points to future work, namely the uation of those weaknesses, as used in this paper. In ad- inclusion of linguistic expertise in MT evaluation. dition, state-of-the-art quality metrics and estimation have been targeting human-factors tasks such as measuring post- editing time and effort in terms of keystrokes, etc., not di- 2. Hybrid Machine Translation agnosing fine-grained linguistic errors to improve syntac- A noticeable trend in current MT research is that of HMT tic structure and meaning. The lack of such qualitative models that combine linguistic knowledge with statistical Nominal Support Verb Construction (NSVC) make a presentation Non-contiguous nominal (NON-CONT NSVC) have [ADV+ADJ-particularly good] links Prepositional nominal (PREPNSVC) give an illustration of Non-contiguous prepositional nominal (NON-CONT PREPNSVC) be the [ADJ-immediate] cause of Idiomatic nominal (IDIOM NSVC) set in motion, place at risk, go on strike Idiomatic prepositional nominal (IDIOM PREPNSVC) earn an income of Non-contiguous idiomatic nominal (NON-CONT IDIOM NSVC) hold [NP-the option] in place, be of [ADJ-practical] value Non-contiguous idiomatic prepositional nominal (NON-CONT IDIOM PREPNSVC) give [PRO-us] a [bird’s-eye] view of, be [ADV-clearly] at odds with, open talks [May 14] with Adjectival Support Verb Construction (ADJSVC) be meaningful Non-contiguous adjectival (NON-CONT ADJSVC) be [ADV-extremely] selective Prepositional adjectival (PREPADJSVC) be known as; be involved in Non-contiguous prepositional adjectival (NON-CONT PREPADJSVC) fall [ADV-so far] short of Table 1: Major categories of support verb construction in our corpus techniques. HMT systems attempt to combine RBMT sys- the coverage of a RBMT system. A similar method us- tems, such as the work presented by (Scott, 2003), with ing example-based MT for the same end has been proposed data-driven MT systems, such as phrase-based SMT pro- in (Sanchez-Mart´ ´ınez et al., 2009). Finally, the translation posed by (Koehn et al., 2007). System combination often quality of RBMT output can also be improved by using leads to improvements in the final translation quality, as statistical post-editing methods (cf. (Simard et al., 2007; different systems tend to address different translation chal- Elming, 2006; Dugast et al., 2007; Terumasa, 2007)). The lenges. opposite has also been proposed, where RBMT systems In general, SMT methods learn the generalizations of the are used to enhance data-driven approaches. (Shirai et al., translation process using parallel corpora, which are sets of 1997) use an example-based MT system (Brown, 1996) to translated sentences pairs. In language pairs where there create an initial translation template, and use a RBMT sys- are abundant amounts of parallel corpora, such as English- tem to translate individual words and phrases according to Mandarin, these models tend to perform better than RBMT this template. To the best of our knowledge, it is still not ob- approaches. However, when parallel data is scarce, such vious which HMT approach will be the most efficient one as for the Spanish-Basque language pair, it is less likely and will lead to higher quality translation in the long run. that the SMT methods will have enough data to properly learn such generalizations (Labaka et al., 2007). Morpho- 3. The OpenLogos and the Google Translate logically rich languages require more data to learn accu- Models rate translations, since there are more word types due to OL is an open source copy of the commercial Logos Sys- different word forms that can be generated for the same tem (Scott, 2003; Barreiro et al., 2011). The system ad- stem. While more complex SMT models for morphologi- dresses morphology, syntax, and semantics, it has robust cally rich languages have been proposed (Chahuneau et al., parsers, sets of semantico-syntactic rules, terminology sets 2013), RBMT systems where the morphology of the lan- and tools. Unlike most other RBMT systems, the OL model guage is encoded manually, represent a strong alternative is closer in spirit to the SMT approach in that both method- for the translation of such languages. ologies are pattern-based, with the additional advantage of Many methods to combine RBMT with SMT have been including semantic understanding. The use of an inter- proposed. One straightforward way to create an HMT sys- mediate language (SAL) to encode linguistic information tem is to combine the translations of the same text by two and process text contributes to OL high quality translation different systems (Heafield and Lavie, 2011; Eisele et al., and lessens one of the main problems in SMT, viz., the 2008). Other approaches attempt to use data-driven tech- sparseness in linguistic examples. OL linguistic knowledge niques to improve RBMT systems. For example, (Eisele et databases have not been developed for over 10 years. al., 2008) use phrase pair extraction in phrase-based MT to GT is one of the most widely used online MT systems. It is extract phrasal translations entries that are used to improve an SMT system that benefits from the huge amount of paral- lel data that Google collects from the web. In March 2014, Lang. pair System OK ERR Agreem Other it was set to account for 80 language pairs. As is typical GT 64 32 4 - EN-FR of SMT, the translation quality is highly dependent on the OL 51 48 1 - language pair, producing much better results for close lan- GT 37 46 3 14 EN-GE guage pairs (e.g. Portuguese and Spanish) and languages OL 60 33 1 6 for which large amounts of parallel data are available.
Recommended publications
  • Translation and the Internet: Evaluating the Quality of Free Online Machine Translators
    Quaderns. Rev. trad. 17, 2010 197-209 Translation and the Internet: Evaluating the Quality of Free Online Machine Translators Stephen Hampshire Universitat Autònoma de Barcelona Facultat de Traducció i d’Interpretació 08193 Bellaterra (Barcelona). Spain [email protected] Carmen Porta Salvia Universitat de Barcelona Facultat de Belles Arts [email protected] Abstract The late 1990s saw the advent of free online machine translators such as Babelfish, Google Translate and Transtext. Professional opinion regarding the quality of the translations provided by them, oscillates wildly from the «laughably bad» (Ali, 2007) to «a tremendous success» (Yang and Lange, 1998). While the literature on commercial machine translators is vast, there are only a handful of studies, mostly in blog format, that evaluate and rank free online machine translators. This paper offers a review of the most significant contributions in that field with an emphasis on two key issues: (i) the need for a ranking system; (ii) the results of a ranking system devised by the authors of this paper. Our small-scale evaluation of the performance of ten free machine trans- lators (FMTs) in «league table» format shows what a user can expect from an individual FMT in terms of translation quality. Our rankings are a first tentative step towards allowing the user to make an informed choice as to the most appropriate FMT for his/her source text and thus pro- duce higher FMT target text quality. Key words: free online machine translators, evaluation, internet, ranking system. Resum Durant la darrera dècada del segle xx s’introdueixen els traductors online gratuïts (TOG), com poden ser Babelfish, Google Translate o Transtext.
    [Show full text]
  • A Comparison of Free Online Machine Language Translators Mahesh Vanjani1,* and Milam Aiken2 1Jesse H
    Journal of Management Science and Business Intelligence, 2020, 5–1 July. 2020, pages 26-31 doi: 10.5281/zenodo.3961085 http://www.ibii-us.org/Journals/JMSBI/ ISBN 2472-9264 (Online), 2472-9256 (Print) A Comparison of Free Online Machine Language Translators Mahesh Vanjani1,* and Milam Aiken2 1Jesse H. Jones School of Business, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004 2School of Business Administration, University of Mississippi, University, MS 38677 *Email: [email protected] Received on 5/15/2020; revised on 7/25/2020; published on 7/26/2020 Abstract Automatic Language Translators also referred to as machine translation software automate the process of language translation without the intervention of humans While several automated language translators are available online at no cost there are large variations in their capabilities. This article reviews prior tests of some of these systems, and, provides a new and current comprehensive evaluation of the following eight: Google Translate, Bing Translator, Systran, PROMT, Babylon, WorldLingo, Yandex, and Reverso. This re- search could be helpful for users attempting to explore and decide which automated language translator best suits their needs. Keywords: Automated Language Translator, Multilingual, Communication, Machine Translation published results of prior tests and experiments we present a new and cur- 1 Introduction rent comprehensive evaluation of the following eight electronic automatic language translators: Google Translate, Bing Translator, Systran, Automatic Language Translators also referred to as machine translation PROMT, Babylon, WorldLingo, Yandex, and Reverso. This research software automate the process of language translation without the inter- could be helpful for users attempting to explore and decide which auto- vention of humans.
    [Show full text]
  • An Evaluation of the Accuracy of Online Translation Systems
    Communications of the IIMA Volume 9 Issue 4 Article 6 2009 An Evaluation of the Accuracy of Online Translation Systems Milam Aiken University of Mississippi Kaushik Ghosh University of Mississippi John Wee University of Mississippi Mahesh Vanjani University of Mississippi Follow this and additional works at: https://scholarworks.lib.csusb.edu/ciima Recommended Citation Aiken, Milam; Ghosh, Kaushik; Wee, John; and Vanjani, Mahesh (2009) "An Evaluation of the Accuracy of Online Translation Systems," Communications of the IIMA: Vol. 9 : Iss. 4 , Article 6. Available at: https://scholarworks.lib.csusb.edu/ciima/vol9/iss4/6 This Article is brought to you for free and open access by CSUSB ScholarWorks. It has been accepted for inclusion in Communications of the IIMA by an authorized editor of CSUSB ScholarWorks. For more information, please contact [email protected]. Examination of the Accuracy of Online Translation Systems Aiken, Ghosh, Wee & Vanjani An Evaluation of the Accuracy of Online Translation Systems Milam Aiken University of Mississippi USA [email protected] Kaushik Ghosh University of Mississippi USA [email protected] John Wee University of Mississippi USA [email protected] Mahesh Vanjani Texas Southern University USA [email protected] Abstract Until fairly recently, translation among a large variety of natural languages has been difficult and costly. Now, several free, Web-based machine translation (MT) services can provide support, but relatively little research has been conducted on their accuracies. A study of four of these services using German-to-English and Spanish-to-English translations showed that Google Translate appeared to be superior. Further study using this system alone showed that while translations were not always perfect, their understandability was quite high.
    [Show full text]
  • Trados Studio Apps/Plugins for Machine Translation Latest Update: 7 April, 2018
    Trados Studio apps/plugins for machine translation Latest update: 7 April, 2018. For a long time now, I’ve been intrigued by the very large number of apps/ plugins in the Studio appstore which give access – free or paid – to various types of machine translation services and facilities. Since I have lately found that the use of MT may give surprisingly good results at least for En > Sv (as well as completely useless ones), I was curious to know more about all these various options. Below is a brief overview of what I found trying to explore them to the best of my ability. Some general observations: Several of the plugins offer to build MT engines based on your own TMs (with some of them, that’s the only option) and, in some cases, also termbase data. This requires fairly big TMs – typically at least 80,000 TUs – for reasonable usefulness. This type of service of course also means full confidentiality (you are its only user). However, normally such an engine suffers the same problem as other MT engines: it is not updated while you translate; you have to rebuild the it with the new TM data – and that will take some time. Newer engines, however, gives the possibility of adding fragments as you go (SDL’s Adaptive MT does this automatically, but only for some language combinations), but for full usage of all new TUs, the engine must be rebuilt. Some plugins require you to sign up for an account, free or paid, but details about that is not always provided with the plugin/app.
    [Show full text]
  • Stefanie Geldbach: Lexicon Exchange in MT
    Stefanie Geldbach Lexicon Exchange in MT The Long Way to Standardization Abstract in diff erent systems. MT systems typically fol- Th is paper discusses the question to what extent low a lemma-oriented approach for the repre- lexicon exchange in MT has been standardized sentation of homonymy which means that diff e- during the last years. Th e introductory section rent semantic readings of one word are collapsed is followed by a brief description of OLIF2, a into one entry. Th e entry for Maus in the Ger- format specifi cally designed for the exchange of man monolexicon of LexShop 2.2 (see Section terminological and lexicographical data (Section 3.4) illustrates this approach. Th is entry contains 2). Section 3 contains an overview of the import/ (among others) following feature-value pairs: export functionalities of fi ve MT systems (Promt Expert 7.0, Systran 5.0 Professional Premium, CAN “Maus” Translate pro 8.0, LexShop 2.2, OpenLogos). CAT NST Th is evaluation shows that despite the standar- ALO “Maus” dization eff orts of the last years the exchange of TYN (ANI C-POT) lexicographical data between MT systems is still not a straightforward task. Th e feature TYN (type of noun) which indica- tes the semantic type of the given noun has two 1 Introduction values, ANI (animal) and C-POT (concrete-po- Th e creation and maintenance of MT lexicons tent) representing two diff erent concepts, i.e. the is time-consuming and cost-intensive. Th erefore, small rodent and the peripheral device. the development of standardized exchange for- Term bases usually are concept-oriented mats has received considerable attention over the which means that diff erent semantic readings of last years.
    [Show full text]
  • Online Translation Pricing Issues»
    Online Translation Pricing Issues Claire Larsonneur Abstract Digital technologies such as translation platforms, crowdsourcing and neural machine translation disrupt the economics of translation. Benchmarking the pricing policies of nine global language services firms uncovers a shift Claire Larsonneur towards online business models that contribute to reshaping the traditional volume-based content-oriented 2018 University Paris 8 model of translation towards a range of linguistic services Claire.larsonneur@univ- focused on user experience. de e paris8.fr; ORCID: Keywords: online translation, economics, pricing, freemium, 0000-0002-5129-5844 language services, user experience, content. desembr Resum Les tecnologies digitals, com les plataformes de traducció, Publicació: | el crowdsourcing i la traducció automàtica neuronal han creat disrupció en l'economia de la traducció. L'anàlisi de les polítiques de preus de nou empreses de serveis lingüístics d'abast mundial revela un canvi cap a models en línia que contribueixen a reformar el model de traducció tradicional basat en el volum i orientat al contingut per oferir un catàleg de serveis lingüístics centrat en l'experiència d'usuari. 2018 de juliol de 20 Paraules clau: Traducció en línia; economia; tarifació; serveis de semipagament; serveis lingüístics, experiència d'usuari; contingut. | Acceptació: Acceptació: | Resumen Las tecnologías digitales como las plataformas de traducción, el crowdsourcing y la traducción automática neuronal disrumpen la economía de la traducción. El análisis de las políticas de precios de nueve empresas de servicios lingüísticos de envergadura mundial muestra un 2018 de març de 3 cambio hacia modelos de negocio en línea que contribuyen a reformar el modelo de traducción basado en el volumen y orientado al contenido para ofrecer un Rebuda: 2 Rebuda: catálogo de servicios lingüísticos centrado en la experiencia de usuario.
    [Show full text]
  • English/Arabic/English Machine Translation: a Historical Perspective Muhammad Raji Zughoul Et Awatef Miz’Il Abu-Alshaar
    Document généré le 26 sept. 2021 12:34 Meta Journal des traducteurs Translators' Journal English/Arabic/English Machine Translation: A Historical Perspective Muhammad Raji Zughoul et Awatef Miz’il Abu-Alshaar Le prisme de l’histoire Résumé de l'article The History Lens Cet article examine l’histoire et l’évolution des applications de la traduction Volume 50, numéro 3, août 2005 automatique (TA) en langue arabe, dans le contexte de l’histoire de la TA en général. Il commence par décrire les débuts de la TA aux États-Unis et son URI : https://id.erudit.org/iderudit/011612ar déclin dû à l’épuisement du financement ; ensuite, son renouveau suscité par DOI : https://doi.org/10.7202/011612ar la mondialisation, le développement des technologies de l’information et les besoins croissants de lever les barrières linguistiques. Finalement, il aborde les progrès vertigineux réalisés grâce à l’informatique. L’article étudie aussi les Aller au sommaire du numéro principales approches de la TA dans une perspective historique. Le cas de l’arabe est traité dans cette perspective, compte tenu des travaux effectués par les instituts de recherche occidentaux et quelques sociétés privées Éditeur(s) occidentales. Un accent particulier est mis sur les recherches de la société arabe Sakr, fondée dès 1982, qui a mis au point plusieurs logiciels de Les Presses de l'Université de Montréal traitement de langues naturelles pour l’arabe. Ces divers logiciels de TA arabe-anglais-arabe ainsi que des applications associées sont présentés dans ISSN un cadre historique. 0026-0452 (imprimé) 1492-1421 (numérique) Découvrir la revue Citer cet article Zughoul, M.
    [Show full text]
  • Exploring Machine Translation on the Web Ana Guerberof Arenas
    Exploring Machine Translation on the Web Ana Guerberof Arenas PhD programme in Translation and Intercultural Studies Universitat Rovira i Virgili, Tarragona, Spain [email protected] Abstract This article briefly explores machine translation on the web, its history and current research. It briefly examines as well four free on-line machine translation engines in terms of language combinations offered, text length accepted and document formats supported as well as the quality of their raw MT output. Keywords machine translation, free on-line service, web, internet, MT 1. Introduction Machine Translation (MT) and the web have had a long and endurable relationship that continues to grow and consolidate. Users frequently use free machine translation on the web to understand texts coming from another language (often referred to as assimilation) or to publish a text into another language (dissemination). Moreover, they also use MT on the web to communicate instantly with other users in different languages through instant messaging. MT providers use the readily available bilingual data on the web to boost the performance of their engines in different language combinations. And finally, many language and translation teachers and students are using MT on the web to help their language learning as well as translation and post-editing strategies. In this article we will look at free MT services offered on the web and explore their performance through a fast comparison of four different engines. The purpose of this article is not to setup a scientific experiment but to give general information on this topic. 2. Brief history In the 1980s the MT provider Systran implemented a service in France to be used on the postal service Minitel that allowed basic paid translation of short strings on a few language combinations.
    [Show full text]
  • The Effect of Machine Translation on the Performance of Arabic
    EACL 2006 Workshop on Multilingual Question Answering - MLQA06 The Affect of Machine Translation on the Performance of Arabic- English QA System Azzah Al-Maskari Mark Sanderson Dept. of Information Studies, Dept. of Information Studies, University of Sheffield, University of Sheffield, Sheffield, S10 2TN, UK Sheffield, S10 2TN, UK [email protected] [email protected] According to the Global Reach web site Abstract (2004), shown in Figure 1, it could be estimated that an English speaker has access to around 23 The aim of this paper is to investigate times more digital documents than an Arabic how much the effectiveness of a Ques- speaker. One can conclude from the given infor- tion Answering (QA) system was af- mation shown in the Figure that cross-language fected by the performance of Machine is potentially very useful when the required in- Translation (MT) based question transla- formation is not available in the users’ language. tion. Nearly 200 questions were selected from TREC QA tracks and ran through a Dutch 1.90% Arabic, question answering system. It was able to Portuegese 1.70% answer 42.6% of the questions correctly 3.3% in a monolingual run. These questions Italian, 4.1% Korean 4.2% were then translated manually from Eng- English, lish into Arabic and back into English us- French 4.5% 39.6% ing an MT system, and then re-applied to German the QA system. The system was able to 7.4% answer 10.2% of the translated questions. Japanese An analysis of what sort of translation er- 9% ror affected which questions was con- Spanish, ducted, concluding that factoid type 9.6% Chinses, questions are less prone to translation er- 14.7% ror than others.
    [Show full text]
  • A Comparison of Free Online Machine Language Translators Mahesh Vanjani Jesse H
    Journal of Management Science and Business Intelligence, 2020, 5–1 July. 2020, pages 26-31 doi: 10.5281/zenodo.3960835 http://www.ibii-us.org/Journals/JMSBI/ ISBN 2472-9264 (Online), 2472-9256 (Print) A Comparison of Free Online Machine Language Translators Mahesh Vanjani Jesse H. Jones School of Business, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004 Email: [email protected] Received on 5/15/2020; revised on 7/25/2020; published on 7/26/2020 Abstract Automatic Language Translators also referred to as machine translation software automate the process of language translation without the intervention of humans While several automated language translators are available online at no cost there are large variations in their capabilities. This article reviews prior tests of some of these systems, and, provides a new and current comprehensive evaluation of the following eight: Google Translate, Bing Translator, Systran, PROMT, Babylon, WorldLingo, Yandex, and Reverso. This re- search could be helpful for users attempting to explore and decide which automated language translator best suits their needs. Keywords: Automated Language Translator, Multilingual, Communication, Machine Translation language translators: Google Translate, Bing Translator, Systran, 1 Introduction PROMT, Babylon, WorldLingo, Yandex, and Reverso. This research could be helpful for users attempting to explore and decide which auto- Automatic Language Translators also referred to as machine translation mated language translator best suits their needs. software automate the process of language translation without the inter- vention of humans. Text from the source language is translated to text in the target language. The most basic automatic language translators strictly 2 Prior Comparisons using Human Review of Text rely on word-for-word substitution.
    [Show full text]
  • SYSTRAN-7-User-Guide.Pdf
    SYSTRAN Desktop 7 User Guide i Table of Contents Chapter 1: SYSTRAN Desktop 7 Overview ............................................................. 1 What's New? ....................................................................................................................... 3 SYSTRAN Desktop 7 Products Comparison .................................................................... 4 Special Terms Used in this Guide ..................................................................................... 7 About Language Translation Software ............................................................................. 8 SYSTRAN Support ............................................................................................................. 8 Symbols .......................................................................................................................... 8 Tips ................................................................................................................................. 8 Notes .............................................................................................................................. 8 Cautions .......................................................................................................................... 8 Typographic Conventions ................................................................................................. 8 Menu, Command, and Button Names ............................................................................. 8 Filenames and Items You Type
    [Show full text]
  • 2003 Q1 Revenue Release
    www.systransoft.com Leading Provider of Information and Translation Technologies 2003 Q1 Revenue Release April 23, 2003 -- SYSTRAN (Bloomberg: SYST NM, Reuters: SYTN.LN, Code Euroclear Paris: 7729) today announced consolidated revenue for the first quarter ended March 31, 2003 representing a 51,3 percent increase over revenue for the same quarter last year. As % As % Variation In K€ 2003 2002 of total of total 2003/2002 Software Publishing 1 188 47 % 981 59 % + 21,1 % Home & Small Business (HSB) 171 7 % 59 4 % + 189,8 % Corporate 314 12 % 432 26 % (27,3 %) Resellers 400 16 % 244 15 % + 63,9 % Online sales 303 12 % 245 15 % + 23,7 % Professional Services 1 333 53 % 685 41 % + 94,6 % Corporate 661 26 % 238 14 % + 177 ,7 % Administrations 179 7 % 351 21 % (49,0 %) Co-Funded 493 20 % 96 6 % + 413,5 % Consolidated Revenue 2 521 100 % 1 666 100 % + 51,3 % Revenue for the first quarter 2003 amounts to 2,5 M€ compared with 1,5 M€ for the first quarter of 2002 on the basis of the current scope of consolidation, reflecting an increase of 66,7% in sales. Increase of consolidated revenue of 51,3 % Software Publishing revenue rose 21,1% compared with the first quarter of 2002, due to the increase of sales by download and the Resellers’ activity. Professional Services are expanding and revenue is up 94,6 % compared with the first quarter of 2002, due to orders received in the second semester of 2002. Corporate sales continue to grow Corporate sales (licenses and professional services) increased by 28,6% at 0,9 M€ during the first quarter of 2003, compared with 0,7 M€ from the same reporting period last year.
    [Show full text]