Specifics of Urban Soils (Technosols) Survey and Mapping
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of Microbial Communities in Technosols Constructed for Industrial Wastelands Restoration Farhan Hafeez
Characterization of microbial communities in Technosols constructed for industrial wastelands restoration Farhan Hafeez To cite this version: Farhan Hafeez. Characterization of microbial communities in Technosols constructed for industrial wastelands restoration. Agricultural sciences. Université de Bourgogne, 2012. English. NNT : 2012DIJOS029. tel-00859362 HAL Id: tel-00859362 https://tel.archives-ouvertes.fr/tel-00859362 Submitted on 7 Sep 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ecole Doctorale Environnements-Santé-STIC-E2S UMR 1347 Agroecology INRA/ Université de Bourgogne/AgroSup Dijon THÈSE Pour obtenir le grade de Docteur de l’Université de Bourgogne Discipline: Sciences Vie Spécialité : Ecologie Microbienne Par Farhan HAFEEZ Le 06 Septembre 2012 Characterization of microbial communities in Technosols constructed for industrial wastelands restoration Directeur de thèse Laurent PHILIPPOT Co-directeur de thèse Fabrice MARTIN-LAURENT E. BENIZRI Professeur, Université de Lorraine, INRA , Nancy Rapporteur F. DOUAY Enseignant-Chercheur , Groupe ISA, Lille Rapporteur J. GUZZO Professeur, Université de Bourgogne, Dijon Examinateur C. SCHWARTZ Professeur, Université de Lorraine, INRA, Nancy Examinateur L. PHILIPPOT Directeur de Recherche, INRA, Dijon Directeur de thèse F. MARTIN-LAURENT Directeur de Recherche, INRA, Dijon Co-directeur de thèse Dedication I dedicate this dissertation to my family, who always motivated and encouraged me to fulfill my dreams, and especially…. -
Constructed Technosols: a Strategy Toward a Circular Economy
applied sciences Review Constructed Technosols: A Strategy toward a Circular Economy Debora Fabbri 1 , Romeo Pizzol 1, Paola Calza 1, Mery Malandrino 1 , Elisa Gaggero 1, Elio Padoan 2,* and Franco Ajmone-Marsan 2 1 Department of Chemistry, University of Turin, via P. Giuria 5, 10125 Turin, Italy; [email protected] (D.F.); [email protected] (R.P.); [email protected] (P.C.); [email protected] (M.M.); [email protected] (E.G.) 2 Department of Agricultural, Forestry and Food Sciences, University of Turin, 10095 Grugliasco, Italy; [email protected] * Correspondence: [email protected] Abstract: Soil is a non-renewable natural resource. However, the current rates of soil usage and degra- dation have led to a loss of soil for agriculture, habitats, biodiversity, and to ecosystems problems. Urban and former industrial areas suffer particularly of these problems, and compensation measures to restore environmental quality include the renaturation of dismissed areas, de-sealing of surfaces, or the building of green infrastructures. In this framework, the development of methodologies for the creation of soils designed to mimic natural soil and suitable for vegetation growth, known as constructed soils or technosols, are here reviewed. The possible design choices and the starting materials have been described, using a circular economy approach, i.e., preferring non-contaminated wastes to non-renewable resources. Technosols appear to be a good solution to the problems of land degradation and urban green if using recycled wastes or by-products, as they can be an alternative to the remediation of contaminated sites and to importing fertile agricultural soil. -
Basic Soil Science W
Basic Soil Science W. Lee Daniels See http://pubs.ext.vt.edu/430/430-350/430-350_pdf.pdf for more information on basic soils! [email protected]; 540-231-7175 http://www.cses.vt.edu/revegetation/ Well weathered A Horizon -- Topsoil (red, clayey) soil from the Piedmont of Virginia. This soil has formed from B Horizon - Subsoil long term weathering of granite into soil like materials. C Horizon (deeper) Native Forest Soil Leaf litter and roots (> 5 T/Ac/year are “bio- processed” to form humus, which is the dark black material seen in this topsoil layer. In the process, nutrients and energy are released to plant uptake and the higher food chain. These are the “natural soil cycles” that we attempt to manage today. Soil Profiles Soil profiles are two-dimensional slices or exposures of soils like we can view from a road cut or a soil pit. Soil profiles reveal soil horizons, which are fundamental genetic layers, weathered into underlying parent materials, in response to leaching and organic matter decomposition. Fig. 1.12 -- Soils develop horizons due to the combined process of (1) organic matter deposition and decomposition and (2) illuviation of clays, oxides and other mobile compounds downward with the wetting front. In moist environments (e.g. Virginia) free salts (Cl and SO4 ) are leached completely out of the profile, but they accumulate in desert soils. Master Horizons O A • O horizon E • A horizon • E horizon B • B horizon • C horizon C • R horizon R Master Horizons • O horizon o predominantly organic matter (litter and humus) • A horizon o organic carbon accumulation, some removal of clay • E horizon o zone of maximum removal (loss of OC, Fe, Mn, Al, clay…) • B horizon o forms below O, A, and E horizons o zone of maximum accumulation (clay, Fe, Al, CaC03, salts…) o most developed part of subsoil (structure, texture, color) o < 50% rock structure or thin bedding from water deposition Master Horizons • C horizon o little or no pedogenic alteration o unconsolidated parent material or soft bedrock o < 50% soil structure • R horizon o hard, continuous bedrock A vs. -
The State of Soil in Europe
The State of Soil in Europe A contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report— SOER 2010 Arwyn Jones, Panos Panagos, Sara Barcelo, Faycal Bouraoui, Claudio Bosco, Olivier Dewitte, Ciro Gardi, Markus Erhard, Javier Hervás, Roland Hiederer, Simon Jeffery, Anke Lükewille, Luca Marmo, Luca Montanarella, Claudia Olazábal, Jan-Erik Petersen, Vit Penizek, Thomas Strassburger, Gergely Tóth, Miet Van Den Eeckhaut, Marc Van Liedekerke, Frank Verheijen, Eva Viestova, Yusuf Yigini EUR 25186 EN - 2012 European Commission Joint Research Centre Institute for Environment and Sustainability Contact information Arwyn Jones Address: TP 280, Via Enrico Fermi, 2749 ‐ 21027 ‐ Ispra (VA) – Italy E‐mail: [email protected] Tel.: +39 0332 789162 Fax: +39 0332 786394 http://ies.jrc.ec.europa.eu/ http://www.jrc.ec.europa.eu/ Legal Notice Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use which might be made of this publication. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server http://europa.eu/ JRC68418 EUR 25186 EN ISBN 978‐92‐79‐22805‐6 (print) ISBN 978‐92‐79‐22806‐3 (PDF) ISSN 1018‐5593 (print) ISSN 1831‐9424 (online) -
Making Soils a Resource Through Microbial Labor
This is a repository copy of Nonhuman labor and the making of resources: making soils a resource through microbial labor. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/152381/ Version: Published Version Article: Krzywoszynska, A. orcid.org/0000-0002-8304-0440 (2020) Nonhuman labor and the making of resources: making soils a resource through microbial labor. Environmental Humanities, 12 (1). pp. 227-249. ISSN 2201-1919 https://doi.org/10.1215/22011919-8142319 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can’t change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Nonhuman Labor and the Making of Resources Making Soils a Resource through Microbial Labor ANNA KRZYWOSZYNSKA Department of Geography, University of Sheffield, UK Abstract With soils increasingly seen as living ecosystems, the understanding of the rela- tionship between soils and agricultural labor is changing. A shift from working the soil to working with the soil is hoped to deliver a true ecological modernization of capitalist agri- culture, making the production of ever-growing yields and the maintenance of healthy eco- systems co-constitutive. -
Early Colonisation of Constructed Technosols by Macro-Invertebrates Mickael Hedde, Johanne Nahmani, Geoffroy Séré, Apolline Auclerc, Jérôme Cortet
Early colonisation of constructed technosols by macro-invertebrates Mickael Hedde, Johanne Nahmani, Geoffroy Séré, Apolline Auclerc, Jérôme Cortet To cite this version: Mickael Hedde, Johanne Nahmani, Geoffroy Séré, Apolline Auclerc, Jérôme Cortet. Early colonisation of constructed technosols by macro-invertebrates. Journal of Soils and Sediments, Springer Verlag, 2019, 19 (8), pp.3193-3203. 10.1007/s11368-018-2142-9. hal-02019968 HAL Id: hal-02019968 https://hal.archives-ouvertes.fr/hal-02019968 Submitted on 14 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Soils and Sediments https://doi.org/10.1007/s11368-018-2142-9 SUITMA 9: URBANIZATION — CHALLENGES AND OPPORTUNITIES FOR SOIL FUNCTIONS AND ECOSYSTEM SERVICES Early colonization of constructed Technosols by macro-invertebrates Mickaël Hedde1,2 & Johanne Nahmani3 & Geoffroy Séré4,5 & Apolline Auclerc4,5 & Jerome Cortet6 Received: 27 October 2017 /Accepted: 17 September 2018 # Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Purpose Anthropogenic activities lead to soil degradation and loss of biodiversity, but also contribute to the creation of novel ecosystems. Pedological engineering aims at constructing Technosols with wastes and by-products to reclaim derelict sites and to restore physico-chemical functions. -
The Muencheberg Soil Quality Rating (SQR)
The Muencheberg Soil Quality Rating (SQR) FIELD MANUAL FOR DETECTING AND ASSESSING PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & Ralf Dannowski Leibniz-Zentrum fuer Agrarlandschaftsforschung (ZALF), Muencheberg, Germany with contributions of Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany 1 Draft, Nov. 2007 The Muencheberg Soil Quality Rating (SQR) FIELD MANUAL FOR DETECTING AND ASSESSING PROPERTIES AND LIMITATIONS OF SOILS FOR CROPPING AND GRAZING Lothar Mueller, Uwe Schindler, Axel Behrendt, Frank Eulenstein & Ralf Dannowski Leibniz-Centre for Agricultural Landscape Research (ZALF) e. V., Muencheberg, Germany with contributions of Sandro L. Schlindwein, University of St. Catarina, Florianopolis, Brasil T. Graham Shepherd, Nutri-Link, Palmerston North, New Zealand Elena Smolentseva, Russian Academy of Sciences, Institute of Soil Science and Agrochemistry (ISSA), Novosibirsk, Russia Jutta Rogasik, Federal Agricultural Research Centre (FAL), Institute of Plant Nutrition and Soil Science, Braunschweig, Germany 2 TABLE OF CONTENTS PAGE 1. Objectives 4 2. Concept 5 3. Procedure and scoring tables 7 3.1. Field procedure 7 3.2. Scoring of basic indicators 10 3.2.0. What are basic indicators? 10 3.2.1. Soil substrate 12 3.2.2. Depth of A horizon or depth of humic soil 14 3.2.3. Topsoil structure 15 3.2.4. Subsoil compaction 17 3.2.5. Rooting depth and depth of biological activity 19 3.2.6. -
Good Practices for the Preparation of Digital Soil Maps
UNIVERSIDAD DE COSTA RICA CENTRO DE INVESTIGACIONES AGRONÓMICAS FACULTAD DE CIENCIAS AGROALIMENTARIAS GOOD PRACTICES FOR THE PREPARATION OF DIGITAL SOIL MAPS Resilience and comprehensive risk management in agriculture Inter-american Institute for Cooperation on Agriculture University of Costa Rica Agricultural Research Center UNIVERSIDAD DE COSTA RICA CENTRO DE INVESTIGACIONES AGRONÓMICAS FACULTAD DE CIENCIAS AGROALIMENTARIAS GOOD PRACTICES FOR THE PREPARATION OF DIGITAL SOIL MAPS Resilience and comprehensive risk management in agriculture Inter-american Institute for Cooperation on Agriculture University of Costa Rica Agricultural Research Center GOOD PRACTICES FOR THE PREPARATION OF DIGITAL SOIL MAPS Inter-American institute for Cooperation on Agriculture (IICA), 2016 Good practices for the preparation of digital soil maps by IICA is licensed under a Creative Commons Attribution-ShareAlike 3.0 IGO (CC-BY-SA 3.0 IGO) (http://creativecommons.org/licenses/by-sa/3.0/igo/) Based on a work at www.iica.int IICA encourages the fair use of this document. Proper citation is requested. This publication is also available in electronic (PDF) format from the Institute’s Web site: http://www.iica. int Content Editorial coordination: Rafael Mata Chinchilla, Dangelo Sandoval Chacón, Jonathan Castro Chinchilla, Foreword .................................................... 5 Christian Solís Salazar Editing in Spanish: Máximo Araya Acronyms .................................................... 6 Layout: Sergio Orellana Caballero Introduction .................................................. 7 Translation into English: Christina Feenny Cover design: Sergio Orellana Caballero Good practices for the preparation of digital soil maps................. 9 Printing: Sergio Orellana Caballero Glossary .................................................... 15 Bibliography ................................................. 18 Good practices for the preparation of digital soil maps / IICA, CIA – San Jose, C.R.: IICA, 2016 00 p.; 00 cm X 00 cm ISBN: 978-92-9248-652-5 1. -
Progressive and Regressive Soil Evolution Phases in the Anthropocene
Progressive and regressive soil evolution phases in the Anthropocene Manon Bajard, Jérôme Poulenard, Pierre Sabatier, Anne-Lise Develle, Charline Giguet- Covex, Jeremy Jacob, Christian Crouzet, Fernand David, Cécile Pignol, Fabien Arnaud Highlights • Lake sediment archives are used to reconstruct past soil evolution. • Erosion is quantified and the sediment geochemistry is compared to current soils. • We observed phases of greater erosion rates than soil formation rates. • These negative soil balance phases are defined as regressive pedogenesis phases. • During the Middle Ages, the erosion of increasingly deep horizons rejuvenated pedogenesis. Abstract Soils have a substantial role in the environment because they provide several ecosystem services such as food supply or carbon storage. Agricultural practices can modify soil properties and soil evolution processes, hence threatening these services. These modifications are poorly studied, and the resilience/adaptation times of soils to disruptions are unknown. Here, we study the evolution of pedogenetic processes and soil evolution phases (progressive or regressive) in response to human-induced erosion from a 4000-year lake sediment sequence (Lake La Thuile, French Alps). Erosion in this small lake catchment in the montane area is quantified from the terrigenous sediments that were trapped in the lake and compared to the soil formation rate. To access this quantification, soil processes evolution are deciphered from soil and sediment geochemistry comparison. Over the last 4000 years, first impacts on soils are recorded at approximately 1600 yr cal. BP, with the erosion of surface horizons exceeding 10 t·km− 2·yr− 1. Increasingly deep horizons were eroded with erosion accentuation during the Higher Middle Ages (1400–850 yr cal. -
Soil Texture Chart Chart the Soil Texture Chart Gives Names Associated with Various Combinations of Sand, Silt and Clay and Is Used to Classify the Texture of a Soil
Name: _________________________________ Soil Texture Directions: Read, highlight, and answer the schoology questions. Until now, we have spent our time defining soil. We know that soil comes from broken down rocks and minerals that have been weathered both mechanically and chemically. We also know that soil contains a variety of parts consisting of sand, soil, clay, and humus. But what is the best soil? I’m sure you are saying loam is the best. You are right, but what exactly is loam? To understand loam, we need to understand how three parts of soil come together. If I were to ask you to draw soil, it would probably look like the image to the right. Most would just draw a pile of dirt. As we are learning though, soil is much more complex than that. Sand, Silt and Clay One of the key ways that we characterize rocks is by texture. Remember that texture refers to how something feels. It can feel grainy, rough, or smooth. Larger particles feel rough while smaller particles feel smooth. For soil, we also use texture to help characterize the type. The texture of soil, just like rocks, refers to the size of the particles that make up the soil. The terms sand, silt, and clay refer to different sizes of the soil particles. Sand, being the larger size of particles, feels gritty. Silt, being moderate in size, has a smooth or floury texture. Clay, being the smaller size of particles, feels sticky. Look at the figure to the right. The size of the circle is relative to each size particle. -
A New Era of Digital Soil Mapping Across Forested Landscapes 14 Chuck Bulmera,*, David Pare´ B, Grant M
CHAPTER A new era of digital soil mapping across forested landscapes 14 Chuck Bulmera,*, David Pare´ b, Grant M. Domkec aBC Ministry Forests Lands Natural Resource Operations Rural Development, Vernon, BC, Canada, bNatural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec, QC, Canada, cNorthern Research Station, USDA Forest Service, St. Paul, MN, United States *Corresponding author ABSTRACT Soil maps provide essential information for forest management, and a recent transformation of the map making process through digital soil mapping (DSM) is providing much improved soil information compared to what was available through traditional mapping methods. The improvements include higher resolution soil data for greater mapping extents, and incorporating a wide range of environmental factors to predict soil classes and attributes, along with a better understanding of mapping uncertainties. In this chapter, we provide a brief introduction to the concepts and methods underlying the digital soil map, outline the current state of DSM as it relates to forestry and global change, and provide some examples of how DSM can be applied to evaluate soil changes in response to multiple stressors. Throughout the chapter, we highlight the immense potential of DSM, but also describe some of the challenges that need to be overcome to truly realize this potential. Those challenges include finding ways to provide additional field data to train models and validate results, developing a group of highly skilled people with combined abilities in computational science and pedology, as well as the ongoing need to encourage communi- cation between the DSM community, land managers and decision makers whose work we believe can benefit from the new information provided by DSM. -
Policy Brief Soil Sealing and Land Take
The RECARE project is funded by the European Commission FP7 Programme, ENV.2013.6.2-4 ‘Sustainable land care in Europe’. POLICY BRIEF SOIL SEALING AND LAND TAKE SUMMARY Urbanisation is an ongoing trend in Europe leading to land take and soil sealing at the expense of agricultural land and other open landscapes. Despite the extensive loss of productive soils and the valuable ecosystem services that soils provide, the awareness of the magnitude and negative implications of these processes remain relatively low. Systematic solutions are required to reduce the scale of land take and soil sealing. More specifically, an overall strategic aim and framework for sustainable soil management at EU and national level are needed, complemented by binding and quantitative land take targets and adequate financial and technical support at national scale. Municipal spatial planning is one of the most important instruments to foster sustainable city development and highlights the importance of cities to guide this process. This also includes testing and deploying new approaches such as joint regional planning, Open Space concepts or the application of zoning concepts to protect the most fertile and valuable soils from sealing. In this policy brief, we illustrate the scale of the problem and identify ready-made solutions and steps policy makers and practitioners can take across different levels, from city planning to national and European level. INTRODUCTION B Europe loses about 1.007 km² of soil due to land take M r annually (EEA 2017), which is approximately a loss f the size of the city of Berlin. Land take especially affects metropolitan areas (peri-urban areas) usually e characterized by land with high soil quality and some of the most productive agricultural soils.