Algebraic Topology: Math 231Br Notes

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Topology: Math 231Br Notes ALGEBRAIC TOPOLOGY: MATH 231BR NOTES AARON LANDESMAN CONTENTS 1. Introduction 4 2. 1/25/16 5 2.1. Overview 5 2.2. Vector Bundles 5 2.3. Tautological bundles on projective spaces and Grassmannians 7 2.4. Operations on vector bundles 8 3. 1/27/16 8 3.1. Logistics 8 3.2. Constructions with Vector Bundles 8 3.3. Grassmannians and the universal bundle 10 4. 1/29/16 12 5. 2/1/16 15 5.1. Characteristic Classes 15 5.2. Leray-Hirsch Theorem 17 6. 2/3/16 18 6.1. Review 18 7. 2/5/16 21 8. 2/10/16 24 8.1. Reviewing Leray-Hirsch 24 8.2. Review of Chern and Stiefel-Whitney Classes 25 8.3. Examples and Calculations 26 9. 2/12/15 28 9.1. Logistics 28 9.2. Applications of Stiefel-Whitney classes 28 9.3. Pontryagin Classes 31 10. 2/17/16 31 10.1. Theory on Pontryagin classes 31 10.2. Calculations and Examples with Pontryagin Classes 33 10.3. Euler Classes 34 11. 2/19/16 35 11.1. Review and Thom Classes 35 11.2. Euler Classes 37 11.3. Examples of Thom and Euler Classes 38 12. 2/22/16 39 12.1. More on Euler Classes 39 12.2. K Theory 41 13. 2/24/16 44 1 2 AARON LANDESMAN 13.1. Examples for K theory 44 13.2. Reduced K theory 45 13.3. Products 45 14. 2/26/16 48 14.1. Equivalent definitions of relative K theory 48 14.2. Back to Smash Products 49 15. 2/29/16 52 15.1. Review 52 15.2. Fredholm operators and index 53 16. 3/2/16 55 16.1. More on Fredholm operators 55 16.2. The index of a family 56 16.3. More examples of Fredholm operators 58 17. 3/4/2016 58 17.1. Toeplitz Operators 60 18. 3/7/2016 61 19. 3/9/16 65 19.1. Review of infinite dimensional groups 65 19.2. Real K theory 67 19.3. Symplectic K theory 68 20. 3/11/2016 69 20.1. Chern character 70 20.2. 73 21. 3/21/2016 75 21.1. Clifford Algebras and Clifford Modules 76 22. 3/23/2016 78 22.1. How to obtain the Z/2-grading 79 22.2. Bundles of Clifford modules 80 23. 3/25/16 81 23.1. Clifford Modules 81 24. 3/28/16 84 24.1. 86 25. 3/30/16 88 25.1. Review 88 25.2. Calculating A^ 89 25.3. Relating our computations to A^ 91 26. 4/1/16 93 27. 4/4/16 97 27.1. Formalities 97 27.2. Notations 98 27.3. The exact sequence for K-theory in negative degrees 99 28. 4/6/16 101 28.1. Review 101 28.2. Bordism and cobordism 105 29. 4/8/2016 106 29.1. Oriented cobordism 107 ALGEBRAIC TOPOLOGY: MATH 231BR NOTES 3 30. 4/11/16 108 30.1. Review 108 31. 4/13/16 112 31.1. Oriented bordism as a homology theory 112 32. 4/15/16 115 32.1. Review 115 33. 4/18/16 119 33.1. Review 119 33.2. The relations between framed cobordism and homotopy groups 119 34. 4/20/16 122 34.1. Stabilization 122 34.2. J-homomorphism 123 35. 4/22/16 126 35.1. Low stable homotopy groups 126 35.2. More about Π3 127 35.3. Another integrality property for A^ 128 36. 4/25/16 130 36.1. Spectra 130 36.2. More involved examples of spectra 131 36.3. Fundamental groups of spectra 133 37. 4/27/16 134 37.1. Review 134 37.2. Constructing the long exact sequence for cohomology 135 37.3. Examples of cohomology theories for spectra 136 37.4. Stable homotopy and stable homotopy 137 4 AARON LANDESMAN 1. INTRODUCTION Peter Kronheimer taught a course (Math 231br) on algebraic topology and algebraic K theory at Harvard in Spring 2016. These are my “live-TEXed“ notes from the course. Conventions are as follows: Each lecture gets its own “chapter,” and appears in the table of contents with the date. Of course, these notes are not a faithful representation of the course, either in the math- ematics itself or in the quotes, jokes, and philosophical musings; in particular, the errors are my fault. By the same token, any virtues in the notes are to be credited to the lecturer and not the scribe. 1 Thanks to James Tao for taking notes on the days I missed class. Please email suggestions to [email protected]. 1This introduction has been adapted from Akhil Matthew’s introduction to his notes, with his permission. ALGEBRAIC TOPOLOGY: MATH 231BR NOTES 5 2. 1/25/16 2.1. Overview. This course will begin with (1) Vector bundles (2) characteristic classes (3) topological K-theory (4) Bott’s periodicity theorem (about the homotopy groups of the orthogonal and uni- tary groups, or equivalently about classifying vector bundles of large rank on spheres) Remark 2.1. There are many approaches to Bott periodicity. We give a proof in class following an argument of Atiyah. This introduces index theory for Fredholm operators and related things. Remark 2.2. K-theory is like ordinary homology (originally called an extraordinary ho- mology theory, but with the homology of a point not equal to Z). The other archetype of a general homology theory like this is cobordism theory. If there’s time, we’ll also talk about generalized homology theories, using stable homo- topy and spectra. Some books, useful for this class include (1) Milnor and Stashelf’s Characteristic Classes (2) Atiyah’s K-theory (3) Atiyah’s collected works (4) Hatcher’s Vector bundles and K-theory (online and incomplete) Remark 2.3. Atiyah’s K-theory addresses his book for someone who hasn’t taken 231a. For example, he proves Brouwer’s fixed point theorem. logistical information: (1) Information for the CA: Name: Adrian Zahariuc email: [email protected] (2) There will be slightly less than weekly homework. Homework 1 is up already. 2.2. Vector Bundles. Definition 2.4. Let X be a topological space. A real (or complex) vector bundle on X (or over X) is a topological space E with a continuous map φ : E X and a real (or complex) -1 vector space structure on each fiber Ex := φ (x). This must satisfy the additional condi- tion of being locally trivial, meaning that there is an open cover! U of X so that for each -1 U 2 U with U ⊂ X, the restriction of E to U, notated EU := φ (U) ⊂ E is trivial. Here, trivial means there exists a homeomorphism φ φ n EU U × R (2.1) φU π U id U or to U × Cn for the complex case, where n φjEx : Ex fxg × R is linear. ! 6 AARON LANDESMAN Example 2.5. (1) The trivial vector bundle E = X × Rn with φ : X × Rn X the projection. 1 (2) The Mobius¨ vector bundle on S . Take E˜ = I × R and I = [0, 1]. Then, take E!= E˜ / ∼ with ∼ the equivalence relation with (0, t) ∼ (1, -t). (3) The tangent bundle of Sn. Recall Sn = x 2 Rn+1 : jxj = 1 . Define TSn := (x, v) : x 2 Sn, v 2 Rn+1, x · v = 0 . We certainly have a projection map TSn Sn where the fibers are vector spaces n ∼ ? n+1 (TS )x = x ⊂ R . We shall now check local triviality, which we shall often not do in the future. Consider ! n U := fx : x 2 S , xn+1 > 0g . We have an inclusion TU TSn Over U this is trivial with ! TU U × Rn (x, v) 7 (x, π(v)) n+1 n n+1 ! with π : R R = x 2 R : xn+1 = 0 . (4) If X ⊂ Rn is a smooth manifold, then! TX = f(!x, v) ⊂ X × Rn : x 2 X, v 2 Rn, v is tangent to X at xg . (5) The normal bundle to X, ν(X) = f(x, v) : v is orthogonal to all vectors tangent to X at x g . Definition 2.6. Recall, a section of E X is a map s : X E where φ ◦ s = idX. Lemma 2.7. The M¨obiusbundle is not isomorphic to the trivial vector bundle on the circle. ! ! We give two proofs. Proof 1. The Mobius¨ bundle is not orientable, but the trivial bundle is, as can be seen by determining whether the bundle remains connected or is disconnected, after removing the image of the 0 section. Proof 2. The Mobius¨ bundle is not trivial because it has no nonvanishing section. as can be seen by the intermediate value theorem. Definition 2.8. Two vector bundles p : E X, q : F X are isomorphic over X if φ E F ! ! (2.2) p q X ALGEBRAIC TOPOLOGY: MATH 231BR NOTES 7 commutes, where φ is a homeomorphism and φjEx : Ex Fx is a linear isomorphism. ! 2.3. Tautological bundles on projective spaces and Grassmannians. So far we’ve only looked at real vector bundles, but we will now consider complex ones. n n Definition 2.9. Let CP , or PC denote x : x ⊂ Cn+1 : x is a 1 dimensional linear subspace Definition 2.10. The tautological bundle over CPn be the bundle L := f(x, v) : x 2 CPn, v 2 xg where x is thought of simultaneously as a 1-dimensional space in Cn+1 and a point of CPn.
Recommended publications
  • Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu
    Notes on the Atiyah-Singer Index Theorem Liviu I. Nicolaescu Notes for a topics in topology course, University of Notre Dame, Spring 2004, Spring 2013. Last revision: November 15, 2013 i The Atiyah-Singer Index Theorem This is arguably one of the deepest and most beautiful results in modern geometry, and in my view is a must know for any geometer/topologist. It has to do with elliptic partial differential opera- tors on a compact manifold, namely those operators P with the property that dim ker P; dim coker P < 1. In general these integers are very difficult to compute without some very precise information about P . Remarkably, their difference, called the index of P , is a “soft” quantity in the sense that its determination can be carried out relying only on topological tools. You should compare this with the following elementary situation. m n Suppose we are given a linear operator A : C ! C . From this information alone we cannot compute the dimension of its kernel or of its cokernel. We can however compute their difference which, according to the rank-nullity theorem for n×m matrices must be dim ker A−dim coker A = m − n. Michael Atiyah and Isadore Singer have shown in the 1960s that the index of an elliptic operator is determined by certain cohomology classes on the background manifold. These cohomology classes are in turn topological invariants of the vector bundles on which the differential operator acts and the homotopy class of the principal symbol of the operator. Moreover, they proved that in order to understand the index problem for an arbitrary elliptic operator it suffices to understand the index problem for a very special class of first order elliptic operators, namely the Dirac type elliptic operators.
    [Show full text]
  • Stability of Tautological Bundles on Symmetric Products of Curves
    STABILITY OF TAUTOLOGICAL BUNDLES ON SYMMETRIC PRODUCTS OF CURVES ANDREAS KRUG Abstract. We prove that, if C is a smooth projective curve over the complex numbers, and E is a stable vector bundle on C whose slope does not lie in the interval [−1, n − 1], then the associated tautological bundle E[n] on the symmetric product C(n) is again stable. Also, if E is semi-stable and its slope does not lie in the interval (−1, n − 1), then E[n] is semi-stable. Introduction Given a smooth projective curve C over the complex numbers, there is an interesting series of related higher-dimensional smooth projective varieties, namely the symmetric products C(n). For every vector bundle E on C of rank r, there is a naturally associated vector bundle E[n] of rank rn on the symmetric product C(n), called tautological or secant bundle. These tautological bundles carry important geometric information. For example, k-very ampleness of line bundles can be expressed in terms of the associated tautological bundles, and these bundles play an important role in the proof of the gonality conjecture of Ein and Lazarsfeld [EL15]. Tautological bundles on symmetric products of curves have been studied since the 1960s [Sch61, Sch64, Mat65], but there are still new results about these bundles discovered nowadays; see, for example, [Wan16, MOP17, BD18]. A natural problem is to decide when a tautological bundle is stable. Here, stability means (n−1) (n) slope stability with respect to the ample class Hn that is represented by C +x ⊂ C for any x ∈ C; see Subsection 1.3 for details.
    [Show full text]
  • Characteristic Classes and K-Theory Oscar Randal-Williams
    Characteristic classes and K-theory Oscar Randal-Williams https://www.dpmms.cam.ac.uk/∼or257/teaching/notes/Kthy.pdf 1 Vector bundles 1 1.1 Vector bundles . 1 1.2 Inner products . 5 1.3 Embedding into trivial bundles . 6 1.4 Classification and concordance . 7 1.5 Clutching . 8 2 Characteristic classes 10 2.1 Recollections on Thom and Euler classes . 10 2.2 The projective bundle formula . 12 2.3 Chern classes . 14 2.4 Stiefel–Whitney classes . 16 2.5 Pontrjagin classes . 17 2.6 The splitting principle . 17 2.7 The Euler class revisited . 18 2.8 Examples . 18 2.9 Some tangent bundles . 20 2.10 Nonimmersions . 21 3 K-theory 23 3.1 The functor K ................................. 23 3.2 The fundamental product theorem . 26 3.3 Bott periodicity and the cohomological structure of K-theory . 28 3.4 The Mayer–Vietoris sequence . 36 3.5 The Fundamental Product Theorem for K−1 . 36 3.6 K-theory and degree . 38 4 Further structure of K-theory 39 4.1 The yoga of symmetric polynomials . 39 4.2 The Chern character . 41 n 4.3 K-theory of CP and the projective bundle formula . 44 4.4 K-theory Chern classes and exterior powers . 46 4.5 The K-theory Thom isomorphism, Euler class, and Gysin sequence . 47 n 4.6 K-theory of RP ................................ 49 4.7 Adams operations . 51 4.8 The Hopf invariant . 53 4.9 Correction classes . 55 4.10 Gysin maps and topological Grothendieck–Riemann–Roch . 58 Last updated May 22, 2018.
    [Show full text]
  • FOLIATIONS Introduction. the Study of Foliations on Manifolds Has a Long
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY Volume 80, Number 3, May 1974 FOLIATIONS BY H. BLAINE LAWSON, JR.1 TABLE OF CONTENTS 1. Definitions and general examples. 2. Foliations of dimension-one. 3. Higher dimensional foliations; integrability criteria. 4. Foliations of codimension-one; existence theorems. 5. Notions of equivalence; foliated cobordism groups. 6. The general theory; classifying spaces and characteristic classes for foliations. 7. Results on open manifolds; the classification theory of Gromov-Haefliger-Phillips. 8. Results on closed manifolds; questions of compact leaves and stability. Introduction. The study of foliations on manifolds has a long history in mathematics, even though it did not emerge as a distinct field until the appearance in the 1940's of the work of Ehresmann and Reeb. Since that time, the subject has enjoyed a rapid development, and, at the moment, it is the focus of a great deal of research activity. The purpose of this article is to provide an introduction to the subject and present a picture of the field as it is currently evolving. The treatment will by no means be exhaustive. My original objective was merely to summarize some recent developments in the specialized study of codimension-one foliations on compact manifolds. However, somewhere in the writing I succumbed to the temptation to continue on to interesting, related topics. The end product is essentially a general survey of new results in the field with, of course, the customary bias for areas of personal interest to the author. Since such articles are not written for the specialist, I have spent some time in introducing and motivating the subject.
    [Show full text]
  • On Positivity and Base Loci of Vector Bundles
    ON POSITIVITY AND BASE LOCI OF VECTOR BUNDLES THOMAS BAUER, SÁNDOR J KOVÁCS, ALEX KÜRONYA, ERNESTO CARLO MISTRETTA, TOMASZ SZEMBERG, STEFANO URBINATI 1. INTRODUCTION The aim of this note is to shed some light on the relationships among some notions of posi- tivity for vector bundles that arose in recent decades. Positivity properties of line bundles have long played a major role in projective geometry; they have once again become a center of attention recently, mainly in relation with advances in birational geometry, especially in the framework of the Minimal Model Program. Positivity of line bundles has often been studied in conjunction with numerical invariants and various kinds of asymptotic base loci (see for example [ELMNP06] and [BDPP13]). At the same time, many positivity notions have been introduced for vector bundles of higher rank, generalizing some of the properties that hold for line bundles. While the situation in rank one is well-understood, at least as far as the interdepencies between the various positivity concepts is concerned, we are quite far from an analogous state of affairs for vector bundles in general. In an attempt to generalize bigness for the higher rank case, some positivity properties have been put forward by Viehweg (in the study of fibrations in curves, [Vie83]), and Miyaoka (in the context of surfaces, [Miy83]), and are known to be different from the generalization given by using the tautological line bundle on the projectivization of the considered vector bundle (cf. [Laz04]). The differences between the various definitions of bigness are already present in the works of Lang concerning the Green-Griffiths conjecture (see [Lan86]).
    [Show full text]
  • Manifolds of Low Dimension with Trivial Canonical Bundle in Grassmannians Vladimiro Benedetti
    Manifolds of low dimension with trivial canonical bundle in Grassmannians Vladimiro Benedetti To cite this version: Vladimiro Benedetti. Manifolds of low dimension with trivial canonical bundle in Grassmannians. Mathematische Zeitschrift, Springer, 2018. hal-01362172v3 HAL Id: hal-01362172 https://hal.archives-ouvertes.fr/hal-01362172v3 Submitted on 26 May 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Manifolds of low dimension with trivial canonical bundle in Grassmannians Vladimiro Benedetti∗ May 27, 2017 Abstract We study fourfolds with trivial canonical bundle which are zero loci of sections of homogeneous, completely reducible bundles over ordinary and classical complex Grassmannians. We prove that the only hyper-K¨ahler fourfolds among them are the example of Beauville and Donagi, and the example of Debarre and Voisin. In doing so, we give a complete classifi- cation of those varieties. We include also the analogous classification for surfaces and threefolds. Contents 1 Introduction 1 2 Preliminaries 3 3 FourfoldsinordinaryGrassmannians 5 4 Fourfolds in classical Grassmannians 13 5 Thecasesofdimensionstwoandthree 23 A Euler characteristic 25 B Tables 30 1 Introduction In Complex Geometry there are interesting connections between special vari- eties and homogeneous spaces.
    [Show full text]
  • A Combinatorial Computation of the First Pontryagin Class of the Complex Projective Plane
    LAZAR MILIN A COMBINATORIAL COMPUTATION OF THE FIRST PONTRYAGIN CLASS OF THE COMPLEX PROJECTIVE PLANE ABSTRACT. This paper carries out an explicit computation of the combinatorial formula of Gabrielov, Gel'fand, and Losik for the first Pontryagin class of the complex projective plane with the 9-vertex triangulation discovered by Wolfgang Kfihnel. The conditions of the original formula must be modified since the 8-vertex triangulation of the 3-sphere link of each vertex cannot be realized as the complex of faces of a convex polytope in 4-space, but it can be so realized by a star-shaped polytope, and the space of all such realizations is not connected. 0. INTRODUCTION In a series of papers [24]-[26] in the 1940s, L. S. Pontryagin defined and studied 'characteristic cycles' on smooth manifolds. In the introduction to the first paper of the series, he stressed the importance of having 'a definition of characteristic cycles which would be applicable to combinatorial mani- folds' since it would provide an algorithm for their calculation from 'the combinatorial structure of the manifolds'. In the late 1950s, Rdne Thom [33], and independently Rohlin and Sarc [28], proved that the rational Pontryagin classes are combinatorial invariants, and in the 1960s. S. P. Novikov [23] proved that these classes are topological invariants. No combinatorial formula for Pontryagin classes was proved until the mid-1970s, when Gabrielov et al. [6], [7] established a formula for the first Pontryagin class pl(X) of a combinatorial manifold X. The formula ex- presses Pl(X) in terms of the simplicial structure of X and some additional structure imposed on X, so in this sense the formula is not purely combinatorial.
    [Show full text]
  • The Chern Characteristic Classes
    The Chern characteristic classes Y. X. Zhao I. FUNDAMENTAL BUNDLE OF QUANTUM MECHANICS Consider a nD Hilbert space H. Qauntum states are normalized vectors in H up to phase factors. Therefore, more exactly a quantum state j i should be described by the density matrix, the projector to the 1D subspace generated by j i, P = j ih j: (I.1) n−1 All quantum states P comprise the projective space P H of H, and pH ≈ CP . If we exclude zero point from H, there is a natural projection from H − f0g to P H, π : H − f0g ! P H: (I.2) On the other hand, there is a tautological line bundle T (P H) over over P H, where over the point P the fiber T is the complex line generated by j i. Therefore, there is the pullback line bundle π∗L(P H) over H − f0g and the line bundle morphism, π~ π∗T (P H) T (P H) π H − f0g P H . Then, a bundle of Hilbert spaces E over a base space B, which may be a parameter space, such as momentum space, of a quantum system, or a phase space. We can repeat the above construction for a single Hilbert space to the vector bundle E with zero section 0B excluded. We obtain the projective bundle PEconsisting of points (P x ; x) (I.3) where j xi 2 Hx; x 2 B: (I.4) 2 Obviously, PE is a bundle over B, p : PE ! B; (I.5) n−1 where each fiber (PE)x ≈ CP .
    [Show full text]
  • WITT GROUPS of GRASSMANN VARIETIES Contents Introduction 1
    WITT GROUPS OF GRASSMANN VARIETIES PAUL BALMER AND BAPTISTE CALMES` Abstract. We compute the total Witt groups of (split) Grassmann varieties, over any regular base X. The answer is a free module over the total Witt ring of X. We provide an explicit basis for this free module, which is indexed by a special class of Young diagrams, that we call even Young diagrams. Contents Introduction 1 1. Combinatorics of Grassmann and flag varieties 4 2. Even Young diagrams 7 3. Generators of the total Witt group 12 4. Cellular decomposition 15 5. Push-forward, pull-back and connecting homomorphism 19 6. Main result 21 Appendix A. Total Witt group 27 References 27 Introduction At first glance, it might be surprising for the non-specialist that more than thirty years after the definition of the Witt group of a scheme, by Knebusch [13], the Witt group of such a classical variety as a Grassmannian has not been computed yet. This is especially striking since analogous results for ordinary cohomologies, for K-theory and for Chow groups have been settled a long time ago. The goal of this article is to explain how Witt groups differ from these sister theories and to prove the following: Main Theorem (See Thm. 6.1). Let X be a regular noetherian and separated 1 scheme over Z[ 2 ], of finite Krull dimension. Let 0 <d<n be integers and let GrX (d, n) be the Grassmannian of d-dimensional subbundles of the trivial n- n dimensional vector bundle V = OX over X. (More generally, we treat any vector bundle V admitting a complete flag of subbundles.) Then the total Witt group of GrX (d, n) is a free graded module over the total Witt group of X with an explicit basis indexed by so-called “even” Young diagrams.
    [Show full text]
  • Vector Bundles. Characteristic Classes. Cobordism. Applications
    Math 754 Chapter IV: Vector Bundles. Characteristic classes. Cobordism. Applications Laurenţiu Maxim Department of Mathematics University of Wisconsin [email protected] May 3, 2018 Contents 1 Chern classes of complex vector bundles 2 2 Chern classes of complex vector bundles 2 3 Stiefel-Whitney classes of real vector bundles 5 4 Stiefel-Whitney classes of manifolds and applications 5 4.1 The embedding problem . .6 4.2 Boundary Problem. .9 5 Pontrjagin classes 11 5.1 Applications to the embedding problem . 14 6 Oriented cobordism and Pontrjagin numbers 15 7 Signature as an oriented cobordism invariant 17 8 Exotic 7-spheres 19 9 Exercises 20 1 1 Chern classes of complex vector bundles 2 Chern classes of complex vector bundles We begin with the following Proposition 2.1. ∗ ∼ H (BU(n); Z) = Z [c1; ··· ; cn] ; with deg ci = 2i ∗ Proof. Recall that H (U(n); Z) is a free Z-algebra on odd degree generators x1; ··· ; x2n−1, with deg(xi) = i, i.e., ∗ ∼ H (U(n); Z) = ΛZ[x1; ··· ; x2n−1]: Then using the Leray-Serre spectral sequence for the universal U(n)-bundle, and using the fact that EU(n) is contractible, yields the desired result. Alternatively, the functoriality of the universal bundle construction yields that for any subgroup H < G of a topological group G, there is a fibration G=H ,! BH ! BG. In our A 0 case, consider U(n − 1) as a subgroup of U(n) via the identification A 7! . Hence, 0 1 there exists fibration U(n)=U(n − 1) ∼= S2n−1 ,! BU(n − 1) ! BU(n): Then the Leray-Serre spectral sequence and induction on n gives the desired result, where 1 ∗ 1 ∼ we use the fact that BU(1) ' CP and H (CP ; Z) = Z[c] with deg c = 2.
    [Show full text]
  • 35 Line Bundles on Cpn
    35 Line Bundles on CPn n n Recall CP = {[z0 : z1 : ... : zn]}. Here CP , the set of all complex lines passing through the origin, is defined to a quotient space Cn+1 −{0}/ ∼ where n+1 (z0, z1, ..., zn), (z0, z1, ..., zn) ∈ C −{0} z , z , ..., z λ z , z , ..., z λ ∈ C −{ } are equivalent if and only if ( 0 1 ne)=e ( 0 e 1 n) with 0 . 1 Holomorphic line bundle of degree k over CP The holomorphic line bundle OCP1 (k) 1 e e e 1 of degree k ∈ Z over CP is constructed explicitly as follows. Let CP = U0 ∪ U1 be the standard open covering. Using the standard atlas, take two “trivial” pieces U0 × C and 0 1 i U1 × C with coordinates (z0,ζ ) and (z1,ζ ) where zi is the base coordinate of Ui and ζ is ∗ 1 the fibre coordinate over Ui - and “glue them together” over the set C = CP \{0, ∞} by the identification 1 1 0 ζ z0 = , ζ = k . (121) z1 (z1) This line bundle is usually denoted OCP1 (k), or simply O(k) for brevity. The total space k k H of O(k) is the identification space; thus H consists of the disjoint union U0 U1 of 2 0 1 two copies of C = C × C, with respective coordinates (z0,ζ ) and (z1,ζ ), which have been ∗ ` glued together along C × C according to (121). The transition function from z0 to z1 is 1 g01(z0)= k ; (z0) 1 the other is g10(z1)= (z1)k . n CPn In general for higher dimensional case, let {U} = {Uα}α=0 be the standard atlas on .
    [Show full text]
  • Higher Anomalies, Higher Symmetries, and Cobordisms I
    Higher Anomalies, Higher Symmetries, and Cobordisms I: Classification of Higher-Symmetry-Protected Topological States and Their Boundary Fermionic/Bosonic Anomalies via a Generalized Cobordism Theory Zheyan Wan1;2 and Juven Wang3;4 1 1Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China 2School of Mathematical Sciences, USTC, Hefei 230026, China 3School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540, USA 4Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA 02138, USA Abstract By developing a generalized cobordism theory, we explore the higher global symmetries and higher anomalies of quantum field theories and interacting fermionic/bosonic systems in condensed matter. Our essential math input is a generalization of Thom-Madsen-Tillmann spectra, Adams spectral sequence, and Freed-Hopkins's theorem, to incorporate higher-groups and higher classifying spaces. We provide many examples of bordism groups with a generic H-structure manifold with a higher-group G, and their bordism invariants | e.g. perturbative anomalies of chiral fermions [originated from Adler-Bell-Jackiw] or bosons with U(1) symmetry in any even spacetime dimensions; non-perturbative global anomalies such as Witten anomaly and the new SU(2) anomaly in 4d and 5d. Suitable H such as SO/Spin/O/Pin± enables arXiv:1812.11967v2 [hep-th] 11 Jul 2019 the study of quantum vacua of general bosonic or fermionic systems with time-reversal or reflection symmetry on (un)orientable spacetime. Higher 't Hooft anomalies of dd live on the boundary of (d + 1)d higher-Symmetry-Protected Topological states (SPTs) or symmetric invertible topological orders (i.e., invertible topological quantum field theories at low energy); thus our cobordism theory also classifies and characterizes higher-SPTs.
    [Show full text]