<<

Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2 - 4, 2014, London, U.K. On Algebraization of Classical First Order

Nabila M. Bennour, Kahtan H. Alzubaidy

Abstract - Algebraization of first order logic and its 3)    SSS  )()()( deduction are introduced according to Halmos approach. Application to functional is done. 4) )(  ididS 5)    JSJS )()()()( if    JIJI Index : Polyadic algebra, Polyadic ideal, Polyadic filter, 6)   1 JSSJ ))(()()()( if  is one to one on Functional polyadic algebra. 1  J  .The cardinal number I is called the degree of the

I. INTRODUCTION algebra. If I = n we get the so called n -adic algebra. If There are mainly three approaches to the algebraization of I I first order logic. One approach is to develop cylindric I   then 2   and  idI . Therefore we get algebras[1]. The second approach is by polyadic algebra[2]. only the identity quantifier )(  id . Thus 0 -adic the third one is by category theory [3]. In 1956 P. R. Halmos introduced polyadic algebra to express algebra is just the B . If I  1 then first order logic algebraically. I Polyadic algebra is an extension of Boolean algebra with  idI . Therefore there are only two quantifiers  )( operators corresponding to the usual existential and universal and  I )( . Thus 1-adic algebra is the monadic algebra. quantifiers over several variables together with endomorphi- sms to represent first order logic algebraically. Certain polyadic filters and ultra filters have been used to Polyadic Ideals And Filters

express deduction in polyadic algebra. These ideas are A U of a Boolean algebra B is called a Boolean applied to the specific case functional polyadic algebra. ideal if

II. POLYADIC ALGEBRA i) 0U General definition [3] ii)  Uba for any , Uba Suppose that B is a complete Boolean algebra. An iii) If   UbthenabandUa existential quantifier on B is a mapping :  BB such that A subset F of a Boolean algebra B is called a Boolean filter if i)  0)0( i) 1 F ii)  aa )( for any  Ba . ii)   Fba for any ,  Fba iii)  baba )()())(( for any ,  Bba . iii) If    FbthenabandFa . B ),( is called monadic algebra. A subset U of a polyadic algebra B is called a polyadic

ideal of B if Let I   :  aisIII transformation. Denote the i) U is a Boolean ideal set of all endomorphisms on B by BEnd )( and the set of ii) If   UaJthenUaandIJ all quantifiers on B by BQant )( . iii) If    I  UaSthenIandUa A polyadic algebra is SIB ),,,( where A subset F of a polyadic algebra B is called a polyadic : I  BEndIS )( and I  BQant )(2: such that for filter of B if I I any KJ  2, and ,  I we have i) F is a Boolean filter 1)   id ii) If   FaJthenFaandIJ 2)  KJKJ iii) If    I   FaSthenIandFa .

Manuscript received February 06 2014; revised March 24 2014 Nabila M. Bennour is a lecturer at department, faculty of Proposition 1) [3] science, Benghazi university; e-mail: [email protected] A subset U of a polyadic algebra B is an ideal of it if and Kahtan H. Alzubaidy is a lecturer at Mathematics department, faculty of science, Benghazi university; e-mail: [email protected] only if U is an ideal of the Boolean algebra B and

ISBN: 978-988-19253-5-0 WCE 2014 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online) Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2 - 4, 2014, London, U.K.

 UaI for every Ua . F is a filter of B if and Therefore  21  Jbb . If only if is a filter of the Boolean algebra and F B   21 .... xxxba n , then  Ja . Then J is  FaI whenever  Fa .  a Boolean ideal containing  . Therefore   JU . Proof If  Jb , then  ...  xxxb where x   Let U be an ideal of a polyadic algebra , by the definition 211 n i i.e. Ux  . Then Ub  . Thus   JU as a U is an ideal of a Boolean algebra and  UaI . i     

Let U be an ideal of a Boolean algebra B and Boolean ideal. Let  Ja then 21 ... xxxa n

 UaI for every Ua .       21 ... n 1 2 ...  xIxIxIxxxIaI n  If  IJ , then  aIaJ , so that Therefore   UaI .  UaJ . Now we verify that  UaS , if

I Ua and   I . We have  aIa and ii) A similar argument leads to (ii).

   aISaS , so it means to show that every A filter F of a polyadic algebra is called ultrafilter if F is S acts as identity transformation from I I since there is maximal with respect to the property that 0 F . nothing out of I .Then Ultrafilters satisfy the following important properties [4].      aIaIidaIS  , therefore

 UaS . Proposition 5) A similar argument proves the second part. Let F be a filter of a polyadic algebra B . Then

i) is an ultrafilter of iff for any exactly one Proposition 2) [3] F B  Fa There is a one to one correspondence between ideals and of aa ', belongs to F . filters : if U is an ideal , then the set   FU of all a ii) F is ultrafilter of B iff 0 F and   Fba iff with Ua is a filter . Analogously, if F is a filter , then  Fa or  Fb for any ,  Fba .     :  FaaFU is an ideal. iii) If   FBa , then there is an ultrafilter L such that F  L and  La . Proposition 3) The set of all polyadic ideals and the set of all polyadic Let   B . The ultrafilter containing F )( is denoted by filters are closed under the arbitrary intersections. . UF )( Let B be a polyadic algebra and   B . LetU )( denote A mapping  :  BB between two Boolean algebras is the least polyadic ideal containing  and F )( denote the 21 called a Boolean homomorphism if least polyadic filter containing  .We say that U )( and i)       baba  F )( are generated by  .  ii)    aa Obviously,        baba ,  00 , Proposition 4) Let B be a polyadic algebra and  B . Then    11 . i) A mapping  :  BB between two polyadic algebras is   : 21 ... n 21 ,...,, xxxsomeforxxxbBbU n  0 21 ii) called polyadic homomorphism if   : 21 ... n 21 ,...,, xxxsomeforxxxbBbF n  1 i)  is a Boolean homomorphism Proof i) Let ii)    I  : 21 ... n 21 ,...,, xxxsomeforxxxbBbJ n  0 iii)    for any   I

0  J . Let , 21  Jbb . Then 211 ...  xxxb n Obviously,    . and 2 1 yyb 2 ...  y m for some , yx  . ii 2121 .... n 21 ... yyyxxxbb m .

ISBN: 978-988-19253-5-0 WCE 2014 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online) Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2 - 4, 2014, London, U.K.

III. DEDUCTION    aqapaqp )()())(( , Notation: for  B and  Bb ,  ⊢ b reads b is     aqapaqp )()())(( ,   apap )()( , deduced from  in B . Now , we define  ⊢ b in a a  0)(0 , a  1)(1 for any  Aa . We have polyadic algebra B iff Fb  .

By definitions of filter and deduction ⊢ we have : Proposition 8) [2]

A Proposition 6) B   1,0,,,,  is a functional Boolean algebra. i)  ⊢1 and  ⊬ 0 ii) If  ⊢ x ,  ⊢ y then  ⊢ x  y . Proposition 9) [5] A A A B , is a monadic algebra, where :  BB is General properties of deduction are given by the following: given by    :)(sup))((  Aaapap  Theorem 7)

i) If b  then  ⊢ b Proposition 10) [2] ii) If  ⊢ b and  then  ⊢ b A  SIB ,,,  is a polyadic algebra, where iii) If  ⊢ a for any a  and  ⊢ b , then  ⊢ b : I  BEndIS A )( and I  BQant A )(2: . iv) If  ⊢ b , then   ⊢ b for any substitution 

v) If  ⊢ b , then  ⊢ b for some finite  k 0 0 . Now, let A   : k  functionaisBAppB ; Proof. k  ,...2,1,0 . Define i) b   Fb   ⊢ b I  1 k   aapaapS  k )()1( ),...,(),...,()( for any   I ii)  ⊢ b  Fb   21  ...  xxxb n for k and 1 k ),...,(  Aaa . we have some xi 

  Fb   ⊢ b Proposition 11) iii) Let  ⊢ b  Fb  Ak  SIB ,,,  is a polyadic algebra  21 ...  xxxb n for some xi  Proof

 ⊢ x1 ,  ⊢ x2 ,…,  ⊢ xn i)   1 k   1 k  1 aapaapaap k ),...,(),...,(sup),...,()(   ⊢ ...  xxx by proposition (6) 21 n  )(  id

21 ...  xxx n  F   Fb  ii)     1 aapMJ k ),...(sup)(   ⊢ b MJ

iv)  ⊢ b  Fb     ...  xxxb   1 k 1 aapaap k ),...,(sup),...(sup   21 n J K for some xi    1 k  1 aapMaapJ k ),...,()(),...,()(

  21 ... n  1  2  ...xxxxxxb n    MJMJ )()()( for some  i Fx   iii) 1 k  id kid )()1(  1 aapaapaapidS k ),...,(),...(),...,()(  Fb      ⊢ b  )(  ididS v) By proposition 4 (ii) and proposition (6) iv)  1 k   )1(  k )(   ))1(( aapaapaapS  k ))(( ),...,(),...,(),...()(

IV. FUNCTIONAL POLYADIC ALGEBRA     k )()1(    1 aapSSaapS k ),...,()()(),...,()( Let BB   1,0,,,, be a complete Boolean algebra,     SSS  )()()( v) A   1 k   1 ,...,(sup)(),...,()()( aapSaapJS k   :  functionaisBAppB  where A is an J A = algebra of type F. For ,  Bqp define qp , qp ,   aap  k )()1( ),...(sup    J p and 1,0 pointwise as follows:    ,...,(sup aap  k )()1(  J

if    JIJI

ISBN: 978-988-19253-5-0 WCE 2014 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online) Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2 - 4, 2014, London, U.K.

  1 aapS k ),...,(sup)( J =     )(sup    iapJSiapS )(  J   1 aapJS k ),...,()()(        JSJS     JSJS )()()()( if    JIJI vi)      )(         iapiapJiapSJ )(sup)(  J 1 vi)   1 k   aapJaapSJ  k )()1( ),...,()(),...,()()(     iap )(sup  if  is 1-1 on  J )( 1  J )(   aap ),...,(sup   sup    )(    iapSiapS )(sup   k )()1( 1 1 J  J )(  J )( 1 if is 11 on  1 J )(      iapJS )()(  1    aap  k )()1( ),...,(sup          JSSJ )(  1  J )(

  1 aapS k ),...,()(sup Natural inference rules of polyadic logic are now transferred  1 J )( into certain algebraic rules in B A governing the algebraic 1   aapJS ),...,())(()( A 1 k deduction in F where  B . These are given as 1    JSSJ ))(()()()( follows:

Theorem 13) Finally, let I  ,...2,1 be a countable set, Let  B A .Then AI I   :  functionaisBAppB , i)  ⊢1 and  ⊬ 0 .  Aa I ; :  AIa is a . For   I I , a is ii)  ⊢  qp iff  ⊢ p and  ⊢ q . iii)  ⊢ p iff  ⊬ p'. defined by  )()(  Iiiaia . We have iv)  ⊢ p  q iff  ⊢ p or  ⊢ q . v)  ⊢ p iff  ⊢  pJ . Proposition 12) vi) F⊢ ap )( iff F⊢  apJ )( . AI 0 B is a polyadic algebra Proof. i) By proposition 6(i) Proof ii) Follows from definition of filter and proposition 1 i)    apapap )()(sup)()( iii) This is so because if both  ⊢ p and  ⊢ p' we get   )(  id ap )( and ap '))(( in F. Thus we get 0 ,which is a contradiction. ii)    apapapapMJ )(sup)(sup)(sup)()(  MJ J M iv)Let  ⊢  qp  apMapJ )()()()(   )()(  Faqap     MJMJ    ')()(  Faqap  iii)   iapiidapiapidS )())(()()(    ')(')(  Faqap    ididS   ' Fap or  ')( Faq  iv)  )(    )(    iapiapiapS )(  )(  Fap  or )( Faq  .    )(     iapSSiapS )(  Thus  ⊢ p or  ⊢ q .     SSS   Let  ⊢ p or  ⊢ q v)   )()(    iapSiapJS     iap )(sup)(sup   )(  Fap  or )( Faq  J J      iap )(sup   apaqap )()()( J   )()(  Faqap  . Therefore  ⊢ p  q . if    JIJI v)This is by   pp and  FF  .

ISBN: 978-988-19253-5-0 WCE 2014 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online) Proceedings of the World Congress on Engineering 2014 Vol II, WCE 2014, July 2 - 4, 2014, London, U.K.

vi)This is so by the definition  :)(sup)(  AaapapJ . J If we alter the definition of deduction to  ⊢ p if UFp  we get the following dichotomy by proposition 5

Theorem 14) Either  ⊢ p or  ⊢ p'.

REFERENCES [1] L. Henkin , J. D. Monk, and A. Tarski, "Cylindric Algebras Part I" . North-Holland publishing company Amsterdam. London (1971). [2] P.R . Halmos, "Algebraic Logic II .Homogenous Locally Finite Polyadic Boolean Algebras Of Infinite Degree". Fundamenta Mathematicae 43, 255-325 (1965). [3] B. Plotkin, ", Algebraic Logic, and Databases", Kluwer academic publishers (1994). [4] S. Burris, & H.P. Shakappanavor, "A Course in Universal Algebra", Springer Verlag, New York (1981). [5] K.H. Alzubaidy, "Deduction in Monadic Algebra", Journal of mathematical sciences,18, 1-5 (2007). [6] K.H. AlzubaidyOn "Algebraization of Polyadic Logic", Journal of mathematical sciences,18 , 15-18 (2007). [7] P.R. Halmos, "Lectures on Boolean Algebra" . D.Van Nostran, Princeton (1963). [8] A.G.Hamilton, "Logic for Mathematicians". Cambridge University Press, Cambridge (1988).

ISBN: 978-988-19253-5-0 WCE 2014 ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)