ASKAP Science Update

Total Page:16

File Type:pdf, Size:1020Kb

ASKAP Science Update ASKAP Science Update CSIRO Astronomy and Space Science September 2011 The ASKAP Science Update is a regular series dedicated to conveying the latest news about the Australian SKA Pathfinder (ASKAP) project to the international science community. It is also available online at www.atnf.csiro.au/projects/askap. Preparing for first BETA Johnston together with members of for observation because much is already Observations with ATCA the ASKAP Survey Science Teams. known. Both the Fornax cluster and Circinus have been extensively mapped As part of preparations for BETA According to ASKAP Project Scientist in neutral hydrogen (HI) and 20cm (Boolardy Engineering Test Array), the Ilana Feain, the two fields were chosen, radio continuum, and the radio galaxy ASKAP Project Scientist and members for very specific reasons, in consultation Fornax A has been studied in polarisation of the Survey Science Teams began with the Principal Investigators of the ten and radio continuum both at ATCA characterisation of two 30 deg2 fields ASKAP Survey Science Projects (SSPs). and the Very Large Array (VLA). during two separate week-long ATCA “The fields were purposefully chosen for Despite the level of detail already observing sessions during May and June. content and location – approximately available for certain parts of the two BETA is an array of the first six ASKAP 12 hours apart on the sky – so that fields, the aim of the characterisation was antennas installed with Phased Array no matter what time of day or night to achieve a 30 deg2 field at equivalent Feed (PAF) receivers at the Murchison we are able to use BETA, there will be angular and spectral resolution and Radio-astronomy Observatory (MRO) a fully characterised field available to sensitivity and frequency of BETA. in Western Australia. initiate science verification,” says Ilana. The team was allocated 14 full days of Although primarily an engineering and “When we observe these first science ATCA observing time, and observations scientific commissioning instrument, fields with BETA for the first time, we were run 24 hours a day over two early astronomy observations may want to compare our results with what separate seven-day blocks – 12 be possible with BETA once the we know we should see, in order to test hours each for Fornax and Circinus instrument is fully tested and during data quality and integrity of the system.” – in two array configurations (750b times when it is not otherwise One of the chosen fields is centred close and 1.5b) that together closely required for commissioning activities. to NGC 1365 in the Fornax cluster, the match the uv-coverage of BETA. Characterisation observations took other is centred close to the Circinus The two fields shown here, from the place using CSIRO’s Australia Telescope galaxy. Previous multi-wavelength surveys Sydney University Molonglo Sky Survey Compact Array (ATCA) during May on small regions within each of these (SUMSS), are overlaid with a set of and June, by Ilana Feain and Simon fields make them the perfect candidates coloured circles representing the daily ATCA pointings required to mosaic the full region. BETA will cover each of these regions in its single 30 deg2 field of view. “These images will allow us to test BETA calibration and imaging pipelines, allow for verification and refining of the source finding and cataloguing techniques, in addition to a range of data quality tests,” explains Ilana. “These two fields act as our control fields against the unknown and possibly variable calibration systematics of a new telescope.” > The two fields chosen as ‘first science with BETA’ characterisation fields. The left is centred on the Fornax cluster and contains the bright extended radio galaxy Fornax A (bottom right). The right is centred on the barred spiral Circinus galaxy and contains extended emission from the Milky Way (top right). Both images are shown at 843MHz from the Sydney University Molonglo Sky Survey (SUMSS) overlaid with a set of coloured circles representing the daily ATCA pointings. Credit: Ilana Feain. “The combination of features that makes ASKAP so unique is also what makes FLASH possible.” ASKAP Survey Science Projects In this edition of ASKAP Science Update As Elaine explains, FLASH will break measurements will be made with other we take a detailed look at the final new ground in low redshift investigation, telescopes like the AAT and ALMA. whereas existing radio telescopes have two of the ten Survey Science Projects There is also scope for high levels of reached the limits for HI studies. (SSPs) that will make use of ASKAP collaboration between FLASH and during its first five years of operation. “Blind HI absorption surveys are the other ASKAP SSPs, especially not possible on current-day radio WALLABY and DINGO. “Since our FLASH telescopes due to limitations in spectral current knowledge is so incomplete, Sensitive observations of distant bandwidth, RFI and survey speed. The anything we can learn about gas in distant galaxies have made it possible to map combination of features that makes galaxies will be useful in planning and out the star-formation history of the ASKAP so unique, in particular the wide preparing for the SKA,” says Elaine. field-of-view and spectral bandwidth, Universe in detail, yet almost nothing is “The WALLABY and DINGO surveys is also what makes FLASH possible.” currently known about the distribution will provide us with rich HI data sets of the cold neutral gas from which Rapid sky coverage will be essential for which will certainly provide new insights these distant stars are formed. FLASH. With 150,000 sightlines planned into the gas content of galaxies. Similarly, Radio emission surveys give some (that’s 375 times the number of sightlines the information we expect FLASH will clues to this, by detection of weak to bright continuum sources that have produce may complement these surveys neutral hydrogen (HI) at lower been searched over the last 30 years), by providing our first look at the HI redshift, yet current day radio approximately only 1% are expected to properties of galaxies in the unexplored telescopes are stretched to their limit yield strong HI absorption, so the team redshift range beyond z = 0.5” will need to extract around 150 radio beyond z = 0.1, leaving almost 80% She concludes, “HI absorption-line spectra from each ASKAP field for testing. of cosmic time unexplored in HI. surveys covering large areas of sky have The vast collecting area of the Square Additionally, as FLASH will focus on a never been possible before. What’s most Kilometre Array will open up an entirely lower range of frequencies (700 – 1000 exciting to me is that ASKAP’s unique new vista of the early universe, but MHz), it would be highly susceptible to ability to cover the sky rapidly and some astronomers, such as those terrestrial radio interference. The radio- observe many bright sources at once involved in the First Large Absorption quiet environment of ASKAP’s home will allow us to extend our study of HI in Survey in HI (FLASH), are not content at the Murchison Radio-astronomy galaxies out to a cosmic epoch, around to wait until the SKA is built to probe Observatory (MRO) in Western Australia five to eight billion years ago, which is galactic content at low redshift. is therefore the perfect place for FLASH. completely unexplored until now.“ As Principal Investigator (PI), Elaine Though Elaine describes the project Sadler will lead the FLASH project, as ‘observationally simple’, the main a blind HI absorption-line survey challenge facing the FLASH team will using ASKAP that uses background be data interpretation, and the plan to radio continuum sources to identify reconstruct a whole galaxy from just and characterise foreground neutral the small piece that they will see. hydrogen. Absorption surveys have “We already know the positions of the advantage that detection sensitivity the target sources, since these are in depends only on the brightness of the existing catalogues of the radio sky background radio source, rather than made by earlier surveys,” she explains. the distance to the intervening galaxy. “Unlike an emission-line survey, This will allow the team to study HI in where we would map the whole galaxies at much larger distances than galaxy, absorption-line surveys only emission-line surveys, and provide a give us information on a single small significant dataset to study gas assembly sightline that runs through a galaxy.” and galaxy formation during a time To overcome the challenge, once in history of the Universe which has an absorption line is detected, >Elaine Sadler, Principal Investigator been left largely unstudied thus far. follow-up optical and CO emission of FLASH. Credit: Keith Shortridge. CRAFT The lure of the unknown is a common theme in astronomy, and for the Commensal Real-time ASKAP Fast Transient (CRAFT) survey, it is what drives the team. CRAFT will operate in tandem with other ASKAP SSPs, collecting and processing data in real-time in order >An image from V-FASTR, showing one pulsar pulse identified via an incoherent to search for signals that appear for rocessing path and a machine-learning algorithm, a possible technique that could less than milliseconds at a time. There solve the challenge of data processing with ASKAP. Credit: CRAFT / ICRAR. are a number of possible objects that may be detected (such as giant gravitational fields,” says Peter, “and project (the VLBA fast transient project), pulses, rotating radio transients, detection of extragalactic transients is already underway using the US Very magnetars, even SETI signals), but would give us an entirely new probe Long Baseline Array, which allows the CRAFT is not yet playing favourites. on the huge reservoir of baryons team to investigate the challenge of For Principal Investigator Peter Hall, in the intergalactic medium.” detection methods and data processing.
Recommended publications
  • NGC 1333 Plunkett Et
    Outflows in protostellar clusters: a multi-wavelength, multi-scale view Adele L. Plunkett1, H. G. Arce1, S. A. Corder2, M. M. Dunham1, D. Mardones3 1-Yale University; 2-ALMA; 3-Universidad de Chile Interferometer and Single Dish Overview Combination FCRAO-only v=-2 to 6 km/s FCRAO-only v=10 to 17 km/s K km s While protostellar outflows are generally understood as necessary components of isolated star formation, further observations are -1 needed to constrain parameters of outflows particularly within protostellar clusters. In protostellar clusters where most stars form, outflows impact the cluster environment by injecting momentum and energy into the cloud, dispersing the surrounding gas and feeding turbulent motions. Here we present several studies of very dense, active regions within low- to intermediate-mass Why: protostellar clusters. Our observations include interferometer (i.e. CARMA) and single dish (e.g. FCRAO, IRAM 30m, APEX) To recover flux over a range of spatial scales in the region observations, probing scales over several orders of magnitude. How: Based on these observations, we calculate the masses and kinematics of outflows in these regions, and provide constraints for Jy beam km s Joint deconvolution method (Stanimirovic 2002), CARMA-only v=-2 to 6 km/s CARMA-only v=10 to 17 km/s models of clustered star formation. These results are presented for NGC 1333 by Plunkett et al. (2013, ApJ accepted), and -1 comparisons among star-forming regions at different evolutionary stages are forthcoming. using the analysis package MIRIAD. -1 1212COCO Example: We mapped NGC 1333 using CARMA with a resolution of ~5’’ (or 0.006 pc, 1000 AU) in order to Our study focuses on Class 0 & I outflow-driving protostars found in clusters, and we seek to detect outflows and associate them with their driving sources.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Scutum Apus Aquarius Aquila Ara Bootes Canes Venatici Capricornus Centaurus Cepheus Circinus Coma Berenices Corona Austrina Coro
    Polaris Ursa Minor Cepheus Camelopardus Thuban Draco Cassiopeia Mizar Ursa Major Lacerta Lynx Deneb Capella Perseus Auriga Canes Venatici Algol Cygnus Vega Cor Caroli Andromeda Lyra Bootes Leo Minor Castor Triangulum Corona Borealis Albireo Hercules Pollux Alphecca Gemini Vulpecula Coma Berenices Pleiades Aries Pegasus Sagitta Arcturus Taurus Cancer Aldebaran Denebola Leo Delphinus Serpens [Caput] Regulus Equuleus Altair Canis Minor Pisces Betelgeuse Aquila Procyon Orion Serpens [Cauda] Ophiuchus Virgo Sextans Monoceros Mira Scutum Rigel Aquarius Spica Cetus Libra Crater Capricornus Hydra Sirius Corvus Lepus Deneb Kaitos Canis Major Eridanus Antares Fomalhaut Piscis Austrinus Sagittarius Scorpius Antlia Pyxis Fornax Sculptor Microscopium Columba Caelum Corona Austrina Lupus Puppis Grus Centaurus Vela Norma Horologium Phoenix Telescopium Ara Canopus Indus Crux Pictor Achernar Hadar Carina Dorado Tucana Circinus Rigel Kentaurus Reticulum Pavo Triangulum Australe Musca Volans Hydrus Mensa Apus SampleOctans file Chamaeleon AND THE LONELY WAR Sample file STAR POWER VOLUME FOUR: STAR POWER and the LONELY WAR Copyright © 2018 Michael Terracciano and Garth Graham. All rights reserved. Star Power, the Star Power logo, and all characters, likenesses, and situations herein are trademarks of Michael Terracciano and Garth Graham. Except for review purposes, no portion of this publication may be reproduced or transmitted, in any form or by any means, without the express written consent of the copyright holders. All characters and events in this publication are fictional and any resemblance to real people or events is purely coincidental. Star chartsSample adapted from charts found at hoshifuru.jp file Portions of this book are published online at www.starpowercomic.com. This volume collects STAR POWER and the LONELY WAR Issues #16-20 published online between Oct 2016 and Oct 2017.
    [Show full text]
  • Educator's Guide: Orion
    Legends of the Night Sky Orion Educator’s Guide Grades K - 8 Written By: Dr. Phil Wymer, Ph.D. & Art Klinger Legends of the Night Sky: Orion Educator’s Guide Table of Contents Introduction………………………………………………………………....3 Constellations; General Overview……………………………………..4 Orion…………………………………………………………………………..22 Scorpius……………………………………………………………………….36 Canis Major…………………………………………………………………..45 Canis Minor…………………………………………………………………..52 Lesson Plans………………………………………………………………….56 Coloring Book…………………………………………………………………….….57 Hand Angles……………………………………………………………………….…64 Constellation Research..…………………………………………………….……71 When and Where to View Orion…………………………………….……..…77 Angles For Locating Orion..…………………………………………...……….78 Overhead Projector Punch Out of Orion……………………………………82 Where on Earth is: Thrace, Lemnos, and Crete?.............................83 Appendix………………………………………………………………………86 Copyright©2003, Audio Visual Imagineering, Inc. 2 Legends of the Night Sky: Orion Educator’s Guide Introduction It is our belief that “Legends of the Night sky: Orion” is the best multi-grade (K – 8), multi-disciplinary education package on the market today. It consists of a humorous 24-minute show and educator’s package. The Orion Educator’s Guide is designed for Planetarians, Teachers, and parents. The information is researched, organized, and laid out so that the educator need not spend hours coming up with lesson plans or labs. This has already been accomplished by certified educators. The guide is written to alleviate the fear of space and the night sky (that many elementary and middle school teachers have) when it comes to that section of the science lesson plan. It is an excellent tool that allows the parents to be a part of the learning experience. The guide is devised in such a way that there are plenty of visuals to assist the educator and student in finding the Winter constellations.
    [Show full text]
  • Searching for Star-Forming Dwarf Galaxies in the Antlia Cluster?
    A&A 563, A118 (2014) Astronomy DOI: 10.1051/0004-6361/201322615 & c ESO 2014 Astrophysics Searching for star-forming dwarf galaxies in the Antlia cluster? O. Vaduvescu1,C.Kehrig2, L. P. Bassino3,4,5, A. V. Smith Castelli3,4,5, and J. P. Calderón3,4,5 1 Isaac Newton Group of Telescopes, Apto. 321, 38700 Santa Cruz de la Palma, Canary Islands, Spain e-mail: [email protected] 2 Instituto de Astrofísica de Andalucía (CSIC), Apto. 3004, 18080 Granada, Spain 3 Grupo de Investigación CGGE, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina 4 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina 5 Instituto de Astrofísica de La Plata (CCT-La Plata, CONICET-UNLP), Paseo del Bosque, B1900FWA La Plata, Argentina Received 5 September 2013 / Accepted 31 January 2014 ABSTRACT Context. The formation and evolution of dwarf galaxies in clusters need to be understood, and this requires large aperture telescopes. Aims. In this sense, we selected the Antlia cluster to continue our previous work in the Virgo, Fornax, and Hydra clusters and in the Local Volume (LV). Because of the scarce available literature data, we selected a small sample of five blue compact dwarf (BCD) candidates in Antlia for observation. Methods. Using the Gemini South and GMOS camera, we acquired the Hα imaging needed to detect star-forming regions in this sample. With the long-slit spectroscopic data of the brightest seven knots detected in three BCD candidates, we derived their basic chemical properties.
    [Show full text]
  • Molecular Gas Conditions in NGC 4945 and the Circinus Galaxy?
    A&A 367, 457–469 (2001) Astronomy DOI: 10.1051/0004-6361:20000462 & c ESO 2001 Astrophysics Molecular gas conditions in NGC 4945 and the Circinus galaxy? S. J. Curran1,2,L.E.B.Johansson1,P.Bergman1, A. Heikkil¨a1,3, and S. Aalto1 1 Onsala Space Observatory, Chalmers University of Technology, 439 92 Onsala, Sweden 2 European Southern Observatory, Casilla 19001, Santiago 19, Chile 3 Observatory, PO Box 14, 00014 University of Helsinki, Finland Received 11 July 2000 / Accepted 5 December 2000 Abstract. We present results of a multi-transition study of the dense molecular gas in the central part of the hybrid star-burst/Seyfert galaxies NGC 4945 and the Circinus galaxy. From the results of radiative transfer 3− 4 −3 ≈ calculations, we estimate in NGC 4945 nH2 =310 10 cm and Tkin 100 K and in Circinus nH2 = 3 5 −3 210−10 cm and Tkin ≈ 50−80 K for the molecular hydrogen density and kinetic temperature, respectively. As well as density/temperature tracing molecules, we have observed C17OandC18O in each galaxy and the value of C18O/C17O ≈ 6 for the isotopic column density ratio suggests that both have relatively high populations of massive stars. Finally, although star formation is present, the radiative transfer results combined with the high HCN/CO and (possibly) HCN/FIR, radio/FIR ratios may suggest that, in comparison with Circinus, a higher proportion of the dense gas emission in NGC 4945 may be located in the hypothesised central nuclear disk as opposed to dense star forming cloud cores. Contrary to the literature, which assumes that all of the far-infrared emission arises from star formation, our results suggest that in NGC 4945 some of this emission could arise from an additional source, and so we believe that a revision of the star formation rate estimates may be required for these two galaxies.
    [Show full text]
  • Oriontelescopes.Com Oct
    THE EVENING SKY FOR OCTOBER, 2014 NORTH Early October — 10 p.m. Mid October — 9 p.m. URSA MAJOR Late October — 8 p.m. Pointers Big Dipper M51 ζ M81 Winter Hexagon2281 M82 κ M101 LYNX BOÖTES URSA μ M37 AURIGA MINOR M I L K Y W A Y DRACO CAMELOPARDALIS M36 Polaris Little Dipper M38 Capella α CORONA 16,17 BOREALIS ε M1 6543 ν M13 SERPENS CAPUT Double M92 Cluster CEPHEUS Keystone M103 ρ 457 Algol β PERSEUS η M52 Aldebaran μ E M34 δ Vega C 7789 ε Double-Double L γ Hyades I M45 CASSIOPEIA ζ HERCULES P Pleiades M39 Deneb LYRA T TRIANGULUM ORION I M31 α C 7243 M57 752 M110 CYGNUS EAST 7000 M29 χ M32 61 M56 (P a M33 6871 th β o ANDROMEDA Albireo f ARIES OPHIUCHUS WEST S LACERTA Summer Triangle u n TAURUS & VULPECULA I.4665 p γ M27 la n 6633 et s) SAGITTA E 70 Q Great Square DELPHINUS U γ A T γ PISCES of Pegasus O ϑ M14 R PEGASUS M15 Altair Uranus α γ ζ SERPENS EQUULEUS CAUDA Mira ο TX AQUILA M I L KM11 Y W A Y SCUTUM M26 ζ M2 M16 ERIDANUS M17 Neptune M18 AQUARIUS α M24 M25 CETUS M28 M22 7293 FORNAX 253 M30 SAGITTARIUS CAPRICORNUS Teapot Fomalhaut M55 SCULPTOR PISCIS AUSTRINUS 0 55 MICROSCOPIUM 0 20 Star magnitudes N IO R TI Moon IL PHOENIX W Phases GRUS –1 012345 FIRST Oct. 1 SOUTH Double star FULL How To Use This Chart Variable star Oct.
    [Show full text]
  • These Sky Maps Were Made Using the Freeware UNIX Program "Starchart", from Alan Paeth and Craig Counterman, with Some Postprocessing by Stuart Levy
    These sky maps were made using the freeware UNIX program "starchart", from Alan Paeth and Craig Counterman, with some postprocessing by Stuart Levy. You’re free to use them however you wish. There are five equatorial maps: three covering the equatorial strip from declination −60 to +60 degrees, corresponding roughly to the evening sky in northern winter (eq1), spring (eq2), and summer/autumn (eq3), plus maps covering the north and south polar areas to declination about +/− 25 degrees. Grid lines are drawn at every 15 degrees of declination, and every hour (= 15 degrees at the equator) of right ascension. The equatorial−strip maps use a simple rectangular projection; this shows constellations near the equator with their true shape, but those at declination +/− 30 degrees are stretched horizontally by about 15%, and those at the extreme 60−degree edge are plotted twice as wide as you’ll see them on the sky. The sinusoidal curve spanning the equatorial strip is, of course, the Ecliptic −− the path of the Sun (and approximately that of the planets) through the sky. The polar maps are plotted with stereographic projection. This preserves shapes of small constellations, but enlarges them as they get farther from the pole; at declination 45 degrees they’re about 17% oversized, and at the extreme 25−degree edge about 40% too large. These charts plot stars down to magnitude 5, along with a few of the brighter deep−sky objects −− mostly star clusters and nebulae. Many stars are labelled with their Bayer Greek−letter names. Also here are similarly−plotted maps, based on galactic coordinates.
    [Show full text]
  • A Compendium of Distances to Molecular Clouds in the Star Formation Handbook?,?? Catherine Zucker1, Joshua S
    A&A 633, A51 (2020) Astronomy https://doi.org/10.1051/0004-6361/201936145 & c ESO 2020 Astrophysics A compendium of distances to molecular clouds in the Star Formation Handbook?,?? Catherine Zucker1, Joshua S. Speagle1, Edward F. Schlafly2, Gregory M. Green3, Douglas P. Finkbeiner1, Alyssa Goodman1,5, and João Alves4,5 1 Center for Astrophysics | Harvard & Smithsonian, 60 Garden St., Cambridge, MA 02138, USA e-mail: [email protected], [email protected] 2 Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA 3 Kavli Institute for Particle Astrophysics and Cosmology, Physics and Astrophysics Building, 452 Lomita Mall, Stanford, CA 94305, USA 4 University of Vienna, Department of Astrophysics, Türkenschanzstraße 17, 1180 Vienna, Austria 5 Radcliffe Institute for Advanced Study, Harvard University, 10 Garden St, Cambridge, MA 02138, USA Received 21 June 2019 / Accepted 12 August 2019 ABSTRACT Accurate distances to local molecular clouds are critical for understanding the star and planet formation process, yet distance mea- surements are often obtained inhomogeneously on a cloud-by-cloud basis. We have recently developed a method that combines stellar photometric data with Gaia DR2 parallax measurements in a Bayesian framework to infer the distances of nearby dust clouds to a typical accuracy of ∼5%. After refining the technique to target lower latitudes and incorporating deep optical data from DECam in the southern Galactic plane, we have derived a catalog of distances to molecular clouds in Reipurth (2008, Star Formation Handbook, Vols. I and II) which contains a large fraction of the molecular material in the solar neighborhood. Comparison with distances derived from maser parallax measurements towards the same clouds shows our method produces consistent distances with .10% scatter for clouds across our entire distance spectrum (150 pc−2.5 kpc).
    [Show full text]
  • The Properties of Galaxies in the Virgo and Fornax Clusters: What We've
    The Properties of Galaxies in the Virgo and Fornax Clusters: What We’ve Learned Patrick Côté (HIA) HST Observations (11/07) Virgo Fornax solar system star clusters galaxies/AGN other stars ISM/nebulae galaxy clusters 30 March - 3 April, 2009, “Galaxy Evolution and Environment”, Kuala Lumpur, Malaysia Talk Outline • The Virgo and Fornax Clusters in Context • Properties at a Glance stellar nuclei globular AGNs/SBHs & SBHs cluster systems Virgo luminosity red sequence & functions galaxy scaling Fornax relations diffuse light cluster & the ICM structure & UCDS, cEs morphology • A Look Ahead: The Next Generation Virgo Cluster Survey • Summary and Conclusions Virgo and Fornax at a Glance Virgo Fornax Richness Class 1 0 Ω ≈ 100 deg2 ≈ 10 deg2 Distance 16.5 ± 0.1 ± 1.1 Mpc 20.0 ± 0.3 ± 1.4 Mpc σ(vr) ≈ 750 km/s (A), 400 km/s (B) 374 ± 26 km/s R200 1.55 ± 0.06 Mpc (5.4 ± 0.2 deg) ≈ 0.67 Mpc (1.9 deg): Rs 0.56 ± 0.18 Mpc (1.9 ± 0.6 deg) ≈ 50 kpc (0.14 deg): c 2.8 ± 0.7 13.4: 14 13 M200 (4.2 ± 0.5)×10 M⦿ ~ 1.3×10 M⦿ Mgas/Mtot 8-14% (A), ≈ 0.5% (B) ~ 8% Mgal/Mtot 3-4% (A), ≈ 4% (B) ~ 6% ‹kT›x 2.58 ± 0.03 keV 1.20 ± 0.04 keV ‹Fe›x 0.34 ± 0.02 solar 0.23 ± 0.03 solar Virgo and Fornax at a Glance Virgo Fornax Richness Class 1 0 Ω ≈ 100 deg2 ≈ 10 deg2 Distance 16.5 ± 0.1 ± 1.1 Mpc 20.0 ± 0.3 ± 1.4 Mpc σ(vr) ≈ 750 km/s (A), 400 km/s (B) 374 ± 26 km/s R200 1.55 ± 0.06 Mpc (5.4 ± 0.2 deg) ≈ 0.67 Mpc (1.9 deg): Rs 0.56 ± 0.18 Mpc (1.9 ± 0.6 deg) ≈ 50 kpc (0.14 deg): c 2.8 ± 0.7 13.4: 14 13 M200 (4.2 ± 0.5)×10 M⦿ ~ 1.3×10 M⦿ Mgas/Mtot 8-14% (A), ≈ 0.5% (B) ~ 8% Mgal/Mtot 3-4% (A), ≈ 4% (B) ~ 6% ‹kT›x 2.58 ± 0.03 keV 1.20 ± 0.04 keV ‹Fe›x 0.34 ± 0.02 solar 0.23 ± 0.03 solar Cluster Morphology: Virgo • Smith and Shapley (1930s), Reaves (1950s-1980s), de Vaucouleurs et al.
    [Show full text]
  • Parsec-Scale Bipolar X-Ray Shocks Produced by Powerful Jets from The
    Draft version January 17, 2021 A Preprint typeset using LTEX style emulateapj v. 11/10/09 PARSEC-SCALE BIPOLAR X-RAY SHOCKS PRODUCED BY POWERFUL JETS FROM THE NEUTRON STAR CIRCINUS X-1 P. H. Sell1, S. Heinz1, D. E. Calvelo2, V. Tudose3,4,5, P. Soleri6, R. P. Fender2, P. G. Jonker7,8,9, N. S. Schulz10, W. N. Brandt11, M. A. Nowak10, R. Wijnands12, M. van der Klis12, P. Casella2 Draft version January 17, 2021 ABSTRACT We report the discovery of multi-scale X-ray jets from the accreting neutron star X-ray binary, Circinus X-1. The bipolar outflows show wide opening angles and are spatially coincident with the radio jets seen in new high-resolution radio images of the region. The morphology of the emission regions suggests that the jets from Circinus X-1 are running into a terminal shock with the interstellar medium, as is seen in powerful radio galaxies. This and other observations indicate that the jets have a wide opening angle, suggesting that the jets are either not very well collimated or precessing. We interpret the spectra from the shocks as cooled synchrotron emission and derive a cooling age of 35 −1 37 −1 ∼ 1600 yr. This allows us to constrain the jet power to be 3 × 10 ergs . Pjet . 2 × 10 ergs , making this one of a few microquasars with a direct measurement of its jet power and the only known microquasar that exhibits stationary large-scale X-ray emission. Subject headings: ISM: jets and outflows, X-rays: binaries, X-rays: individual (Circinus X-1) 1.
    [Show full text]
  • 4391 Abbreviated Instruction
    English 4391 Abbreviated instruction • To see details of specifications and operations, refer to the instruction manual: 4391 instruction manual Component identification Setting the constellation dial and the moon dial 1. Find the time difference in local sidereal time from the difference between the longitude of Japan Standard Time and that of your observation place. Constellation dial • +1° of longitude difference results in about +4-minute time difference. Minute hand • You can find the time difference in local sidereal time at your observation place through the difference between the longitude of Japan Standard Time Hour hand (135°E) and your place using the figure below. For example, in places near Tokyo (the longitude of Japan Standard Time +5°), the time difference becomes 20 minutes (= 5 (degree) x 4 (minute)). Crown Difference from the longitude of Japan Standard Time and time difference 125°E 130°E 135°E 140°E 145°E Second hand Crown's position 35°N 0 1 2 • Actual appearance may differ from the illustration. –40 min. –20 min. 0 min. +20 min. +40 min. • The crown has two positions when pulling it out. 2. Pull the crown out to position 1. Constellation dial (displaying the entire sky at 35°N) 3. Rotate the crown to set the constellation dial. • Set the time of the day on the right ascension scale to the corresponding Right ascension scale Ecliptic Celestial equator date on the date scale compensating the time difference found in step 1. Date scale Altitude ‒18° line Ex.: In a place of 140°E on June 11th 21:00 (compensated time: 21:20) Right ascension Constellation dial setting scale Rotation direction of position the constellation and Date scale moon dials (in normal condition) Crown June 11th 21:20 Time setting position Normal position Zenith Meridian Horizon Local sidereal time display position • Finally rotate the constellation dial clockwise to finish the setting.
    [Show full text]