This article has been retracted. Read the retraction notice RESEARCH ARTICLE Amino acid synthesis loss in parasitoid wasps and other hymenopterans Xinhai Ye1,2†, Shijiao Xiong1†, Ziwen Teng1, Yi Yang1, Jiale Wang1, Kaili Yu1, Huizi Wu1, Yang Mei1, Zhichao Yan1, Sammy Cheng2, Chuanlin Yin1, Fang Wang1, Hongwei Yao1, Qi Fang1, Qisheng Song3, John H Werren2‡*, Gongyin Ye1‡*, Fei Li1‡* 1State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China; 2Department of Biology, University of Rochester, Rochester, United States; 3Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, United States Abstract Insects utilize diverse food resources which can affect the evolution of their genomic repertoire, including leading to gene losses in different nutrient pathways. Here, we investigate gene loss in amino acid synthesis pathways, with special attention to hymenopterans and parasitoid wasps. Using comparative genomics, we find that synthesis capability for tryptophan, phenylalanine, tyrosine, and histidine was lost in holometabolous insects prior to hymenopteran divergence, while valine, leucine, and isoleucine were lost in the common ancestor of Hymenoptera. *For correspondence: Subsequently, multiple loss events of lysine synthesis occurred independently in the Parasitoida
[email protected] (JHW); and Aculeata. Experiments in the parasitoid Cotesia chilonis confirm that it has lost the ability to
[email protected] (GY); synthesize eight amino acids. Our findings provide insights into amino acid synthesis evolution, and
[email protected] (FL) specifically can be used to inform the design of parasitoid artificial diets for pest control.