George Washington 0250E 10
Total Page:16
File Type:pdf, Size:1020Kb
©Copyright 2012 Nicole T. George Temperature gradients drive functional heterogeneity within muscle Nicole T. George A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2012 Reading Committee: Thomas Daniel, Chair Emily Carrington Raymond Huey Program Authorized to Offer Degree: Biology University of Washington Abstract Temperature gradients drive functional heterogeneity within muscle Nicole T. George Chair of the Supervisory Committee: Professor Thomas L. Daniel Department of Biology During locomotion, muscles respond to an animal’s varying need for speed, endurance, strength, and agility. Therefore, in addition to operating as motors, muscles also act as brakes, springs, and struts. Interestingly, if the physical, morphological, and neurological parameters determining muscle performance vary regionally, a muscle may actually concurrently operate with multiple functions. In this study, I investigated the functional consequences of an intramuscular temperature gradient, arising from the inevitable heat exchange between metabolic heat production and surface cooling. In Chapter 1, I defined the determinants of muscle function and highlight the diverse roles muscles perform. I then discussed an emerging field, which shows that the factors determining muscle performance can regionally vary. In Chapter 2 (George and Daniel, 2011), I characterized the temperature gradient throughout a muscle in the hawkmoth, Manduca sexta. I recorded multi-site temperature measurements during tethered flight and conducted isometric contraction tests to determine the effect of temperature on contractile dynamics. We found that the significant temperature gradient throughout the muscle will cause the warm region to contract with rapid individual twitches, while the cooler region will contract in unfused tetany. In Chapter 3 (George et al., 2012), I determined how this temperature gradient affects regional mechanical power output. Work-loop methods, where muscle is cyclically lengthened and stimulated, allowed us to measure mechanical work. We found that the warm region of muscle will produce positive power, thereby functioning as a motor. As temperature decreases, power output decreases, transitioning to negative values. Thus, the cooler region of muscle may serve a completely separate role, including that of a brake and/or spring. In Chapter 4, I investigated if a temperature gradient additionally creates a locked- spring lattice, capable of storing and releasing energy, in the cool region of muscle. We used X-ray fiber diffraction to visualize the molecular dynamics of a contraction. A restrained lattice combined with reduced cross-bridge cycling in cool muscle indicates that cross- bridges are less able to detach from their binding sites. Thus, a temperature gradient likely forms a regional locked-spring lattice, whereby energy can be stored in the axial and radial extensions of cross-bridges. TABLE OF CONTENTS Page List of Figures..........................................................................................................................iii List of Tables ........................................................................................................................... iv Chapter 1: Introduction.......................................................................................................... 1 1.1 Determinants of muscle power ................................................................................................. 2 1.1.1 Force-length relationship................................................................................................... 2 1.1.2 Force-velocity relationship................................................................................................ 3 1.1.3 Phase of activation............................................................................................................. 5 1.2 Functional diversity of muscles ................................................................................................ 5 1.2.1 Muscles that function as motors........................................................................................ 6 1.2.2 Muscles that function as brakes......................................................................................... 8 1.2.3 Muscles that function as springs ....................................................................................... 9 1.2.4 Muscles that function as struts .......................................................................................... 9 1.3 Functional heterogeneity within a single muscle.................................................................... 10 1.3.1 Variation in fiber type and architecture........................................................................... 10 1.3.2 Variation in fascicle strain............................................................................................... 11 1.3.3 Variation in activation pattern and recruitment............................................................... 12 1.4 Importance of functional heterogeneity.................................................................................. 13 Chapter 2: Temperature gradients in the flight muscles of Manduca sexta imply a spatial gradient in muscle force and energy output............................................................................ 17 2.1 Abstract................................................................................................................................... 17 2.2 Introduction............................................................................................................................. 18 2.3 Materials and Methods............................................................................................................ 20 2.3.1 Moths............................................................................................................................... 20 2.3.2 Temperature profiles ....................................................................................................... 20 2.3.3 Force measurements ........................................................................................................ 22 2.3.4 EMG measurements ........................................................................................................ 23 2.3.5 Data acquisition............................................................................................................... 24 2.3.6 Statistical analysis ........................................................................................................... 24 2.4 Results..................................................................................................................................... 25 2.4.1 Temperature profiles ....................................................................................................... 25 2.4.2 Contractile rates............................................................................................................... 25 2.4.3 Extracellular evoked potentials ....................................................................................... 27 2.5 Discussion............................................................................................................................... 32 2.5.1 Significant in vivo temperature gradient ......................................................................... 32 2.5.2 No detectable regional specialization in contractile dynamics and neural activation..... 33 2.5.3 Temperature gradients induce mechanical gradients ...................................................... 34 2.6 List of symbols and abbreviations .......................................................................................... 36 2.7 Acknowledgements................................................................................................................. 36 i Chapter 3: Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta ........................................................................................................................ 37 3.1 Abstract ...................................................................................................................................37 3.2 Introduction .............................................................................................................................38 3.3 Materials and methods.............................................................................................................42 3.3.1 Moths ...............................................................................................................................42 3.3.2 Experimental apparatus and muscle preparation .............................................................42 3.3.3 Muscle length and strain ..................................................................................................44 3.3.4 Muscle temperature..........................................................................................................45 3.3.5 Phase of activation ...........................................................................................................45 3.3.6 Data acquisition ...............................................................................................................45 3.3.7 Statistical analysis............................................................................................................46