Radio Galaxies and Feedback from AGN Jets

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Radio galaxies and feedback from AGN jets M.J. Hardcastle1 and J.H. Croston2 1Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB 2School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK Abstract We review current understanding of the population of radio galaxies and radio-loud quasars from an observational per- spective, focusing on their large-scale structures and dynamics. We discuss the physical conditions in radio galaxies, their fuelling and accretion modes, host galaxies and large-scale environments, and the role(s) they play as engines of feedback in the process of galaxy evolution. Finally we briefly summarise other astrophysical uses of radio galaxy populations, including the study of cosmic magnetism and cosmological applications, and discuss future prospects for advancing our understanding of the physics and feedback behaviour of radio galaxies. Keywords: 1. Introduction Key historical developments in observational RLAGN studies after the first surveys and optical Radio galaxies and radio-loud quasars (collectively identifications included the development in the 1970s radio-loud AGN, or RLAGN in this article) are active of high-resolution interferometers such as the 5-km galaxies characterized by radio emission driven by jets telescope and the NRAO Very Large Array (VLA), on scales from pc to Mpc. The characteristic radio emis- which allowed detailed study of radio structures as well sion is synchrotron emission: that is, it indicates the as optical identifications for the first time; progress in presence of magnetic fields and highly relativistic elec- very long baseline interferometry (VLBI), which has trons and/or positrons. Synchrotron emission may be given increasingly detailed views of the inner parts seen in other wavebands, and this enabled the detection of the jets; the advent of sensitive optical telescopes, of the first radio galaxy jet before the advent of radio as- including the Hubble Space Telescope, which allowed tronomy (Curtis, 1918) but it was only with the capabil- detailed studies of RLAGN host galaxies and environ- ities of radio interferometry (Ryle, 1952) that it became ments in the optical, as well as the study of optical possible to detect and image these objects in detail and synchrotron radiation; a greatly improved understand- in large numbers. As we will discuss in more detail be- ing of the nature of the active nuclei themselves, low, radio observations remain key to an understanding driven by a combination of broad-band photometry and of their origin, dynamics and energetics. spectroscopy; and the development of X-ray telescopes Radio images of some characteristic large-angular- with the sensitivity needed to image both the hot gas scale nearby RLAGN are shown in Fig.1. These show environments of RLAGN and the X-ray synchrotron the large-scale jets and lobes that are the defining feature and inverse-Compton emission from the large-scale of this type of object. The first observations capable of radio structures. Some of the understanding derived showing the radio jets (e.g., Northover, 1973) motivated from those observational advances is discussed in later arXiv:2003.06137v1 [astro-ph.HE] 13 Mar 2020 the development of the now standard ‘beam model’, in sections of this review. However, perhaps the most which collimated outflows from the active nucleus drive important development has been the realization that the extended structures (Longair et al., 1973; Scheuer, the energetic input of RLAGN can have a profound 1974; Blandford and Rees, 1974). Some authors have effect on both the galaxies that they inhabit and their used ‘beam’ to refer to the outflows themselves and ‘jet’ large-scale environment, heating the hot gas that to refer to their observational manifestations, but in this surrounds them and preventing it from cooling and review we use ‘jet’ interchangeably for both, relying on forming stars; this process is an important member of a context to make the distinction clear where it is needed. family of processes that have come to be called ‘AGN Preprint submitted to New Astronomy Reviews March 16, 2020 Figure 1: Radio images of nearby radio galaxies showing a range of morphologies: top row are the Fanaroff-Riley class I source 3C 31 (left) and the Fanaroff-Riley class II source 3C 98; middle row are the wide-angle tail source 3C 465 (left) and narrow-angle tail / head-tail source NGC 6109 (right); and bottom row are double-double radio galaxy 3C 219 (left), and core-restarting radio galaxy 3C 315 (right). Compact ‘cores’ may be seen in all images, well-collimated jets are visible in 3C 31, 3C 98 and 3C 465, and hotspots in 3C 98, 3C 465 and 3C 219. 3C 31 image kindly provided by Robert Laing; 3C 98 image from the online ‘Atlas of DRAGNS’ at http://www.jb.man.ac.uk/atlas/; 3C 465 image courtesy of Emmanuel Bempong-Manful; 3C 219 image from Clarke et al.(1992); NGC 6109 and 3C 315 from unpublished LOFAR data. 2 feedback’. This understanding of the importance of in Fig.1 are of order 1 nT for a powerful source, lead- RLAGN in galaxy formation and evolution, derived ing to energy densities of order a few ×10−13 J m−1 and both from X-ray observations and from numerical total energies of order 1054 J or more — which would modelling of the formation and evolution of galaxies, require the direct conversion to energy of millions of has moved RLAGN studies into the mainstream of solar masses of matter. If there is any departure from extragalactic astrophysics. In this chapter we will the minimum-energy assumptions, these numbers will therefore also discuss how observations and models of be larger — and possibly very much larger if, e.g., there RLAGN constrain the ‘feedback’ processes that may be are large departures from equipartition or if the energy operating. density in the lobes is dominated by non-radiating par- Throughout the review we adopt the convention that ticles. γ represents the (random) Lorentz factor of an individ- It can be seen that estimates of the energetics of the ual electron and Γ represents the bulk Lorentz factor radio-emitting structures depend strongly on the char- due to directed motion. Luminosities and physical sizes acteristic magnetic field strength. This cannot be es- quoted are based on a standard concordance cosmology timated directly from observations of synchrotron in- −1 −1 with H0 = 70 km s Mpc . tensity. Synchrotron emission is strongly polarized — the fractional polarization can be ∼ 70% for a uniform- field region with a power-law spectrum, and even higher 2. Observational approaches where the spectrum is exponentially cutting off — but the polarization does not tell us about the field strength In this section we provide an overview of the observa- either, although it does give an emission-weighted es- tional methods that provide us with constraints on radio timate of the magnetic field direction along a particu- galaxy physics. lar line of sight, if Faraday rotation effects may be ne- glected (see below). For optically thin radio emission, 2.1. Radio the only way of directly estimating the magnetic field strength is to use additional observations, for example The fact that the radio emission is synchrotron emis- observations of inverse-Compton emission, discussed sion was realised early on from its polarization and below (Section 2.4). spectrum (Baade, 1956; Burbidge, 1956) and, together Faraday rotation is an effect caused by the propaga- with the optical identification of these objects with rel- tion of electromagnetic radiation through a magnetised, atively distant galaxies (see Section 2.2), turned out to ionized medium. The polarization angle rotates due to imply very large energies stored in the extended struc- a difference in propagation speed for the two circularly tures. The details of the radiation mechanisms can be polarized components of the electromagnetic wave. The found in e.g., Longair(2010) or Rybicki and Lightman change in angle is dependent on frequency, and the ro- (1979). The point that we wish to emphasise here is that tation measure — the strength of the rotation effect — the energy density in the radiating electrons and field, depends on the magnetic field strength and electron den- U, can be written in terms of the volume emissivity J(ν) sity of the intervening material (e.g. Cioffi and Jones, and the magnetic field strength B: for a power-law dis- 1980). For a single line of sight through a Faraday- tribution of electron energies with energy index p, we active medium towards a background polarized source find 2 the measured polarization angle χ is given by (Burn, − p+1 B U = kJ(ν)B 2 + (1) 1966): 2µ0 2 χ = χ0 + φλ (2) where k is a constant incorporating physical constants, where χ is the intrinsic polarization angle and φ is the observing frequency, and the integral over electron 0 given by energies. Clearly eq.1 has a minimum at some value Z d of B, and by solving for the minimum and computing φ = K neB · dS (3) the minimum energy density, we can get both an esti- 0 mate of a characteristic field strength and a lower limit in which K is a constant with value (in SI units) 2:63 × on the energy responsible for a given region of a ra- 10−13 T−1. Clearly in general different lines of sight, dio source. The minimum-energy condition turns out even within a given telescope beam, will have differ- to be close to the equipartition energy, Ue = UB, but the ent values of φ. However, observationally, it is of- important conclusion is that the minimum-energy field ten the case that the rotation measure RM = dχ/dλ2 strengths for 100-kpc-scale lobes such as those shown shows smooth behaviour across a source, and in this 3 case rotation measure observations can be used to es- scales might be arcminutes, corresponding to hundreds timate magnetic field strength external to the source of kpc to Mpc.
Recommended publications
  • Near-Infrared Luminosity Relations and Dust Colors L

    Near-Infrared Luminosity Relations and Dust Colors L

    A&A 578, A47 (2015) Astronomy DOI: 10.1051/0004-6361/201525817 & c ESO 2015 Astrophysics Obscuration in active galactic nuclei: near-infrared luminosity relations and dust colors L. Burtscher1, G. Orban de Xivry1, R. I. Davies1, A. Janssen1, D. Lutz1, D. Rosario1, A. Contursi1, R. Genzel1, J. Graciá-Carpio1, M.-Y. Lin1, A. Schnorr-Müller1, A. Sternberg2, E. Sturm1, and L. Tacconi1 1 Max-Planck-Institut für extraterrestrische Physik, Postfach 1312, Gießenbachstr., 85741 Garching, Germany e-mail: [email protected] 2 Raymond and Beverly Sackler School of Physics & Astronomy, Tel Aviv University, 69978 Ramat Aviv, Israel Received 5 February 2015 / Accepted 5 April 2015 ABSTRACT We combine two approaches to isolate the AGN luminosity at near-IR wavelengths and relate the near-IR pure AGN luminosity to other tracers of the AGN. Using integral-field spectroscopic data of an archival sample of 51 local AGNs, we estimate the fraction of non-stellar light by comparing the nuclear equivalent width of the stellar 2.3 µm CO absorption feature with the intrinsic value for each galaxy. We compare this fraction to that derived from a spectral decomposition of the integrated light in the central arcsecond and find them to be consistent with each other. Using our estimates of the near-IR AGN light, we find a strong correlation with presumably isotropic AGN tracers. We show that a significant offset exists between type 1 and type 2 sources in the sense that type 1 MIR X sources are 7 (10) times brighter in the near-IR at log LAGN = 42.5 (log LAGN = 42.5).
  • The Title of My

    The Title of My

    Research in Astronomy and Astrophysics manuscript no. (LATEX: cgw.tex; printed on January 14, 2020; 2:35) Constraints on individual supermassive binary black holes using observations of PSR J1909 3744 − Yi Feng1,2,3, Di Li1,3, Yan-Rong Li4 and Jian-Min Wang4 1 National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China ; [email protected] 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 4 Institute of High Energy Physics, Chinese Academy of Sciences,19B Yuquan Road, Beijing 100049, China Abstract We perform a search for gravitational waves (GWs) from several supermassive binary black hole (SMBBH) candidates (NGC 5548, Mrk 231, OJ 287, PG 1302-102, NGC 4151, Ark 120 and 3C 66B) in long-term timing observations of the pulsar PSR J1909 3744 − obtained using the Parkes radio telescope. No statistically significant signals were found. We constrain the chirp masses of those SMBBH candidates and find the chirp mass of NGC 5548 and3C66Btobeless than2.4 109 M and 2.5 109 M (with 95% confidence), respectively. × ⊙ × ⊙ Our upperlimits remaina factor of 3 to 370 abovethe likely chirp masses for these candidates as estimated from other approaches. The observations processed here provide upper limits on the GW strain amplitude that improve upon the results from the first Parkes Pulsar Timing arXiv:1907.03460v2 [astro-ph.IM] 13 Jan 2020 Array data release by a factor of 2 to 7. We investigate how information about the orbital pa- rameters can help improve the search sensitivity for individual SMBBH systems.
  • Observational Evidence of AGN Feedback

    Observational Evidence of AGN Feedback

    Observational Evidence of AGN Feedback A.C Fabian Institute of Astronomy, Madingley Road Cambridge CB3 0HA, UK Abstract Radiation, winds and jets from the active nucleus of a massive galaxy can interact with its interstellar medium leading to ejection or heating of the gas. This can terminate star formation in the galaxy and stifle accretion onto the black hole. Such Active Galactic Nucleus (AGN) feedback can account for the observed proportionality between central black hole and host galaxy mass. Direct observational evidence for the radiative or quasar mode of feedback, which occurs when the AGN is very luminous, has been difficult to obtain but is accumulating from a few exceptional objects. Feedback from the kinetic or radio mode, which uses the mechanical energy of radio-emitting jets often seen when the AGN is operating at a lower level, is common in massive elliptical galaxies. This mode is well observed directly through X-ray observations of the central galaxies of cool core clusters in the form of bubbles in the hot surrounding medium. The energy flow, which is roughly continuous, heats the hot intracluster gas and reduces radiative cooling and subsequent star formation by an order of magnitude. Feedback appears to maintain a long-lived heating/cooling balance. Powerful, jetted radio outbursts may represent a further mode of energy feedback which affect the cores of groups and subclusters. New telescopes and instruments from the radio to X-ray bands will come into operation over the next few years and lead to a rapid expansion in observational data on all modes of AGN feedback.
  • A Basic Requirement for Studying the Heavens Is Determining Where In

    A Basic Requirement for Studying the Heavens Is Determining Where In

    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
  • The Relationship Between Gas Content and Star Formation Rate in Spiral Galaxies

    The Relationship Between Gas Content and Star Formation Rate in Spiral Galaxies

    A&A 490, 571–581 (2008) Astronomy DOI: 10.1051/0004-6361:200810604 & c ESO 2008 Astrophysics The relationship between gas content and star formation rate in spiral galaxies. Comparing the local field with the Virgo cluster M. Fumagalli1,2 and G. Gavazzi1 1 Istituto di Fisica G. Occhialini, Universita’ di Milano-Bicocca, Piazza della scienza 3, Milano, Italy e-mail: [email protected] 2 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA e-mail: [email protected] Received 15 July 2008 / Accepted 1 August 2008 ABSTRACT Context. Despite many studies of star formation in spiral galaxies, a complete and coherent understanding of the physical processes that regulate the birth of stars has not yet been achieved, nor has unanymous consensus been reached, despite the many attempts, on the effects of the environment on the star formation in galaxy members of rich clusters. Aims. We focus on the local and global Schmidt law and we investigate how cluster galaxies have their star formation activity perturbed. Methods. We collect multifrequency imaging for a sample of spiral galaxies, members of the Virgo cluster and of the local field; we compute the surface density profiles for the young and for the bulk of the stellar components, for the molecular and for the atomic gas. Results. Our analysis shows that the bulk of the star formation correlates with the molecular gas, but the atomic gas is important or even crucial in supporting the star formation activity in the outer part of the disks. Moreover, we show that cluster members that suffer from a moderate HI removal have their molecular component and their SFR quenched, while highly perturbed galaxies show an additional truncation in their star forming disks.
  • A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster R

    A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster R

    University of Kentucky UKnowledge Physics and Astronomy Faculty Publications Physics and Astronomy 2011 A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster R. E. A. Canning University of Cambridge, UK A. C. Fabian University of Cambridge, UK R. M. Johnstone University of Cambridge, UK J. S. Sanders University of Cambridge, UK C. S. Crawford University of Cambridge, UK See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub Part of the Astrophysics and Astronomy Commons, and the Physics Commons Repository Citation Canning, R. E. A.; Fabian, A. C.; Johnstone, R. M.; Sanders, J. S.; Crawford, C. S.; Ferland, Gary J.; and Hatch, N. A., "A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster" (2011). Physics and Astronomy Faculty Publications. 36. https://uknowledge.uky.edu/physastron_facpub/36 This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors R. E. A. Canning, A. C. Fabian, R. M. Johnstone, J. S. Sanders, C. S. Crawford, Gary J. Ferland, and N. A. Hatch A Deep Spectroscopic Study of the Filamentary Nebulosity in NGC 4696, the Brightest Cluster Galaxy in the Centaurus Cluster Notes/Citation Information Published in Monthly Notices of the Royal Astronomical Society, v.
  • Radio Galaxy Zoo: Compact and Extended Radio Source Classification with Deep Learning

    Radio Galaxy Zoo: Compact and Extended Radio Source Classification with Deep Learning

    MNRAS 476, 246–260 (2018) doi:10.1093/mnras/sty163 Advance Access publication 2018 January 26 Radio Galaxy Zoo: compact and extended radio source classification with deep learning V. Lukic,1‹ M. Bruggen,¨ 1‹ J. K. Banfield,2,3 O. I. Wong,3,4 L. Rudnick,5 R. P. Norris6,7 and B. Simmons8,9 1Hamburger Sternwarte, University of Hamburg, Gojenbergsweg 112, D-21029 Hamburg, Germany 2Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611, Australia 3ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), Building A28, School of Physics, The University of Sydney, NSW 2006, Australia 4International Centre for Radio Astronomy Research-M468, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia Downloaded from https://academic.oup.com/mnras/article/476/1/246/4826039 by guest on 23 September 2021 5University of Minnesota, 116 Church St SE, Minneapolis, MN 55455, USA 6Western Sydney University, Locked Bag 1797, Penrith South, NSW 1797, Australia 7CSIRO Astronomy and Space Science, Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia 8Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK 9Center for Astrophysics and Space Sciences, Department of Physics, University of California, San Diego, CA 92093, USA Accepted 2018 January 15. Received 2018 January 9; in original form 2017 September 24 ABSTRACT Machine learning techniques have been increasingly useful in astronomical applications over the last few years, for example in the morphological classification of galaxies. Convolutional neural networks have proven to be highly effective in classifying objects in image data. In the context of radio-interferometric imaging in astronomy, we looked for ways to identify multiple components of individual sources.
  • 198 8Apj. . .329. .532K the Astrophysical Journal, 329:532-550

    198 8Apj. . .329. .532K the Astrophysical Journal, 329:532-550

    .532K The Astrophysical Journal, 329:532-550,1988 June 15 © 1988. The American Astronomical Society. All rights reserved. Printed in U.S.A. .329. 8ApJ. 198 THE OPTICAL CONTINUA OF EXTRAGALACTIC RADIO JETS1 William C. Keel Sterrewacht Leiden Received 1987 August 11 ; accepted 1987 December 11 ABSTRACT Multicolor optical images have been used to measure the broad-band spectral shapes of radio jets known to show optical counterparts, and to search for such counterparts in additional objects. One new detection, the brightest knot in the NGC 6251 jet, is reported. In all cases, except part of the 3C 273 jet, the jet continua are well-represented by synchrotron spectra from truncated power-law electron distributions, with emitted-frame critical frequencies between 3 x 1014 and 2 x 1015 Hz. This may be due to fine structure in the jets or to the particle (re)acceleration process. Two hot spots (Pic A and 3C 303) differ from the jets, in showing unbroken power-law spectra from the radio to the B band. Image restoration has been used to examine the sub-arcsecond structure of the M87 jet and derive spectral shapes for various knots free of blending problems. The structure matches that seen in the radio to the Ol'S level, implying that the jet structure prevents particles from streaming freely over this distance (~30pc) Significant changes in turnover frequency occur from knot to knot, with an overall trend of higher frequency closer to the nucleus. Knot A is an exception, with a spectrum like the features near the core. An Appendix gives results of surface photometry for the program galaxies.
  • A Study of Giant Radio Galaxies at Ratan-600 173

    A Study of Giant Radio Galaxies at Ratan-600 173

    Bull. Spec. Astrophys. Obs., 2011, 66, 171–182 c Special Astrophysical Observatory of the Russian AS, 2018 A Study of Giant Radio Galaxies at RATAN-600 M.L. Khabibullinaa, O.V. Verkhodanova, M. Singhb, A. Piryab, S. Nandib, N.V. Verkhodanovaa a Special Astrophysical Observatory of the Russian AS, Nizhnij Arkhyz 369167, Russia; b Aryabhatta Research Institute of Observational Sciences, Manora Park, Nainital 263 129, India Received July 28, 2010; accepted September 15, 2010. We report the results of flux density measurements in the extended components of thirteen giant radio galaxies, made with the RATAN-600 in the centimeter range. Supplementing them with the WENSS, NVSS and GB6 survey data we constructed the spectra of the studied galaxy components. We computed the spectral indices in the studied frequency range and demonstrate the need for a detailed account of the integral contribution of such objects into the background radiation. Key words: Radio lines: galaxies—techniques: radar astronomy 1. INTRODUCTION than the one, expected from the evolutional models. As noted in [8], such radio galaxies may affect the According to the generally accepted definition, gi- processes of galaxy formation, since the pressure of ant radio galaxies (GRGs) are the radio sources with gas, outflowing from the radio source, may compress linear sizes greater than 1 Mpc, i.e. the largest ra- the cold gas clouds thus initiating the development dio sources in the Universe. They mostly belong to of stars on the one hand, and stop the formation of the morphological type FR II [1] and are identified galaxies on the other hand.
  • Essential Radio Astronomy

    Essential Radio Astronomy

    February 2, 2016 Time: 09:25am chapter1.tex © Copyright, Princeton University Press. No part of this book may be distributed, posted, or reproduced in any form by digital or mechanical means without prior written permission of the publisher. 1 Introduction 1.1 AN INTRODUCTION TO RADIO ASTRONOMY 1.1.1 What Is Radio Astronomy? Radio astronomy is the study of natural radio emission from celestial sources. The range of radio frequencies or wavelengths is loosely defined by atmospheric opacity and by quantum noise in coherent amplifiers. Together they place the boundary be- tween radio and far-infrared astronomy at frequency ν ∼ 1 THz (1 THz ≡ 1012 Hz) or wavelength λ = c/ν ∼ 0.3 mm, where c ≈ 3 × 1010 cm s−1 is the vacuum speed of light. The Earth’s ionosphere sets a low-frequency limit to ground-based radio astronomy by reflecting extraterrestrial radio waves with frequencies below ν ∼ 10 MHz (λ ∼ 30 m), and the ionized interstellar medium of our own Galaxy absorbs extragalactic radio signals below ν ∼ 2 MHz. The radio band is very broad logarithmically: it spans the five decades between 10 MHz and 1 THz at the low-frequency end of the electromagnetic spectrum. Nearly everything emits radio waves at some level, via a wide variety of emission mechanisms. Few astronomical radio sources are obscured because radio waves can penetrate interstellar dust clouds and Compton-thick layers of neutral gas. Because only optical and radio observations can be made from the ground, pioneering radio astronomers had the first opportunity to explore a “parallel universe” containing unexpected new objects such as radio galaxies, quasars, and pulsars, plus very cold sources such as interstellar molecular clouds and the cosmic microwave background radiation from the big bang itself.
  • Infrared-Detected Agns in the Local Universe T

    Infrared-Detected Agns in the Local Universe T

    A&A 640, A68 (2020) Astronomy https://doi.org/10.1051/0004-6361/201935971 & c ESO 2020 Astrophysics Infrared-detected AGNs in the local Universe T. Ikiz˙ 1,2,3 , R. F. Peletier1, P. D. Barthel1, and C. Ye¸silyaprak2,3 1 Kapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, The Netherlands e-mail: [email protected] 2 Department of Astronomy and Astrophysics, Faculty of Science, Atatürk University, Erzurum 25240, Turkey 3 Atatürk University Astrophysics Research and Application Center (ATASAM), Erzurum 25240, Turkey Received 28 May 2019 / Accepted 10 June 2020 ABSTRACT Context. Spitzer/IRAC color selection is a promising technique to identify hot accreting nuclei, that is, active galactic nuclei (AGN), in galaxies. We demonstrate this using a small sample of SAURON galaxies and then explore this technique further. Aims. The goal of this study is to find a simple and efficient way to reveal optically obscured nuclear accretion in (nearby) galaxies. Methods. We applied an infrared selection method to the Spitzer Survey of Stellar Structures in Galaxies (S4G) sample of more than 2500 galaxies, together with its extension sample of more than 400 galaxies. We used the Spitzer colors to find galaxies in the S4G survey containing a hot core, suggesting the presence of a strong AGN, and we studied the detection fraction as a function of morphological type. We tested this infrared color selection method by examining the radio properties of the galaxies via the VLA NVSS and FIRST surveys. Results. Using the radio data, we demonstrate that galaxies displaying hot mid-infrared nuclei stand out as (candidate) active galaxies.
  • Jet-Powered Molecular Hydrogen Emission from Radio Galaxies

    Jet-Powered Molecular Hydrogen Emission from Radio Galaxies

    JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Ogle, Patrick, Francois Boulanger, Pierre Guillard, Daniel A. Evans, Robert Antonucci, P. N. Appleton, Nicole Nesvadba, and Christian Leipski. “JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES.” The Astrophysical Journal 724, no. 2 (November 11, 2010): 1193–1217. © 2010 The American Astronomical Society As Published http://dx.doi.org/10.1088/0004-637x/724/2/1193 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/95698 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal, 724:1193–1217, 2010 December 1 doi:10.1088/0004-637X/724/2/1193 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. JET-POWERED MOLECULAR HYDROGEN EMISSION FROM RADIO GALAXIES Patrick Ogle1, Francois Boulanger2, Pierre Guillard1, Daniel A. Evans3, Robert Antonucci4, P. N. Appleton5, Nicole Nesvadba2, and Christian Leipski6 1 Spitzer Science Center, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125, USA; [email protected] 2 Institut d’Astrophysique Spatiale, Universite Paris-Sud 11, Bat. 121, 91405 Orsay Cedex, France 3 MIT Center for Space Research, Cambridge, MA 02139, USA 4 Physics Department, University of California, Santa Barbara, CA 93106, USA 5 NASA Herschel Science Center, California Institute of Technology, Mail Code 100-22, Pasadena, CA 91125, USA 6 Max-Planck Institut fur¨ Astronomie (MPIA), Konigstuhl¨ 17, D-69117 Heidelberg, Germany Received 2009 November 10; accepted 2010 September 22; published 2010 November 11 ABSTRACT H2 pure-rotational emission lines are detected from warm (100–1500 K) molecular gas in 17/55 (31% of) radio galaxies at redshift z<0.22 observed with the Spitzer IR Spectrograph.