Virial Theorem - Wikipedia, the Free Encyclopedia Page 1 of 9

Total Page:16

File Type:pdf, Size:1020Kb

Virial Theorem - Wikipedia, the Free Encyclopedia Page 1 of 9 Virial theorem - Wikipedia, the free encyclopedia Page 1 of 9 Virial theorem From Wikipedia, the free encyclopedia In mechanics, the virial theorem provides a general equation relating the average over time of the total kinetic energy, , of a stable system consisting of N particles, bound by potential forces, with that of the total potential energy, , where angle brackets represent the average over time of the enclosed quantity. Mathematically, the theorem states where Fk represents the force on the kth particle, which is located at position rk. The word "virial" derives from vis , the Latin word for "force" or "energy", and was given its technical definition by Clausius in 1870. [1] The significance of the virial theorem is that it allows the average total kinetic energy to be calculated even for very complicated systems that defy an exact solution, such as those considered in statistical mechanics; this average total kinetic energy is related to the temperature of the system by the equipartition theorem. However, the virial theorem does not depend on the notion of temperature and holds even for systems that are not in thermal equilibrium. The virial theorem has been generalized in various ways, most notably to a tensor form. If the force between any two particles of the system results from a potential energy V(r) = αr n that is proportional to some power n of the inter-particle distance r, the virial theorem adopts a simple form Thus, twice the average total kinetic energy equals n times the average total potential energy . Whereas V(r) represents the potential energy between two particles, VTOT represents the total potential energy of the system, i.e., the sum of the potential energy V(r) over all pairs of particles in the system. A common example of such a system is a star held together by its own gravity, where n equals −1. Although the virial theorem depends on averaging the total kinetic and potential energies, the presentation here postpones the averaging to the last step. Contents 1 History of the virial theorem 2 Statement and derivation 2.1 Definitions of the virial and its time derivative 2.2 Connection with the potential energy between particles 2.3 Special case of power-law forces 2.4 Time averaging and the virial theorem 3 The virial theorem and special relativity 4 Generalizations of the virial theorem 5 Inclusion of electromagnetic fields 6 Virial radius http://en.wikipedia.org/wiki/Virial_theorem 8/17/2011 Virial theorem - Wikipedia, the free encyclopedia Page 2 of 9 7 See also 8 References 9 Further reading 10 External links History of the virial theorem In 1870, Rudolf Clausius delivered the lecture "On a Mechanical Theorem Applicable to Heat" to the Association for Natural and Medical Sciences of the Lower Rhine, following a 20 year study of thermodynamics. The lecture stated that the mean vis viva of the system is equal to its virial, or that the average kinetic energy is equal to 1/2 the average potential energy. The virial theorem can be obtained directly from Lagrange's Identity as applied in classical gravitational dynamics, the original form of which was included in his "Essay on the Problem of Three Bodies" published in 1772. Karl Jacobi's generalization of the identity to n bodies and to the present form of Laplace's identity closely resembles the classical virial theorem. However, the interpretations leading to the development of the equations were very different, since at the time of development, statistical dynamics had not yet unified the separate studies of thermodynamics and classical dynamics. [2] The theorem was later utilized, popularized, generalized and further developed by persons such as James Clerk Maxwell, Lord Rayleigh, Henri Poincaré, Subrahmanyan Chandrasekhar, Enrico Fermi, Paul Ledoux and Eugene Parker. Fritz Zwicky was the first to use the virial theorem to deduce the existence of unseen matter, which is now called dark matter. As another example of its many applications, the virial theorem has been used to derive the Chandrasekhar limit for the stability of white dwarf stars. Statement and derivation Definitions of the virial and its time derivative For a collection of N point particles, the scalar moment of inertia I about the origin is defined by the equation where mk and rk represent the mass and position of the kth particle. rk=| rk| is the position vector magnitude. The scalar virial G is defined by the equation where pk is the momentum vector of the kth particle. Assuming that the masses are constant, the virial G is one-half the time derivative of this moment of inertia http://en.wikipedia.org/wiki/Virial_theorem 8/17/2011 Virial theorem - Wikipedia, the free encyclopedia Page 3 of 9 In turn, the time derivative of the virial G can be written where mk is the mass of the k-th particle, is the net force on that particle, and T is the total kinetic energy of the system Connection with the potential energy between particles The total force on particle k is the sum of all the forces from the other particles j in the system where is the force applied by particle j on particle k. Hence, the force term of the virial time derivative can be written Since no particle acts on itself (i.e., whenever j = k), we have [3] where we have assumed that Newton's third law of motion holds, i.e., (equal and opposite reaction). It often happens that the forces can be derived from a potential energy V that is a function only of the distance rjk between the point particles j and k. Since the force is the negative gradient of the potential http://en.wikipedia.org/wiki/Virial_theorem 8/17/2011 Virial theorem - Wikipedia, the free encyclopedia Page 4 of 9 energy, we have in this case which is clearly equal and opposite to , the force applied by particle k on particle j, as may be confirmed by explicit calculation. Hence, the force term of the virial time derivative is Thus, we have Special case of power-law forces In a common special case, the potential energy V between two particles is proportional to a power n of their distance r where the coefficient α and the exponent n are constants. In such cases, the force term of the virial time derivative is given by the equation where VTOT is the total potential energy of the system Thus, we have For gravitating systems and also for electrostatic systems, the exponent n equals −1, giving Lagrange's identity http://en.wikipedia.org/wiki/Virial_theorem 8/17/2011 Virial theorem - Wikipedia, the free encyclopedia Page 5 of 9 which was derived by Lagrange and extended by Jacobi. Time averaging and the virial theorem The average of this derivative over a time τ is defined as from which we obtain the exact equation The virial theorem states that, if , then There are many reasons why the average of the time derivative might vanish, i.e., . One often-cited reason applies to stable bound systems , i.e., systems that hang together forever and whose parameters are finite. In that case, velocities and coordinates of the particles of the system have upper and lower limits so that the virial Gbound is bounded between two extremes, G and G , and the average goes to zero in the limit of very long times τ min max Even if the average of the time derivative is only approximately zero, the virial theorem holds to the same degree of approximation. For power-law forces with an exponent n, the general equation holds For gravitational attraction , n equals −1 and the average kinetic energy equals half of the average negative http://en.wikipedia.org/wiki/Virial_theorem 8/17/2011 Virial theorem - Wikipedia, the free encyclopedia Page 6 of 9 potential energy This general result is useful for complex gravitating systems such as solar systems or galaxies. A simple application of the virial theorem concerns galaxy clusters. If a region of space is unusually full of galaxies, it is safe to assume that they have been together for a long time, and the virial theorem can be applied. Doppler measurements give lower bounds for their relative velocities, and the virial theorem gives a lower bound for the total mass of the cluster, including any dark matter. The averaging need not be taken over time; an ensemble average can also be taken, with equivalent results. Although derived for classical mechanics, the virial theorem also holds for quantum mechanics, which was proved by Fock [4] (the quantum equivalent of the l.h.s. vanishes for energy eigenstates). The virial theorem and special relativity For a single particle in special relativity, it is not the case that . Instead, it is true that and The last expression can be simplified to either or . Thus, under the conditions described in earlier sections (including Newton's third law of motion, , despite relativity), the time average for N particles with a power law potential is In particular, the ratio of kinetic energy to potential energy is no longer fixed, but necessarily falls into an interval: where the more relativistic systems exhibit the larger ratios. Generalizations of the virial theorem http://en.wikipedia.org/wiki/Virial_theorem 8/17/2011 Virial theorem - Wikipedia, the free encyclopedia Page 7 of 9 Lord Rayleigh published a generalization of the virial theorem in 1903. [5] Henri Poincaré applied a form of the virial theorem in 1911 to the problem of determining cosmological stability. [6] A variational form of the virial theorem was developed in 1945 by Ledoux. [7] A tensor form of the virial theorem was developed by Parker, [8] Chandrasekhar [9] and Fermi.
Recommended publications
  • Dark Matter 1 Introduction 2 Evidence of Dark Matter
    Proceedings Astronomy from 4 perspectives 1. Cosmology Dark matter Marlene G¨otz (Jena) Dark matter is a hypothetical form of matter. It has to be postulated to describe phenomenons, which could not be explained by known forms of matter. It has to be assumed that the largest part of dark matter is made out of heavy, slow moving, electric and color uncharged, weakly interacting particles. Such a particle does not exist within the standard model of particle physics. Dark matter makes up 25 % of the energy density of the universe. The true nature of dark matter is still unknown. 1 Introduction Due to the cosmic background radiation the matter budget of the universe can be divided into a pie chart. Only 5% of the energy density of the universe is made of baryonic matter, which means stars and planets. Visible matter makes up only 0,5 %. The influence of dark matter of 26,8 % is much larger. The largest part of about 70% is made of dark energy. Figure 1: The universe in a pie chart [1] But this knowledge was obtained not too long ago. At the beginning of the 20th century the distribution of luminous matter in the universe was assumed to correspond precisely to the universal mass distribution. In the 1920s the Caltech professor Fritz Zwicky observed something different by looking at the neighbouring Coma Cluster of galaxies. When he measured what the motions were within the cluster, he got an estimate for how much mass there was. Then he compared it to how much mass he could actually see by looking at the galaxies.
    [Show full text]
  • S Chandrasekhar: His Life and Science
    REFLECTIONS S Chandrasekhar: His Life and Science Virendra Singh 1. Introduction Subramanyan Chandrasekhar (or `Chandra' as he was generally known) was born at Lahore, the capital of the Punjab Province, in undivided India (and now in Pakistan) on 19th October, 1910. He was a nephew of Sir C V Raman, who was the ¯rst Asian to get a science Nobel Prize in Physics in 1930. Chandra also went on to win the Nobel Prize in Physics in 1983 for his early work \theoretical studies of physical processes of importance to the structure and evolution of the stars". Chandra discovered that there is a maximum mass limit, now called `Chandrasekhar limit', for the white dwarf stars around 1.4 times the solar mass. This work was started during his sea voyage from Madras on his way to Cambridge (1930) and carried out to completion during his Cambridge period (1930{1937). This early work of Chandra had revolutionary consequences for the understanding of the evolution of stars which were not palatable to the leading astronomers, such as Eddington or Milne. As a result of controversy with Eddington, Chandra decided to shift base to Yerkes in 1937 and quit the ¯eld of stellar structure. Chandra's work in the US was in a di®erent mode than his initial work on white dwarf stars and other stellar-structure work, which was on the frontier of the ¯eld with Chandra as a discoverer. In the US, Chandra's work was in the mode of a `scholar' who systematically explores a given ¯eld. As Chandra has said: \There is a complementarity between a systematic way of working and being on the frontier.
    [Show full text]
  • Virial Theorem and Gravitational Equilibrium with a Cosmological Constant
    21 VIRIAL THEOREM AND GRAVITATIONAL EQUILIBRIUM WITH A COSMOLOGICAL CONSTANT Marek N owakowski, Juan Carlos Sanabria and Alejandro García Departamento de Física, Universidad de los Andes A. A. 4976, Bogotá, Colombia Starting from the Newtonian limit of Einstein's equations in the presence of a positive cosmological constant, we obtain a new version of the virial theorem and a condition for gravitational equi­ librium. Such a condition takes the form P > APvac, where P is the mean density of an astrophysical system (e.g. galaxy, galaxy cluster or supercluster), A is a quantity which depends only on the shape of the system, and Pvac is the vacuum density. We conclude that gravitational stability might be infiuenced by the presence of A depending strongly on the shape of the system. 1. Introd uction Around 1998 two teams (the Supernova Cosmology Project [1] and the High- Z Supernova Search Team [2]), by measuring distant type la Supernovae (SNla), obtained evidence of an accelerated ex­ panding universe. Such evidence brought back into physics Ein­ stein's "biggest blunder", namely, a positive cosmological constant A, which would be responsible for speeding-up the expansion of the universe. However, as will be explained in the text below, the A term is not only of cosmological relevance but can enter also the do­ main of astrophysics. Regarding the application of A in astrophysics we note that, due to the small values that A can assume, i s "repul­ sive" effect can only be appreciable at distances larger than about 22 1 Mpc. This is of importance if one considers the gravitational force between two bodies.
    [Show full text]
  • Scientometric Portrait of Nobel Laureate S. Chandrasekhar
    :, Scientometric Portrait of Nobel Laureate S. Chandrasekhar B.S. Kademani, V. L. Kalyane and A. B. Kademani S. ChandntS.ekhar, the well Imown Astrophysicist is wide!)' recognised as a ver:' successful Scientist. His publications \\'ere analysed by year"domain, collaboration pattern, d:lannels of commWtications used, keywords etc. The results indicate that the temporaJ ,'ari;.&-tjon of his productivit." and of the t."pes of papers p,ublished by him is of sudt a nature that he is eminent!)' qualified to be a role model for die y6J;mf;ergene-ration to emulate. By the end of 1990, he had to his credit 91 papers in StelJJlrSlructllre and Stellar atmosphere,f. 80 papers in Radiative transfer and negative ion of hydrogen, 71 papers in Stochastic, ,ftatisticql hydromagnetic problems in ph}'sics and a,ftrono"9., 11 papers in Pla.fma Physics, 43 papers in Hydromagnetic and ~}.droa:rnamic ,S"tabiJjty,42 papers in Tensor-virial theorem, 83 papers in Relativi,ftic a.ftrophy,fic.f, 61 papers in Malhematical theory. of Black hole,f and coUoiding waves, and 19 papers of genual interest. The higb~t Collaboration Coefficient \\'as 0.5 during 1983-87. Producti"it." coefficient ,,.as 0.46. The mean Synchronous self citation rate in his publications \\.as 24.44. Publication densi~. \\.as 7.37 and Publication concentration \\.as 4.34. Ke.}.word.f/De,fcriptors: Biobibliometrics; Scientometrics; Bibliome'trics; Collaboration; lndn.idual Scientist; Scientometric portrait; Sociolo~' of Science, Histor:. of St.-iencc. 1. Introduction his three undergraduate years at the Institute for Subrahmanvan Chandrasekhar ,,.as born in Theoretisk Fysik in Copenhagen.
    [Show full text]
  • Equipartition Theorem - Wikipedia 1 of 32
    Equipartition theorem - Wikipedia 1 of 32 Equipartition theorem In classical statistical mechanics, the equipartition theorem relates the temperature of a system to its average energies. The equipartition theorem is also known as the law of equipartition, equipartition of energy, or simply equipartition. The original idea of equipartition was that, in thermal equilibrium, energy is shared equally among all of its various forms; for example, the average kinetic energy per degree of freedom in translational motion of a molecule should equal that in rotational motion. The equipartition theorem makes quantitative Thermal motion of an α-helical predictions. Like the virial theorem, it gives the total peptide. The jittery motion is random average kinetic and potential energies for a system at a and complex, and the energy of any given temperature, from which the system's heat particular atom can fluctuate wildly. capacity can be computed. However, equipartition also Nevertheless, the equipartition theorem allows the average kinetic gives the average values of individual components of the energy of each atom to be energy, such as the kinetic energy of a particular particle computed, as well as the average or the potential energy of a single spring. For example, potential energies of many it predicts that every atom in a monatomic ideal gas has vibrational modes. The grey, red an average kinetic energy of (3/2)kBT in thermal and blue spheres represent atoms of carbon, oxygen and nitrogen, equilibrium, where kB is the Boltzmann constant and T respectively; the smaller white is the (thermodynamic) temperature. More generally, spheres represent atoms of equipartition can be applied to any classical system in hydrogen.
    [Show full text]
  • Astronomy Astrophysics
    A&A 470, 449–466 (2007) Astronomy DOI: 10.1051/0004-6361:20077443 & c ESO 2007 Astrophysics A CFH12k lensing survey of X-ray luminous galaxy clusters II. Weak lensing analysis and global correlations S. Bardeau1,2,G.Soucail1,J.-P.Kneib3,4, O. Czoske5,6,H.Ebeling7,P.Hudelot1,5,I.Smail8, and G. P. Smith4,9 1 Laboratoire d’Astrophysique de Toulouse-Tarbes, CNRS-UMR 5572 and Université Paul Sabatier Toulouse III, 14 avenue Belin, 31400 Toulouse, France e-mail: [email protected] 2 Laboratoire d’Astrodynamique, d’Astrophysique et d’Aéronomie de Bordeaux, CNRS-UMR 5804 and Université de Bordeaux I, 2 rue de l’Observatoire, BP 89, 33270 Floirac, France 3 Laboratoire d’Astrophysique de Marseille, OAMP, CNRS-UMR 6110, Traverse du Siphon, BP 8, 13376 Marseille Cedex 12, France 4 Department of Astronomy, California Institute of Technology, Mail Code 105-24, Pasadena, CA 91125, USA 5 Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany 6 Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands 7 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr, Honolulu, HI 96822, USA 8 Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK 9 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK Received 9 March 2007 / Accepted 9 May 2007 ABSTRACT Aims. We present a wide-field multi-color survey of a homogeneous sample of eleven clusters of galaxies for which we measure total masses and mass distributions from weak lensing.
    [Show full text]
  • Virial Theorem for a Molecule Approved
    VIRIAL THEOREM FOR A MOLECULE APPROVED: (A- /*/• Major Professor Minor Professor Chairman' lof the Physics Department Dean 6f the Graduate School Ranade, Manjula A., Virial Theorem For A Molecule. Master of Science (Physics), May, 1972, 120 pp., bibliog- raphy, 36 titles. The usual virial theorem, relating kinetic and potential energy, is extended to a molecule by the use of the true wave function. The virial theorem is also obtained for a molecule from a trial wave function which is scaled separately for electronic and nuclear coordinates. A transformation to the body fixed system is made to separate the center of mass motion exactly. The virial theorems are then obtained for the electronic and nuclear motions, using exact as well as trial electronic and nuclear wave functions. If only a single scaling parameter is used for the electronic and the nuclear coordinates, an extraneous term is obtained in the virial theorem for the electronic motion. This extra term is not present if the electronic and nuclear coordinates are scaled differently. Further, the relation- ship between the virial theorems for the electronic and nuclear motion to the virial theorem for the whole molecule is shown. In the nonstationary state the virial theorem relates the time average of the quantum mechanical average of the kinetic energy to the radius vector dotted into the force. VIRIAL THEOREM FOR A MOLECULE THESIS Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE By Manjula A. Ranade Denton, Texas May, 1972 TABLE OF CONTENTS Page I.
    [Show full text]
  • 8.901 Lecture Notes Astrophysics I, Spring 2019
    8.901 Lecture Notes Astrophysics I, Spring 2019 I.J.M. Crossfield (with S. Hughes and E. Mills)* MIT 6th February, 2019 – 15th May, 2019 Contents 1 Introduction to Astronomy and Astrophysics 6 2 The Two-Body Problem and Kepler’s Laws 10 3 The Two-Body Problem, Continued 14 4 Binary Systems 21 4.1 Empirical Facts about binaries................... 21 4.2 Parameterization of Binary Orbits................. 21 4.3 Binary Observations......................... 22 5 Gravitational Waves 25 5.1 Gravitational Radiation........................ 27 5.2 Practical Effects............................ 28 6 Radiation 30 6.1 Radiation from Space......................... 30 6.2 Conservation of Specific Intensity................. 33 6.3 Blackbody Radiation......................... 36 6.4 Radiation, Luminosity, and Temperature............. 37 7 Radiative Transfer 38 7.1 The Equation of Radiative Transfer................. 38 7.2 Solutions to the Radiative Transfer Equation........... 40 7.3 Kirchhoff’s Laws........................... 41 8 Stellar Classification, Spectra, and Some Thermodynamics 44 8.1 Classification.............................. 44 8.2 Thermodynamic Equilibrium.................... 46 8.3 Local Thermodynamic Equilibrium................ 47 8.4 Stellar Lines and Atomic Populations............... 48 *[email protected] 1 Contents 8.5 The Saha Equation.......................... 48 9 Stellar Atmospheres 54 9.1 The Plane-parallel Approximation................. 54 9.2 Gray Atmosphere........................... 56 9.3 The Eddington Approximation................... 59 9.4 Frequency-Dependent Quantities.................. 61 9.5 Opacities................................ 62 10 Timescales in Stellar Interiors 67 10.1 Photon collisions with matter.................... 67 10.2 Gravity and the free-fall timescale................. 68 10.3 The sound-crossing time....................... 71 10.4 Radiation transport.......................... 72 10.5 Thermal (Kelvin-Helmholtz) timescale............... 72 10.6 Nuclear timescale..........................
    [Show full text]
  • 1. Hydrostatic Equilibrium and Virial Theorem Textbook: 10.1, 2.4 § Assumed Known: 2.1–2.3 §
    1. Hydrostatic equilibrium and virial theorem Textbook: 10.1, 2.4 § Assumed known: 2.1–2.3 § Equation of motion in spherical symmetry d2r GM ρ dP ρ = r (1.1) dt2 − r2 − dr Hydrostatic equilibrium dP GM ρ = r (1.2) dr − r2 Mass conservation dM r =4πr2ρ (1.3) dr Virial Theorem 1 E = 2E or E = E (1.4) pot − kin tot 2 pot Derivation for gaseous spheres: multiply equation of hydrostatic equilibrium by r on both sides, integrate over sphere, and relate pressure to kinetic energy (easiest to verify for ideal gas). For next time – Read derivation of virial theorem for set of particles ( 2.4). – Remind yourself of interstellar dust and gas, and extinction§ ( 12.1). – Remind yourself about thermodynamics, in particular adiabatic§ processes (bottom of p. 317 to p. 321). Fig. 1.1. The HRD of nearby stars, with colours and distances measured by the Hipparcos satellite. Taken from Verbunt (2000, first-year lecture notes, Utrecht University). Fig. 1.2. Observed HRD of the stars in NGC 6397. Taken from D’Antona (1999, in “The Galactic Halo: from Globular Clusters to Field Stars”, 35th Liege Int. Astroph. Colloquium). Fig. 1.3. HRD of the brightest stars in the LMC, with observed spectral types and magnitudes transformed to temperatures and luminosities. Overdrawn is the empirical upper limit to the luminosity, as well as a theoretical main sequence. Taken from Humphreys & Davidson (1979, ApJ 232, 409). 2. Star formation Textbook: 12.2 § Jeans Mass and Radius 1/2 3/2 3/2 3/2 1/2 3 5k T 2 T n − MJ = 1/2 = 29 M µ− 4 3 , (2.1) 4π GµmH ρ ⊙ 10K 10 cm− 1/2 1/2 1/2 1/2 3 5k T 1 T n − RJ = 1/2 =0.30pc µ− 4 3 .
    [Show full text]
  • Principle of Equipartition of Energy -Dr S P Singh (Dept of Chemistry, a N College, Patna)
    Principle of Equipartition of Energy -Dr S P Singh (Dept of Chemistry, A N College, Patna) Historical Background 1843: The equipartition of kinetic energy was proposed by John James Waterston. 1845: more correctly proposed by John James Waterston. 1859: James Clerk Maxwell argued that the kinetic heat energy of a gas is equally divided between linear and rotational energy. ∑ Experimental observations of the specific heat capacities of gases also raised concerns about the validity of the equipartition theorem. ∑ Several explanations of equipartition's failure to account for molar heat capacities were proposed. 1876: Ludwig Boltzmann expanded this principle by showing that the average energy was divided equally among all the independent components of motion in a system. ∑ Boltzmann applied the equipartition theorem to provide a theoretical explanation of the Dulong-Petit Law for the specific heat capacities of solids. 1900: Lord Rayleigh instead put forward a more radical view that the equipartition theorem and the experimental assumption of thermal equilibrium were both correct; to reconcile them, he noted the need for a new principle that would provide an "escape from the destructive simplicity" of the equipartition theorem. 1906: Albert Einstein provided that escape, by showing that these anomalies in the specific heat were due to quantum effects, specifically the quantization of energy in the elastic modes of the solid. 1910: W H Nernst’s measurements of specific heats at low temperatures supported Einstein's theory, and led to the widespread acceptance of quantum theory among physicists. Under the head we deal with the contributions of translational and vibrational motions to the energy and heat capacity of a molecule.
    [Show full text]
  • Arxiv:2006.01326V1 [Astro-Ph.GA] 2 Jun 2020 58090 Morelia, Michoacan, Mexico
    Noname manuscript No. (will be inserted by the editor) From diffuse gas to dense molecular cloud cores Javier Ballesteros-Paredes · Philippe Andre,´ · Patrick Hennebelle, · Ralf S. Klessen, · Shu-ichiro Inutsuka, · J. M. Diederik Kruijssen, · Melanie´ Chevance, · Fumitaka Nakamura, · Angela Adamo · Enrique Vazquez-Semadeni Received: 2020-01-31 / Accepted: 2020-05-17 Abstract Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they Javier Ballesteros-Paredes Instituto de Radioastronom´ıa y Astrof´ısica, UNAM, Campus Morelia, Antigua Carretera a Patzcuaro 8701. 58090 Morelia, Michoacan, Mexico. E-mail: [email protected] Philippe Andre´ Laboratoire d’Astrophysique (AIM), CEA/DRF, CNRS, Universite´ Paris-Saclay, Universite´ Paris Diderot, Sorbonne Paris Cite,91191´ Gif-sur-Yvette, France Patrick Hennebelle AIM, CEA, CNRS, Universite´ Paris-Saclay, Universite´ Paris Diderot, Sorbonne Paris Cite,´ 91191, Gif- sur-Yvette, France Ralf S. Klessen Universitat¨ Heidelberg, Zentrum fur¨ Astronomie, Institut fur¨ Theoretische Astrophysik, Albert-Ueberle- Str. 2, 69120 Heidelberg, Germany, Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan J. M. Diederik Kruijssen Astronomisches Rechen-Institut, Zentrum fur¨ Astronomie der Universitat¨ Heidelberg, Monchhofstraße¨ 12- 14, 69120 Heidelberg, Germany, Melanie´ Chevance Astronomisches Rechen-Institut, Zentrum fur¨ Astronomie der Universitat¨ Heidelberg,
    [Show full text]
  • 10. Timescales in Stellar Interiors This Separation Is Pleasant Because It
    10.Timescales inStellarInteriors This separation is pleasant because it means whenever we consider one timescale, we can assume that the faster processes are in equilibrium while the slower processes are static. Much excitement ensues when this hierarchy breaks down. For example, we see convection occur onτ dyn which then fundamentally changes the ther- mal transport. Or in the cores of stars near the end of their life,τ nuc becomes much shorter. If it gets shorter thanτ dyn, then the star has no time to settle into equilibrium – it may collapse. 10.8 The Virial Theorem In considering complex systems as a whole, it becomes easier to describe im- portant properties of a system in equilibrium in terms of its energy balance rather than its force balance. For systems in equilibrium– not just a star now, or even particles in a gas, but systems as complicated as planets in orbit, or clusters of stars and galaxies– there is a fundamental relationship between the internal, kinetic energy of the system and its gravitational binding energy. This relationship can be derived in a fairly complicated way by taking several time derivatives of the moment of inertia of a system, and applying the equations of motion and Newton’s laws. We will skip this derivation, the result of which can be expressed as: d2 I (208) = 2 K + U , dt2 � � � � where K is the time-averaged kinetic energy, and U is the time-averaged � � � � 2 gravitational potential energy. For a system in equilibrium, d I is zero, yielding dt2 the form more traditionally used in astronomy: 1 (209) K = U � � − 2 � � The relationship Eq.
    [Show full text]