A Quantum Monte Carlo Study of Strangeness in Nuclear Structure and Nuclear Astrophysics
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSITÀ DEGLI STUDI DI TRENTO Facoltà di Scienze Matematiche, Fisiche e Naturali Dipartimento di Fisica Tesi di Dottorato di Ricerca in Fisica Ph.D. Thesis in Physics From Hypernuclei to Hypermatter: a Quantum Monte Carlo Study of Strangeness in Nuclear Structure and Nuclear Astrophysics Supervisor: Candidate: Prof. Francesco Pederiva Diego Lonardoni Dottorato di Ricerca in Fisica, XXVI ciclo Trento, November 8th, 2013 Tutta la materia di cui siamo fatti noi l’hanno costruita le stelle, tutti gli elementi dall’idrogeno all’uranio sono stati fatti nelle reazioni nucleari che avvengono nelle supernove, cioè queste stelle molto più grosse del Sole che alla fine della loro vita esplodono e sparpagliano nello spazio il risultato di tutte le reazioni nucleari avvenute al loro interno. Per cui noi siamo veramente figli delle stelle. Margherita Hack Intervista su Cortocircuito Il computer non è una macchina intelligente che aiuta le persone stupide, anzi, è una macchina stupida che funziona solo nelle mani delle persone intelligenti. Umberto Eco dalla prefazione a Claudio Pozzoli, Come scrivere una tesi di laurea con il personal computer, Rizzoli Contents Introduction xi 1 Strangeness in nuclear systems1 1.1 Hyperons in finite nuclei........................2 1.2 Hyperons in neutron stars.......................6 2 Hamiltonians 15 2.1 Interactions: nucleons......................... 19 2.1.1 Two-body NN potential.................... 19 2.1.2 Three-body NNN potential.................. 21 2.2 Interactions: hyperons and nucleons................. 25 2.2.1 Two-body ΛN potential.................... 25 2.2.2 Three-body ΛNN potential.................. 27 2.2.3 Two-body ΛΛ potential.................... 29 3 Method 31 3.1 Diffusion Monte Carlo......................... 32 3.1.1 Importance Sampling...................... 36 3.1.2 Sign Problem.......................... 38 3.1.3 Spin-isospin degrees of freedom................ 42 3.2 Auxiliary Field Diffusion Monte Carlo................ 44 3.2.1 Propagator for nucleons: σ, σ τ and τ terms....... 45 · 3.2.2 Propagator for neutrons: spin-orbit terms.......... 52 3.2.3 Propagator for neutrons: three-body terms......... 53 3.2.4 Wave functions......................... 55 3.2.5 Propagator for hypernuclear systems............. 61 v vi Table of Contents 4 Results: finite systems 69 4.1 Nuclei.................................. 70 4.2 Single Λ hypernuclei.......................... 77 4.2.1 Hyperon separation energies.................. 77 4.2.2 Single particle densities and radii............... 88 4.3 Double Λ hypernuclei.......................... 93 4.3.1 Hyperon separation energies.................. 93 4.3.2 Single particle densities and radii............... 94 5 Results: infinite systems 97 5.1 Neutron matter............................. 97 5.2 Λ neutron matter............................ 100 5.2.1 Test: fixed Λ fraction..................... 100 5.2.2 Λ threshold density and the equation of state........ 106 5.2.3 Mass-radius relation and the maximum mass........ 114 6 Conclusions 119 A AFDMC wave functions 121 A.1 Derivatives of the wave function: CM corrections.......... 121 A.2 Derivatives of a Slater determinant.................. 124 B ΛN space exchange potential 127 Bibliography 129 Acknowledgements 149 List of Figures i.1 Neutron star structure......................... xi 1.1 Strangeness producing reactions....................3 1.2 Λ hypernuclei accessible via different experimental reactions....4 1.3 Λ hypernuclear chart..........................5 1.4 Hyperon and nucleon chemical potentials...............9 1.5 Neutron star mass-radius relation: Schulze 2011........... 10 1.6 Neutron star mass-radius relation: Massot 2012........... 11 1.7 Neutron star mass-radius relation: Miyatsu 2012.......... 12 1.8 Neutron star mass-radius relation: Bednarek 2012.......... 13 2.1 Two-pion exchange processes in the NNN force........... 22 2.2 Three-pion exchange processes in the NNN force.......... 23 2.3 Short-range contribution in the NNN force............. 24 2.4 Meson exchange processes in the ΛN force.............. 25 2.5 Two-pion exchange processes in the ΛNN force........... 27 4.1 Binding energies: E vs. dτ for 4He, Argonnne V4’......... 72 4.2 Binding energies: E vs. dτ for 4He, Argonnne V6’......... 73 4.3 Binding energies: E vs. mixing parameter for 6He.......... 76 4.4 Λ separation energy vs. A: closed shell hypernuclei......... 80 4.5 Λ separation energy for 5 He vs. W C : 3D plot......... 81 Λ D − P 4.6 Λ separation energy for 5 He vs. W C : 2D plot......... 82 Λ D − P 4.7 Λ separation energy vs. A ....................... 83 2=3 4.8 Λ separation energy vs. A− ..................... 84 4 5 4.9 Single particle densities: N and Λ in He and ΛHe......... 90 4.10 Single particle densities: Λ in hypernuclei for 3 A 91 ...... 91 ≤ ≤ vii viii List of Figures 4 5 6 4.11 Single particle densities: N and Λ in He, ΛHe and ΛΛHe...... 95 5.1 Energy per particle vs. baryon density at fixed Λ fraction..... 103 3 5.2 Pair correlation functions at fixed Λ fraction: ρb = 0:16 fm− ... 104 3 5.3 Pair correlation functions at fixed Λ fraction: ρb = 0:40 fm− ... 105 5.4 YNM and PNM energy difference vs. Λ fraction........... 110 5.5 Hyperon symmetry energy vs. baryon density............ 111 5.6 xΛ(ρb) function and Λ threshold density............... 113 5.7 YNM equation of state......................... 114 5.8 YNM mass-radius relation....................... 116 5.9 YNM mass-central density relation.................. 117 List of Tables 1.1 Nucleon and hyperon properties....................1 2.1 Parameters of the ΛN and ΛNN interaction............. 29 2.2 Parameters of the ΛΛ interaction................... 30 4.1 Binding energies: nuclei, 2 A 1 90 ............... 75 ≤ − ≤ 5 17 4.2 Λ separation energies: ΛN + ΛNN set (I) for ΛHe and ΛO.... 78 4.3 Λ separation energies: Λ hypernuclei, 3 A 91 .......... 85 ≤ ≤ 4.4 Λ separation energies: A = 4 mirror hypernuclei........... 86 4.5 Λ separation energies: effect of the CSB potential.......... 87 4.6 Λ separation energies: effect of the ΛN exchange potential..... 88 4.7 Nucleon and hyperon radii in hypernuclei for 3 A 49 ...... 92 6 ≤ ≤ 4.8 Λ separation energies: ΛΛHe...................... 94 6 4.9 Nucleon and hyperon radii for ΛΛHe................. 94 5.1 Energy per particle: neutron matter................. 99 5.2 Energy per particle: Λ neutron matter................ 102 5.3 Baryon number and Λ fraction.................... 108 5.4 Coefficients of the hyperon symmetry energy fit........... 110 ix x List of Tables Introduction Neutron stars (NS) are among the densest objects in the Universe, with central 3 densities several times larger than the nuclear saturation density ρ0 = 0:16 fm− . As soon as the density significantly exceeds this value, the structure and composi- tion of the NS core become uncertain. Moving from the surface towards the interior of the star, the stellar matter undergoes a number of transitions, Fig. i.1. From electrons and neutron rich ions in the outer envelopes, the composition is supposed to change to the npeµ matter in the outer core, a degenerate gas of neutrons, pro- tons, electrons and muons. At densities larger than 2ρ0 the npeµ assumption can be invalid due to the appearance of new hadronic∼ degrees of freedom or exotic phases. 12 NEUTRON STARS Figure i.1: Schematic structure of a neutron star. Stellar parameters strongly Figuredepend 1.2. onSchematic the equation structure of state of a neutron of the core. star. StellarFigure parameters taken from strongly Ref. [1] depend on the EOS in a neutron star core. Some attempts to extract this informationxi from observations are described in Chapter 9. The atmosphere thickness varies from some ten centimeters in a 6 hot neutron star (with the effective surface temperature Ts 3 10 K) to a 5 ∼ × few millimeters in a cold one (Ts 3 10 K). Very cold or ultramagnetized neutron stars may have a solid or liquid∼ × surface. Neutron star atmospheres have been studied theoretically by many authors (see, e.g., Zavlin & Pavlov 2002 and references therein). Current atmosphere models, especially for neutron stars 6 11 with surface temperatures Ts ! 10 K and strong magnetic fields B " 10 G, are far from being complete. The most serious problems consist in calculating the EOS, ionization equilibrium, and spectral opacity of the atmospheric plasma (Chapters 2 and 4). If the radiation flux is too strong, the radiative force exceeds the gravitational one and makes the atmosphere unstable with respect to a plasma outflow. In a hot nonmagnetized atmosphere, where the radiative force is produced by Thomson scattering, this happens whenever the stellar luminosity L exceeds the Eddington limit 38 1 LEdd =4πcGMmp/σT 1.3 10 (M/M )ergs− , (1.3) ≈ × ! where σT is the Thomson scattering cross section and mp the proton mass. The outer crust (the outer envelope) extends from the atmosphere bottom 11 3 to the layer of the density ρ = ρND 4 10 gcm− . Its thickness is some hundred meters (Chapter 6). Its matter≈ × consists of ions Z and electrons e (Chapters 2 and 3). A very thin surface layer (up to few meters in a hot star) contains a non-degenerate electron gas. In deeper layers the electrons constitute xii Introduction In the pioneering work of 1960 [2], Ambartsumyan and Saakyan reported the first theoretical evidence of hyperons in the core of a NS. Contrary to terrestrial conditions, where hyperons are unstable and decay into nucleons through the weak interaction, the equilibrium conditions in a NS can make the inverse process hap- pen. At densities of the order 2 3ρ0, the nucleon chemical potential is large enough to make the conversion of÷ nucleons into hyperons energetically favorable. This conversion reduces the Fermi pressure exerted by the baryons, and makes the equation of state (EoS) softer. As a consequence, the maximum mass of the star is typically reduced. Nowadays many different approaches of hyperonic matter are available, but there is no general agreement among the predicted results for the EoS and the maximum mass of a NS including hyperons.