ARTICLE https://doi.org/10.1038/s41467-019-11681-0 OPEN Heterogeneity in respiratory electron transfer and adaptive iron utilization in a bacterial biofilm Yuxuan Qin 1,2, Yinghao He 2, Qianxuan She 2, Philip Larese-Casanova3, Pinglan Li1 & Yunrong Chai2 In Bacillus subtilis, robust biofilm formation requires large quantities of ferric iron. Here we show that this process requires preferential production of a siderophore precursor, 2,3- dihydroxybenzoate, instead of the siderophore bacillibactin. A large proportion of iron is fi fi 1234567890():,; associated extracellularly with the bio lm matrix. The bio lms are conductive, with extra- cellular iron potentially acting as electron acceptor. A relatively small proportion of ferric iron is internalized and boosts production of iron-containing enzymes involved in respiratory electron transfer and establishing strong membrane potential, which is key to biofilm matrix production. Our study highlights metabolic diversity and versatile energy generation strate- gies within B. subtilis biofilms. 1 Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China. 2 Department of Biology, Northeastern University, Boston, MA 02115, USA. 3 Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA. Correspondence and requests for materials should be addressed to P.L. (email:
[email protected]) or to Y.C. (email:
[email protected]) NATURE COMMUNICATIONS | (2019) 10:3702 | https://doi.org/10.1038/s41467-019-11681-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11681-0 ost bacteria are capable of forming surface-associated, and Δpps, Fig.