3Rd Uk Plant Evoltion Meeting
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tesis. Síndromes De Polinización En
Dr. Luis Giménez Benavides, Profesor Contratado Doctor del Departamento de Biología y Geología, Física y Química Inorgánica de la Universidad Rey Juan Carlos, CERTIFICA Que los trabajos de investigación desarrollados en la memoria de tesis doctoral, “Síndromes de polinización en Silene. Evolución de las interacciones polinizador-depredador con Hadena” son aptos para ser presentados por el Ldo. Samuel Prieto Benítez ante el tribunal que en su día se consigne, para aspirar al Grado de Doctor en el Programa de Doctorado de Conservación de Recursos Naturales por la Universidad Rey Juan Carlos de Madrid. V°B° Director de Tesis Dr. Luis Giménez Benavides TESIS DOCTORAL Síndromes de polinización en Silene. Evolución de las interacciones polinizador- depredador con Hadena. Samuel Prieto Benítez Dirigida por: Luis Giménez Benavides Departamento de Biología y Geología, Física y Química Inorgánica Universidad Rey Juan Carlos Mayo 2015 A mi familia y a Sofía, gracias por el apoyo y el cariño que me dais. ÍNDICE RESUMEN Antecedentes 11 Objetivos 19 Metodología 20 Conclusiones 25 Referencias 27 Lista de manuscritos 33 CAPÍTULOS/CHAPTERS Capítulo 1/Chapter 1 35 Revisión y actualización del estado de conocimiento de las relaciones polinización- depredación entre Caryophyllaceae y Hadena (Noctuidae). Capítulo 2/Chapter 2 65 Diel Variation in Flower Scent Reveals Poor Consistency of Diurnal and Nocturnal Pollination Syndromes in Sileneae. Capítulo 3/Chapter 3 113 Floral scent evolution in Silene: a multivariate phylogenetic analysis. Capítulo 4/Chapter 4 145 Flower circadian rhythm restricts/constraints pollination generalization and prevents the escape from a pollinator-seed predating specialist in Silene. Capítulo 5/Chapter 5 173 Spatio-temporal variation in the interaction outcome between a nursery pollinator and its host plant when other other pollinators, fruit predators and nectar robbers are present. -
E D I T O R I a L
E D I T O R I A L A MECHANISM FOR RAPID CHANGE? In a highly recommended book1 Del Ratzsch notes that creationists and evolutionists often criticize each other for positions that are more imagined than real. One of the most common misconceptions is the alleged creationist belief in fixity of species.2 One may read dogmatic statements that creation theory cannot be true because Noah’s ark could not hold all the species of beetles, etc. Such arguments seem misguided to many creationists. I doubt any creationist believes that the ark needed to hold 250,000 or more species of beetles. One reason this criticism seems misguided is that creation theory includes the expectation of change in species. Whether every species of beetle depended on the ark for survival is an interesting question that will not be pursued here. The Bible includes several statements that indicate that change in species is to be expected. Genesis 3 records the story of the sin of Adam and Eve, followed by the curses pronounced on nature. As a result of those curses, the serpent was to crawl on its belly, and thorns and thistles would be produced. If these conditions already existed, they could not be attributed to the curses resulting from sin. Thus, these species would change. Another suggestion that plants would change is found in Genesis 2:5, which states that certain types of plants had not yet appeared.3 The text seems to be referring to the spiny xerophytic plants now common in Israel, but the changes that produced this type of plant had not yet occurred at the time Adam was created. -
Spike Protein Mutational Landscape in India: Could Muller’S Ratchet Be a Future Game
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.18.255570; this version posted August 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Spike protein mutational landscape in India: Could Muller’s ratchet be a future game- changer for COVID-19? Rachana Banerjeea, Kausik Basaka, Anamika Ghoshb, Vyshakh Rajachandranc, Kamakshi Surekaa, Debabani Gangulya,1, Sujay Chattopadhyaya,1 aCentre for Health Science and Technology, JIS Institute of Advanced Studies and Research Kolkata, JIS University, 700091, West Bengal, India. bDepartment of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, 711103, West Bengal, India. cSchool of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, Kerala, India. 1To whom correspondence may be addressed. Email: [email protected] or [email protected] Classification Major: Biological Sciences, Minor: Evolution Keywords: SARS-CoV-2, Muller's ratchet, mutational meltdown, molecular docking, viral evolutionary dynamics 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.18.255570; this version posted August 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The dire need of effective preventive measures and treatment approaches against SARS-CoV-2 virus, causing COVID-19 pandemic, calls for an in-depth understanding of its evolutionary dynamics with attention to specific geographic locations, since lockdown and social distancing to prevent the virus spread could lead to distinct localized dynamics of virus evolution within and between countries owing to different environmental and host-specific selection pressures. -
A Systematic Study of Berkheya and Allies (Compositae)
A systematic study of Berkheya and allies (Compositae) A thesis submitted in the fulfilment of the requirements for the degree of Master of Science of Rhodes University by Ntombifikile Phaliso April 2013 Supervisor: Prof. N.P. Barker (Botany Department, Rhodes University) Co-supervisor: Dr. Robert McKenzie (Botany Department, Rhodes University) Table of contents: Title ……………………………………………………………………………..I Acknowledgements…………………………………………………………...III Declaration……………………………………………………………………IV Abstract…………………………………………………………………………1 Chapter 1: General Introduction……………………………………………..3 Chapter 2: The molecular phylogeny of Berkheya and allies……………...12 Aims………………………………………………………………………………………….12 2.1: Molecular (DNA-based) systematic……………………………………………………..12 2.2: Methods and Materials…………………………………………………………………..18 2.1.1: Sampling…………………………………………………………………………..18 2.1.2: DNA extraction, amplification and sequencing…………………………………..18 2.1.3: Sequence alignment……………………………………………………………..19 2.1.4: Phylogenetic Analyses …………………………………………………………...21 2.3: Results…………………………………………………………………………………..22 2.3.1: ITS data set………………………………………………………………………..22 2.3.2: psbA-trnH data set………………………………………………………………..23 2.3.3: Combined data set………………………………………………………………...24 2.4: Discussion……………………………………………………………………………….28 2.4.1: Phylogenetic relationships within the Berkheya clade……………………………28 2.4.2: Insights from the psbA-trnH & combined data set phylogenies………………….37 2.4.3: Taxonomic implications: paraphyly of Berkheya………………………………...39 2.4.4: Taxonomic Implications: Correspondence with -
Cryptic Self-Incompatibility and Distyly in Hedyotis Acutangula Champ
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/44648251 Cryptic self-incompatibility and distyly in Hedyotis acutangula Champ. (Rubiaceae) ARTICLE in PLANT BIOLOGY · MAY 2010 Impact Factor: 2.63 · DOI: 10.1111/j.1438-8677.2009.00242.x · Source: PubMed CITATIONS READS 16 38 3 AUTHORS, INCLUDING: Dianxiang Zhang Chinese Academy of Sciences 91 PUBLICATIONS 410 CITATIONS SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Dianxiang Zhang letting you access and read them immediately. Retrieved on: 03 December 2015 Plant Biology ISSN 1435-8603 RESEARCH PAPER Cryptic self-incompatibility and distyly in Hedyotis acutangula Champ. (Rubiaceae) X. Wu, A. Li & D. Zhang Key Laboratory of Plant Resource Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China Keywords ABSTRACT Distyly; Hedyotis acutangula; pollination; Rubiaceae; self-incompatibility; thrum Distyly, floral polymorphism frequently associated with reciprocal herkogamy, self- flowers. and intramorph incompatibility and secondary dimorphism, constitutes an impor- tant sexual system in the Rubiaceae. Here we report an unusual kind of distyly Correspondence associated with self- and ⁄ or intramorph compatibility in a perennial herb, Hedyotis D. Zhang, South China Botanical Garden, acutangula. Floral morphology, ancillary dimorphisms and compatibility of the two Chinese Academy of Sciences, Guangzhou morphs were studied. H. acutangula did not exhibit precise reciprocal herkogamy, 510650, China. but this did not affect the equality of floral morphs in the population, as usually E-mail: [email protected] found in distylous plants. Both pin and thrum pollen retained relatively high viabil- ity for 8 h. -
Phylogeny of the Ammobatini and Revision of the Afrotropical Genera (Hymenoptera: Anthophoridae: Nomadinae)
PHYLOGENY OF THE AMMOBATINI AND REVISION OF THE AFROTROPICAL GENERA (HYMENOPTERA: ANTHOPHORIDAE: NOMADINAE) by CONNAL DESMOND EARDLEY Submitted in fulfilment of the academic requirements for the degree of Doctor of Philosophy in the Department of Zoology and Entomology University of Natal Pietermaritzburg 1994 ABSTRACT The phylogeny of the Ammobatini was studied, with regard to the principles of cladistics using parsimony, and the classification is revised. It is concluded that the tribe fonns a monophyletic group that comprises six distinct monophyletic genera: Pasite Jurine, Sphecodopsis Bischoff, Ammobates Latreille, Me/anempis Saussure, Spilwpasites Warncke and Oreopasites Cockerell, of which Pasites, Sphecodopsis, Ammobates and MeLanempis occur in the Afrotropical Region. The Afrotropical species of these four genera are revised. Pseudopasites Bischoff and Pseudodichroa Bischoff are synonymized with Sphecodopsis. Pasites includes 17 Afrotropical species, Sphecodopsis 10 species, and Ammobates and MeLanempis are each known from a single Afrotropical species. Ten new species are described: Pa..~ites nilssoni, P. paulyi, P. humecta, P. glwma, P. namibiensis, P. somaLica, Sphecodopsis vespericena, S. longipygidium, S. namaquensis and Ammobates auster. Thirty-three names are synonymized: they are P. nigerrima (Friese), P. argentata (Baker) (= P. barkeri (Cockereil»; P. chubbi Cockerell, P. nigritula Bischoff, P. peratra Cockerell (= P. atra Friese); P. nigripes (Friese), P. fortis Cockerell, P. subfortis Cockerell, P. stordyi Cockerell, P. voiensis Cockerell, P. aitior Cockerell (= P. carnifex (Gerstaecker»; P. Ilataiensis (Cockerell), P. aiboguttatus (Friese), P. ogiiviei (Cockerell) (= P. jenseni (Friese»; P. alivalensis (Cockerell), P. rufitarsis (Cockerell) (= P. histrio (Gerstaecker»; P. marshaUi (Cockerell) (= P. jonesi (Cockerell»; P. abessinica (Friese), P. fulviventris (Bischoff), P. rhodesialla (Bischoff), P. apicalis (Bischoff), P. -
A Floristic Survey of Fair Isle
Edinburgh Research Explorer A floristic survey of Fair Isle Citation for published version: Quinteros Peñafiel, CV, Riddiford, N & Twyford, A 2017, 'A floristic survey of Fair Isle', New Journal of Botany, vol. 7, no. 2-3, pp. 101-111. https://doi.org/10.1080/20423489.2017.1393191 Digital Object Identifier (DOI): 10.1080/20423489.2017.1393191 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: New Journal of Botany General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Oct. 2021 New Journal of Botany Journal of the Botanical Society of Britain & Ireland ISSN: 2042-3489 (Print) 2042-3497 (Online) Journal homepage: http://www.tandfonline.com/loi/ynjb20 A floristic survey of Fair Isle C. V. Quinteros Peñafiel, N. J. Riddiford & A. D. Twyford To cite this article: C. V. Quinteros Peñafiel, N. J. Riddiford & A. D. Twyford (2017) A floristic survey of Fair Isle, New Journal of Botany, 7:2-3, 101-111, DOI: 10.1080/20423489.2017.1393191 To link to this article: https://doi.org/10.1080/20423489.2017.1393191 © 2017 The Author(s). -
Oral Morphometrics, of Homostyly from Distyly In
ORAL MORPHOMETRICS,DEVELOPMENT AND EVOLUTION OF HOMOSTYLYFROM DISTYLYIN AMSINCKI. (BORAGINACEAE) Ping Li Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Dalhousie University Halifax, Nova Scotia August 2001 O Copyright by Ping Li, 2001 National Library Bibliothèque nationale 1+1 ,canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue WeUington OnawaON KlAOW OttawaON KlAON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loaq distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfonn, vendre des copies de cette thèse sous paper or electronic formats. la foxme de microfichelfilm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright ir; this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or othenvise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. .. Sigiiature page ...............................................................................................................u... Copyright agreement page ............................................................................................ru -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
Genetics of Distyly and Homostyly in a Self-Compatible Primula
Heredity (2019) 122:110–119 https://doi.org/10.1038/s41437-018-0081-2 ARTICLE Genetics of distyly and homostyly in a self-compatible Primula 1,2 3 4 4 4 1 Shuai Yuan ● Spencer C. H. Barrett ● Cehong Li ● Xiaojie Li ● Kongping Xie ● Dianxiang Zhang Received: 30 December 2017 / Revised: 16 March 2018 / Accepted: 17 March 2018 / Published online: 4 May 2018 © The Genetics Society 2018 Abstract The transition from outcrossing to selfing through the breakdown of distyly to homostyly has occurred repeatedly among families of flowering plants. Homostyles can originate by major gene changes at the S-locus linkage group, or by unlinked polygenic modifiers. Here, we investigate the inheritance of distyly and homostyly in Primula oreodoxa, a subalpine herb endemic to Sichuan, China. Controlled self- and cross-pollinations confirmed that P. oreodoxa unlike most heterostylous species is fully self-compatible. Segregation patterns indicated that the inheritance of distyly is governed by a single Mendelian locus with the short-styled morph carrying at least one dominant S-allele (S-) and long-styled plants homozygous recessive (ss). Crossing data were consistent with a model in which homostyly results from genetic changes at the distylous linkage group, with the homostylous allele (Sh) dominant to the long-styled allele (s), but recessive to the short-styled allele (S). Progeny tests of open-pollinated seed families revealed high rates of intermorph mating in the L-morph but considerable 1234567890();,: 1234567890();,: selfing and possibly intramorph mating in the S-morph and in homostyles. S-morph plants homozygous at the S-locus (SS) occurred in several populations but may experience viability selection. -
TELOPEA Publication Date: 13 October 1983 Til
Volume 2(4): 425–452 TELOPEA Publication Date: 13 October 1983 Til. Ro)'al BOTANIC GARDENS dx.doi.org/10.7751/telopea19834408 Journal of Plant Systematics 6 DOPII(liPi Tmst plantnet.rbgsyd.nsw.gov.au/Telopea • escholarship.usyd.edu.au/journals/index.php/TEL· ISSN 0312-9764 (Print) • ISSN 2200-4025 (Online) Telopea 2(4): 425-452, Fig. 1 (1983) 425 CURRENT ANATOMICAL RESEARCH IN LILIACEAE, AMARYLLIDACEAE AND IRIDACEAE* D.F. CUTLER AND MARY GREGORY (Accepted for publication 20.9.1982) ABSTRACT Cutler, D.F. and Gregory, Mary (Jodrell(Jodrel/ Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, England) 1983. Current anatomical research in Liliaceae, Amaryllidaceae and Iridaceae. Telopea 2(4): 425-452, Fig.1-An annotated bibliography is presented covering literature over the period 1968 to date. Recent research is described and areas of future work are discussed. INTRODUCTION In this article, the literature for the past twelve or so years is recorded on the anatomy of Liliaceae, AmarylIidaceae and Iridaceae and the smaller, related families, Alliaceae, Haemodoraceae, Hypoxidaceae, Ruscaceae, Smilacaceae and Trilliaceae. Subjects covered range from embryology, vegetative and floral anatomy to seed anatomy. A format is used in which references are arranged alphabetically, numbered and annotated, so that the reader can rapidly obtain an idea of the range and contents of papers on subjects of particular interest to him. The main research trends have been identified, classified, and check lists compiled for the major headings. Current systematic anatomy on the 'Anatomy of the Monocotyledons' series is reported. Comment is made on areas of research which might prove to be of future significance. -
Sand Mine Near Robertson, Western Cape Province
SAND MINE NEAR ROBERTSON, WESTERN CAPE PROVINCE BOTANICAL STUDY AND ASSESSMENT Version: 1.0 Date: 06 April 2020 Authors: Gerhard Botha & Dr. Jan -Hendrik Keet PROPOSED EXPANSION OF THE SAND MINE AREA ON PORTION4 OF THE FARM ZANDBERG FONTEIN 97, SOUTH OF ROBERTSON, WESTERN CAPE PROVINCE Report Title: Botanical Study and Assessment Authors: Mr. Gerhard Botha and Dr. Jan-Hendrik Keet Project Name: Proposed expansion of the sand mine area on Portion 4 of the far Zandberg Fontein 97 south of Robertson, Western Cape Province Status of report: Version 1.0 Date: 6th April 2020 Prepared for: Greenmined Environmental Postnet Suite 62, Private Bag X15 Somerset West 7129 Cell: 082 734 5113 Email: [email protected] Prepared by Nkurenkuru Ecology and Biodiversity 3 Jock Meiring Street Park West Bloemfontein 9301 Cell: 083 412 1705 Email: gabotha11@gmail com Suggested report citation Nkurenkuru Ecology and Biodiversity, 2020. Section 102 Application (Expansion of mining footprint) and Final Basic Assessment & Environmental Management Plan for the proposed expansion of the sand mine on Portion 4 of the Farm Zandberg Fontein 97, Western Cape Province. Botanical Study and Assessment Report. Unpublished report prepared by Nkurenkuru Ecology and Biodiversity for GreenMined Environmental. Version 1.0, 6 April 2020. Proposed expansion of the zandberg sand mine April 2020 botanical STUDY AND ASSESSMENT I. DECLARATION OF CONSULTANTS INDEPENDENCE » act/ed as the independent specialist in this application; » regard the information contained in this