Mtm Quantitative Analysis of Watershed Geomorphology

Total Page:16

File Type:pdf, Size:1020Kb

Mtm Quantitative Analysis of Watershed Geomorphology Mtm _■_______---! Vo|. 38, No. 6 Transactions. American Geophysical Union December 1957 • going into suspension , but part of the same Quantitative Analysis of Watershed Geomorphology mt in the low velocities kwater areas. Examples Arthur N. Strahler een noted close to river ere sand splays or dunes, Abstract—Quantitative geomorphic methods developed within the past few years provide t greatly different from means of measuring size and form properties of drainage basins. Two general classes of de ve been deposited on the scriptive numbers are (1) linear scale measurements, whereby geometrically analogous units of topography can be compared as to size; and (2) dimensionless numbers, usually angles or jam bed. While it is not ratios of length measures, whereby the shapes of analogous units can be compared irrespec is paper to evaluate the tive of scale. of the other bed-load Linear scale measurements include length of stream channels of given order, drainage manner, it is suggested density, constant of channel maintenance, basin perimeter, and relief. Surface and cross- as to the applicability of sectional areas of basins are length products. If two drainage basins are geometrically similar, bed-load and total-load all corresponding length dimensions will be in a fixed ratio. Dimensionless properties include stream order numbers, stream length and bifurcation sand-bed streams a great ratios, junction angles, maximum valley-side slopes, mean slopes of watershed surfaces, terial is carried into sus- channel gradients, relief ratios, and hypsometric curve properties and integrals. If geomet rical similarity exists in two drainage basins, all corresponding dimensionless numbers will -, it may be found practi- be identical, even though a vast size difference may exist. Dimensionless properties can be •ediment load of a water- correlated with hydrologic and sediment-yield data stated as mass or volume rates of flow erosion. Slope is a factor per unit area, independent of total area of watershed. rally recognized bed-load tree, 1955, p. 114]. Exten- Introduction—Until about ten years ago the principles of scale-model similarity [Strahler, 1954a, ccssary to determine the ..omorphologist operated almost entirely on a p. 343; 1957]. Figure 1 illustrates the concept of features as vegetative iescriptive basis and was primarily concerned with geometrical similarity, with which we are pri dumped rock dams, and :he history of evolution of landforms as geological marily concerned in topographical description. ould act as major dctcn- eatures. With the impetus given by Horton [1945], Basins A and B are assumed to be geometrically ice the slope, Bid under the growing realization that the classical similar, differing only in size. The-larger may be cd to gully erosion and iescriptive analysis had very limited value in designated as the prototype, the smaller as the ere direct methods are .radical engineering and military applications, a model. All measurements of length between cor heir quantities, estimates few geomorphologists began to attempt quantifica- responding points in the two basins bear a fixed ust be based upon past :;ra of landform description. scale ratio, X. Thus, if oriented with respect to a upon the best of the bed- This paper reviews progress that has been made common center of similitude, the basin mouths Q' therefrom. n quantitative landform analysis as it applies to and Q are located at distances r' and r, respectively, normally developed watersheds in which running from C; the ratio of r' to r is X. In short, all cor :_xces vater and associated mass gravity movements are responding length measurements, whether they ; 'he chief agents of form development. The treat ction of basic data on sedfc be of basin perimeter, basin length or width, stream on Water Resource;;, ///. ment cannot be comprehensive; several lines of length, or relief (h' and h in lower profile), are in a /, pp. 53-62. October 1951. •tudy must be omitted. Nevertheless, this paper fixed ratio, if similarity exists. ee, C. EL, Computations of . may suggest what can be done by systematic ap- All corresponding angles are equal in prototype Niobrara River near Cody, .!•• v. Paper 1357. 187 pp.. 1955. i proach to the problem of objective geometrical and model (Fig. 1). This applies to stream junction s-u. W. M.. Estimating bed analysis of a highly complex surface. angles a' and a, and to ground slope angles $' and phys. Union, 32, 121-12.5. Most of the work cited has been carried out at /3. Angles are dimensionless properties; hence the ussion of future of reser- I Columbia University over the past five years under generalization ■ that in two geometrically similar Civ. Eng., Ill, 1258-1262. j i contract with the Office of Naval Research, systems all corresponding dimensionless num 1 Geography Branch, Project NR 389-042 for the bers or products describing the geometry must be 1 -tudy of basic principles of erosional topography. equal. District, Tuisa, Oklalwnui References cited below give detailed explanations Studies of actual drainage basins in differing "' techniques and provide numerous examples \ 1. 1957; presented as pari environments show that in many comparisons in itershed Erosion and Sed»" *^ken from field and map study. homogeneous rock masses, geometrical similarity /-Seventh Annual Meeting. j Dimensional analysis and geometrical similarity— is closely approximated when mean values are 1. 1956; open for formal i "e have attempted to base a system of quantita- 58.) considered, whereas in other comparisons, where :ve geomorphology on dimensional analysis and geologic inhomogeneity exists, similarity is def- 05 MILE order bo./. -o.o- o 2 ORDER, F,G. 3 - Regression of number of stream segments on stream order; data from Smith (1953, Plate found bifurcation ratios of first-order to second- designating stream orders order streams to range from 4.0 to 5.1; ratios of , 1954a, p. 344) second-order to third-order streams to range from measure of the changing length of channel seg 2.8 to 4.9. These values differ little from Strahler's ments as order changes. Because this is a non ;i952, p. 1134]. etry through use of order linear variation, the assumption is implicit that 3 in drainage-network anal- Frequency distribution of stream lengths—Length )f stream segments of each of stream channel is a dimensional property which geometrical similarity is not preserved with in 1 by analysis of the way in can be used to reveal the scale of units comprising creasing order of magnitude of drainage basin. earn segments change with die drainage network. One method of—length Drainage basin areas—Area of a given watershed or drainage basin, a property of the square of analysis is the measurement of length of_____h length, is a prime determinant of total runoff or 'orlon's [1945, p. 291] law of segment of channel of a given stream order. For a sediment yield and is normally eliminated as a that the numbers of stream ■_iven watershed these lengths can be studied by variable by reduction to unit area, as in annual r form an inverse geometric frequency distribution analysis [Schumm, 1956, sediment loss in acre-feet per square mile. In order number. This is generally p. 607]. Stream lengths are strongly skewed right, to compare drainage basin areas in a meaningful ted data [Strahler, 1952, p. but this may be largely corrected by use of loga rithm of length. Arithmetic mean, estimated way, it is necessary to compare basins of the same p. 603] and is conveniently order of magnitude. Thus, if we measure the areas Figure 3. A regression of population variance, and standard deviation serve of drainage basins of the second order, we are of streams of each order as standards of description whereby different order (abscissa) generally measuring corresponding elements of the systems. drainage nets can be compared and their differ If approximate geometrical similarity exists, the ences tested statistically [Strahler, 1954b]. plot with very little scatter area measurements will then be indicators of the Relation of stream length to stream order—Still though the function relating size of the landform units, because areas of similar .ed only for integer values of another means of evaluating length relationships forms are related as the square of the scale ratio. in a drainage network is to relate stream length to .le, a regression line is fitted; Basin area increases exponentially with stream or regression coefficient b is stream order. A regression of logarithm of total order, as stated in a law of areas [Schumm, 1956, p. thm of b is equivalent to stream length for each order on logarithm of ratio rb and in this case has order may be plotted (Fig. 4). Again, the function 606], paraphrasing Horton's law of stream lengths. Schumm [1956, p. 607] has shown histograms of s means that on the average is defined' only for integer values of order. Several the areas of basins of the first and second orders e-half times as many streams such plots of length data made to date seem to and of patches of ground surface too small to have next higher order. yield consistently good fits to a straight line, but channels of their own. Basin area distributions are tt the bifurcation ratio would the general applicability of the function is not yet mensionless number for ex- established, as in the case of the law of stream strongly skewed, but this is largely corrected by a drainage system. Actually numbers. use of log of area. Area is measured by planimeter • stable and shows a small The slope of the regression line b (Fig. 4) is the from a topographic map, hence represents pro i region to region or environ- exponent in a power function relating the two jected, rather than true surface area.
Recommended publications
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources
    River Dynamics 101 - Fact Sheet River Management Program Vermont Agency of Natural Resources Overview In the discussion of river, or fluvial systems, and the strategies that may be used in the management of fluvial systems, it is important to have a basic understanding of the fundamental principals of how river systems work. This fact sheet will illustrate how sediment moves in the river, and the general response of the fluvial system when changes are imposed on or occur in the watershed, river channel, and the sediment supply. The Working River The complex river network that is an integral component of Vermont’s landscape is created as water flows from higher to lower elevations. There is an inherent supply of potential energy in the river systems created by the change in elevation between the beginning and ending points of the river or within any discrete stream reach. This potential energy is expressed in a variety of ways as the river moves through and shapes the landscape, developing a complex fluvial network, with a variety of channel and valley forms and associated aquatic and riparian habitats. Excess energy is dissipated in many ways: contact with vegetation along the banks, in turbulence at steps and riffles in the river profiles, in erosion at meander bends, in irregularities, or roughness of the channel bed and banks, and in sediment, ice and debris transport (Kondolf, 2002). Sediment Production, Transport, and Storage in the Working River Sediment production is influenced by many factors, including soil type, vegetation type and coverage, land use, climate, and weathering/erosion rates.
    [Show full text]
  • Stream Restoration, a Natural Channel Design
    Stream Restoration Prep8AICI by the North Carolina Stream Restonltlon Institute and North Carolina Sea Grant INC STATE UNIVERSITY I North Carolina State University and North Carolina A&T State University commit themselves to positive action to secure equal opportunity regardless of race, color, creed, national origin, religion, sex, age or disability. In addition, the two Universities welcome all persons without regard to sexual orientation. Contents Introduction to Fluvial Processes 1 Stream Assessment and Survey Procedures 2 Rosgen Stream-Classification Systems/ Channel Assessment and Validation Procedures 3 Bankfull Verification and Gage Station Analyses 4 Priority Options for Restoring Incised Streams 5 Reference Reach Survey 6 Design Procedures 7 Structures 8 Vegetation Stabilization and Riparian-Buffer Re-establishment 9 Erosion and Sediment-Control Plan 10 Flood Studies 11 Restoration Evaluation and Monitoring 12 References and Resources 13 Appendices Preface Streams and rivers serve many purposes, including water supply, The authors would like to thank the following people for reviewing wildlife habitat, energy generation, transportation and recreation. the document: A stream is a dynamic, complex system that includes not only Micky Clemmons the active channel but also the floodplain and the vegetation Rockie English, Ph.D. along its edges. A natural stream system remains stable while Chris Estes transporting a wide range of flows and sediment produced in its Angela Jessup, P.E. watershed, maintaining a state of "dynamic equilibrium." When Joseph Mickey changes to the channel, floodplain, vegetation, flow or sediment David Penrose supply significantly affect this equilibrium, the stream may Todd St. John become unstable and start adjusting toward a new equilibrium state.
    [Show full text]
  • Quantitative Geomorphology of Drainage Basins Related to Fish
    INFORMATIONAL LEAFLET NO. 162 QUANTITATIVE GEOMORPHOLOGY OF DRA INAGE BAS INS RELATED TO F ISH PRODUCT ION BY G. L. Ziemer STATE OF ALASKA William A. Egan - Governor DEPARTMENT OF F l SH AND GAME James W. Brooks, Commissioner Subport Building, Juneau 99801 July 1973 TABLE OF CONTENTS Page ABSTRACT .............................. 1 INTRODUCTION .......................... 1 GEOMORPHIC ELEMENTS ...................... 2 OBJECTIVES ............................ 4 METHODOLOGY .......................... 4 SUMMARY ............................. 11 CONCLUSIONS ........................... 14 REFERENCES ............................ 18 APPENDIX A . GEOMORPHIC ELEMENTS .............. 19 APPENDIX B . MEASURE OF FISH PRODUCTION .......... 25 QUANTITATIVE GEOMORPHOLOCX OF DRAINAGE BASINS RELATED TO FISH PRODUCTION G.L. Ziemer, P.E. Chief Engineer Alaska Department of Fish and Game Juneau, Alaska ABSTRACT This report covers the results of a study investigating the possibility of developing a classification index system for watersheds which would quan- tify their total composite salmon production potential. The premise was tested that, within a geologically and climatologically homogenous region, the water flow regimen of streams, and the channels that flow builds, is universally related to certain identifiable characteristics of their basins and drainages and that these control or indicate the level of fisheries production. This study shows that a correlation between drainage system geometry and freshwater production factors for anadromous fishes can be shown, and an index expressing that relationship, in the case of pink salmon in Prince William Sound, has been developed. INTRODUCTION As anadromous fisheries management proceeds from the basic position of husbandry of the existing stocks to the addition of programs designed to increase the quantity and to enhance the quality of the freshwater environment for fish production, it becomes desirable to provide to the manager better tools to equate one site against another so his projects return the maximum dividends.
    [Show full text]
  • Determination of Temporal Changes in the Sinuosity and Braiding Characteristics of the Kizilirmak River, Turkey
    Pol. J. Environ. Stud. Vol. 24, No. 5 (2015), 2095-2112 DOI: 10.15244/pjoes/58765 Original Research Determination of Temporal Changes in the Sinuosity and Braiding Characteristics of the Kizilirmak River, Turkey Derya Ozturk*, Faik Ahmet Sesli Department of Geomatics Engineering, Ondokuz Mayis University, 55139 Samsun, Turkey Received: June 2, 2015 Accepted: July 6, 2015 Abstract In this study, the pattern of the approximately 1,300-km-long Kizilirmak River was recreated in a geo- graphic information system (GIS) environment using data obtained from Landsat TM/ETM+/OLI satellite images from 1987, 2000, and 2013. The temporal changes in the sinuosity and braiding characteristics of the river were determined for the periods 1987-2000 and 2000-13. The right and left shorelines of the Kizilirmak River and the shorelines of islands and bars within the river channel were extracted automatically from the satellite images by integrating the normalized difference water index (NDWI) and modified normalized dif- ference water index (MNDWI). The data required for measuring the sinuosity and braiding characteristics were obtained by evaluating the shorelines in the GIS environment. The braiding index (BI), braid-channel ratio (B), and braiding ratio (BR) were used to determine the braiding of the river, and the sinuosity index was used to determine the sinuosity of the river. The Kizilirmak River was divided into 21 analyzed sections based on the locations of dams. The sinuosity decreased in 15 sections in 1987-2000 and 2000-13. The BI, B, and BR values decreased in 11 sections in 1987-2000 and in 9 sections in 2000-13.
    [Show full text]
  • National Stream Internet Protocol and User Guide
    National Stream Internet Protocol and User Guide David Nagel1, Erin Peterson2, Daniel Isaak1, Jay Ver Hoef3, and Dona Horan1 U.S. Forest Service, Rocky Mountain Research Station Air, Water, and Aquatic Environments Program 322 E. Front St., Boise, ID 1 Author affiliations: 1 US Forest Service, Rocky Mountain Research Station, AWAE Program, 322 E. Front St., Suite 401, Boise, ID 83702. 2 Queensland University of Technology, Brisbane, Queensland, Australia. 3 National Oceanic and Atmospheric Administration, Fairbanks, AK. Version 3-22-2017 Abstract The rate at which new information about stream resources is being created has accelerated with the recent development of spatial stream-network models (SSNMs), the growing availability of stream databases, and ongoing advances in geospatial science and computational efficiency. To further enhance information development, the National Stream Internet (NSI) project was developed as a means of providing a consistent, flexible analytical infrastructure that can be applied with many types of stream data anywhere in the country. A key part of that infrastructure is the NSI network, a digital GIS layer which has a specific topological structure that was designed to work effectively with SSNMs. The NSI network was derived from the National Hydrography Dataset Plus, Version 2 (NHDPlusV2) following technical procedures that ensure compatibility with SSNMs. This report describes those procedures and additional steps that are required to prepare datasets for use with SSNMs. 2 1.0 Introduction 1.1 Overview The USGS National Hydrography Dataset Plus, Version 2 (NHDPlusV2) (McKay et al., 2012) is an attribute rich, GIS stream network developed at 1:100,000 scale by the Environmental Protection Agency (EPA) and U.S.
    [Show full text]
  • Analyzing Rivers with Google Earth
    Name____________________________________Per.______ Analyzing Rivers with Google Earth River systems exist all over the planet. You are going to examine several rivers and landforms created by rivers during this activity using Google Earth. While your iPad can view each location, you will need a laptop to use the ruler function. A B Figure 1: Meandering river terms. Image from: http://www.sierrapotomac.org/W_Needham/MeanderingRivers.htm Part I: Meandering Rivers: Figure 1 shows several terms used to describe meandering rivers. We are going to focus on wavelength, amplitude, and sinuosity. Sinuosity is the ratio of river length (distance traveled if you floated down the river) divided by straight length line (bird’s flight distance, i.e. from point A to B). The greater the number, the more tortuous (strongly meandering) the path the river takes. 1. Fly to Yakeshi, China. Just north of the city is a beautiful series of scroll bars (former point bars that have been abandoned) formed by the meandering river moving across the landscape. 1a. Describe the features you see. What “age” river is this (young, mature, old)? How are the meanders moving over time? Is the river becoming straighter or more curved? 1b. Find an area where the current river channel and clear meanders are easy to see (i.e. 49o18’30”N, 120o35’45”E). Measure the wavelength, amplitude and sinuosity of the river in this area. To measure straight line paths for wavelength, amplitude, and bird’s flight distance, go to Tools Ruler Line. Use kilometers. Click and drag your cursor across the area of interest.
    [Show full text]
  • Spatial Patterns in CO 2 Evasion from the Global River Network Ronny Lauerwald, Goulven Laruelle, Jens Hartmann, Philippe Ciais, Pierre A.G
    Spatial patterns in CO 2 evasion from the global river network Ronny Lauerwald, Goulven Laruelle, Jens Hartmann, Philippe Ciais, Pierre A.G. Regnier To cite this version: Ronny Lauerwald, Goulven Laruelle, Jens Hartmann, Philippe Ciais, Pierre A.G. Regnier. Spatial patterns in CO 2 evasion from the global river network. Global Biogeochemical Cycles, American Geophysical Union, 2015, 29 (5), pp.534 - 554. 10.1002/2014GB004941. hal-01806195 HAL Id: hal-01806195 https://hal.archives-ouvertes.fr/hal-01806195 Submitted on 28 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PUBLICATIONS Global Biogeochemical Cycles RESEARCH ARTICLE Spatial patterns in CO2 evasion from the global 10.1002/2014GB004941 river network Key Points: Ronny Lauerwald1,2,3, Goulven G. Laruelle1,4, Jens Hartmann3, Philippe Ciais5, and Pierre A. G. Regnier1 • First global maps of river CO2 partial pressures and evasion at 0.5° 1Department of Earth and Environmental Sciences, Université Libre de Bruxelles, Brussels, Belgium, 2Institut Pierre-Simon resolution Laplace, Paris, France, 3Institute for Geology, University of Hamburg, Hamburg, Germany, 4Department of Earth Sciences- • Global river CO2 evasion estimated at À 5 650 (483–846) Tg C yr 1 Geochemistry, Utrecht University, Utrecht, Netherlands, LSCE IPSL, Gif Sur Yvette, France • Latitudes between 10°N and 10°S contribute half of the global CO2 evasion Abstract CO2 evasion from rivers (FCO2) is an important component of the global carbon budget.
    [Show full text]
  • Fluvial Geomorphology
    East Branch Delaware River Stream Corridor Management Plan Volume 2 Fluvial Geomorphology: the Hydrology: the science study of riverine landforms and dealing with the properties, the processes that create them distribution, and circulation of water on and below the earth’s surface and in the atmosphere (Merriam-Webster Online 09/12/07) An understanding of both hydrology and fluvial geomorphology is essential when approaching stream management at any level. This section is intended to serve as an overview of both aspects of stream science, as well as their relation to management practices past and present. Applied fluvial geomorphology utilizes the relationships and principles developed through the study of rivers and streams and how they function within their landscape to preserve and restore stream systems. In landscapes unchanged by human activities, streams reflect the regional climate, biology and geology. Bedrock and glacial deposits influence the stream system within its drainage basin. The “dendritic” (formed like the branches of a tree, Figure 3.1) stream pattern of the East Branch Delaware River watershed developed because horizontally bedded, sedimentary Figure 3.1 Stream Ordering (NRCS) and the bedrock had a gently sloping regional Depiction of a Dendritic Stream System dip at the time the initial drainage channels began forming16. The bedrock’s jointing pattern (the pattern of deep, vertical fractures) also influence stream pattern formation. The region’s geologic history has favored the development of non-symmetric drainage basins in the East Branch basin. As rivers flow across the landscape, they generally increase in size, merging with other rivers. This increase in size brings about a concept known as stream order.
    [Show full text]
  • Stream Order
    About Tutorial Glossary Documents Images Maps Google Earth Please provide feedback! Click for details The River Basin You are here: Home>The River Basin >Hydrology>Principles of Hydrology >Surface Water >Stream Order Introduction Geography Climate and Weather Hydrology Stream Order Principles of Hydrology Water Cycle Surface Water Most rivers are considered as reaches with different geomorphological characteristics. Stream Order The most simple divison generally made is to divide the river into Upper and Lower Lakes and Reservoirs River reaches Flooding Groundwater Upper River SW/ GW Interactions Water Balance Explore the sub- basins of the Hydrology of Southern The uppermost portion of a river system includes the river headwaters and low- order Kunene River Africa streams at higher elevation. The upper river basin is usually characterised by steep Hydrology of the Kunene gradients and by erosion that carries sediment downstream. Streams in this upper Basin region are usually steep and torrential, and often include rapids and waterfalls. These Water Quality streams generally have little floodplain, although part of the bank and surrounding Ecology & Biodiversity land may be wetted during periods of high flow. Watersheds References Lower River The lower section of a river system (extending to the mouth), usually exhibits a larger river channel and lower slope – the landscape is usually flat. In the middle portion of the river there is a balance between erosion and deposition of sediment. Further Video Interviews about the downstream, the lower river sees mainly deposition, though localised erosion and integrated and transboundary reworking of sediments may also occur. The main channel of the river often forms a management of the Kunene sinuous (meandering) path across the landscape unless artificially channelled.
    [Show full text]
  • Alluvial Cover Controlling the Width, Slope and Sinuosity of Bedrock Channels
    Earth Surf. Dynam., 6, 29–48, 2018 https://doi.org/10.5194/esurf-6-29-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Alluvial cover controlling the width, slope and sinuosity of bedrock channels Jens Martin Turowski Helmholtz-Zentrum Potsdam, German Research Centre for Geosciences GFZ, Telegrafenberg, 14473 Potsdam, Germany Correspondence: Jens Martin Turowski ([email protected]) Received: 17 July 2017 – Discussion started: 31 July 2017 Revised: 16 December 2017 – Accepted: 31 December 2017 – Published: 6 February 2018 Abstract. Bedrock channel slope and width are important parameters for setting bedload transport capacity and for stream-profile inversion to obtain tectonics information. Channel width and slope development are closely related to the problem of bedrock channel sinuosity. It is therefore likely that observations on bedrock channel meandering yields insights into the development of channel width and slope. Active meandering occurs when the bedrock channel walls are eroded, which also drives channel widening. Further, for a given drop in elevation, the more sinuous a channel is, the lower is its channel bed slope in comparison to a straight channel. It can thus be expected that studies of bedrock channel meandering give insights into width and slope adjustment and vice versa. The mechanisms by which bedrock channels actively meander have been debated since the beginning of modern geomorphic research in the 19th century, but a final consensus has not been reached. It has long been argued that whether a bedrock channel meanders actively or not is determined by the availability of sediment relative to transport capacity, a notion that has also been demonstrated in laboratory experiments.
    [Show full text]
  • Geomorphic and Sedimentary Response of Rivers to Tectonic
    TECTONOPHYSICS ELSEVIER Tectonophysics 305 (1999) 287-306 Geomorphic and sedimentary response of rivers to tectonic deformation: a brief review and critique of a tool for recognizing subtle epeirogenic deformation in modern and ancient settings John Holbrook", S.A. Schunun a Southeast Missouri State University, Department of Geosciences, 1 University Plaza 6500, Cape Girardeau, MO 63701, USA b Colorado State University, Department of Earth Resources, Fort Collins, CO 80521, USA Received 28 April 1998; revised version received 30 June 1998; accepted 11 August 1998 Abstract Rivers are extremely sensitive to subtle changes in their grade caused by tectonic tilting. As such, recognition of tectonic tilting effects on rivers, and their resultant sediments, can be a useful tool for identifying the often cryptic warping associated with incipient and smaller-scale epeirogenic deformation in both modern and ancient settings. Tectonic warping may result in either longitudinal (parallel to floodplain orientation) or lateral (normal to floodplain orientation) tilting of alluvial river profiles. Alluvial rivers may respond to deformation of longitudinal profile by: (1) deflection around zones of uplift and into zones of subsidence, (2) aggradation in backtilted and degradation in foretilted reaches, (3) compensation of slope alteration by shifts in channel pattern, (4) increase in frequency of overbank flooding for foretilted and decrease for backtilted reaches, and (5) increased bedload grain size in foretilted reaches and decreased bedload grain size in backtiked reaches. Lateral tilting causes down-tilt avulsion of streams where tilt rates are high, and steady down-tilt migration (combing) where tilt rates are lower. Each of the above effects may have profound impacts on fithofacies geometry and distribution that may potentially be preserved in the rock record.
    [Show full text]