Combining Programming and Mathematics Through Computer Simulation Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sagemath and Sagemathcloud
Viviane Pons Ma^ıtrede conf´erence,Universit´eParis-Sud Orsay [email protected] { @PyViv SageMath and SageMathCloud Introduction SageMath SageMath is a free open source mathematics software I Created in 2005 by William Stein. I http://www.sagemath.org/ I Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 2 / 7 SageMath Source and language I the main language of Sage is python (but there are many other source languages: cython, C, C++, fortran) I the source is distributed under the GPL licence. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 3 / 7 SageMath Sage and libraries One of the original purpose of Sage was to put together the many existent open source mathematics software programs: Atlas, GAP, GMP, Linbox, Maxima, MPFR, PARI/GP, NetworkX, NTL, Numpy/Scipy, Singular, Symmetrica,... Sage is all-inclusive: it installs all those libraries and gives you a common python-based interface to work on them. On top of it is the python / cython Sage library it-self. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 4 / 7 SageMath Sage and libraries I You can use a library explicitly: sage: n = gap(20062006) sage: type(n) <c l a s s 'sage. interfaces .gap.GapElement'> sage: n.Factors() [ 2, 17, 59, 73, 137 ] I But also, many of Sage computation are done through those libraries without necessarily telling you: sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage : G . g a p () Group( [ (3,4), (1,2,3)(4,5) ] ) Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 5 / 7 SageMath Development model Development model I Sage is developed by researchers for researchers: the original philosophy is to develop what you need for your research and share it with the community. -
Redberry: a Computer Algebra System Designed for Tensor Manipulation
Redberry: a computer algebra system designed for tensor manipulation Stanislav Poslavsky Institute for High Energy Physics, Protvino, Russia SRRC RF ITEP of NRC Kurchatov Institute, Moscow, Russia E-mail: [email protected] Dmitry Bolotin Institute of Bioorganic Chemistry of RAS, Moscow, Russia E-mail: [email protected] Abstract. In this paper we focus on the main aspects of computer-aided calculations with tensors and present a new computer algebra system Redberry which was specifically designed for algebraic tensor manipulation. We touch upon distinctive features of tensor software in comparison with pure scalar systems, discuss the main approaches used to handle tensorial expressions and present the comparison of Redberry performance with other relevant tools. 1. Introduction General-purpose computer algebra systems (CASs) have become an essential part of many scientific calculations. Focusing on the area of theoretical physics and particularly high energy physics, one can note that there is a wide area of problems that deal with tensors (or more generally | objects with indices). This work is devoted to the algebraic manipulations with abstract indexed expressions which forms a substantial part of computer aided calculations with tensors in this field of science. Today, there are many packages both on top of general-purpose systems (Maple Physics [1], xAct [2], Tensorial etc.) and standalone tools (Cadabra [3,4], SymPy [5], Reduce [6] etc.) that cover different topics in symbolic tensor calculus. However, it cannot be said that current demand on such a software is fully satisfied [7]. The main difference of tensorial expressions (in comparison with ordinary indexless) lies in the presence of contractions between indices. -
Performance Analysis of Effective Symbolic Methods for Solving Band Matrix Slaes
Performance Analysis of Effective Symbolic Methods for Solving Band Matrix SLAEs Milena Veneva ∗1 and Alexander Ayriyan y1 1Joint Institute for Nuclear Research, Laboratory of Information Technologies, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia Abstract This paper presents an experimental performance study of implementations of three symbolic algorithms for solving band matrix systems of linear algebraic equations with heptadiagonal, pen- tadiagonal, and tridiagonal coefficient matrices. The only assumption on the coefficient matrix in order for the algorithms to be stable is nonsingularity. These algorithms are implemented using the GiNaC library of C++ and the SymPy library of Python, considering five different data storing classes. Performance analysis of the implementations is done using the high-performance computing (HPC) platforms “HybriLIT” and “Avitohol”. The experimental setup and the results from the conducted computations on the individual computer systems are presented and discussed. An analysis of the three algorithms is performed. 1 Introduction Systems of linear algebraic equations (SLAEs) with heptadiagonal (HD), pentadiagonal (PD) and tridiagonal (TD) coefficient matrices may arise after many different scientific and engineering prob- lems, as well as problems of the computational linear algebra where finding the solution of a SLAE is considered to be one of the most important problems. On the other hand, special matrix’s char- acteristics like diagonal dominance, positive definiteness, etc. are not always feasible. The latter two points explain why there is a need of methods for solving of SLAEs which take into account the band structure of the matrices and do not have any other special requirements to them. One possible approach to this problem is the symbolic algorithms. -
A Comparison of Six Numerical Software Packages for Educational Use in the Chemical Engineering Curriculum
SESSION 2520 A COMPARISON OF SIX NUMERICAL SOFTWARE PACKAGES FOR EDUCATIONAL USE IN THE CHEMICAL ENGINEERING CURRICULUM Mordechai Shacham Department of Chemical Engineering Ben-Gurion University of the Negev P. O. Box 653 Beer Sheva 84105, Israel Tel: (972) 7-6461481 Fax: (972) 7-6472916 E-mail: [email protected] Michael B. Cutlip Department of Chemical Engineering University of Connecticut Box U-222 Storrs, CT 06269-3222 Tel: (860)486-0321 Fax: (860)486-2959 E-mail: [email protected] INTRODUCTION Until the early 1980’s, computer use in Chemical Engineering Education involved mainly FORTRAN and less frequently CSMP programming. A typical com- puter assignment in that era would require the student to carry out the following tasks: 1.) Derive the model equations for the problem at hand, 2.) Find an appropri- ate numerical method to solve the model (mostly NLE’s or ODE’s), 3.) Write and debug a FORTRAN program to solve the problem using the selected numerical algo- rithm, and 4.) Analyze the results for validity and precision. It was soon recognized that the second and third tasks of the solution were minor contributions to the learning of the subject material in most chemical engi- neering courses, but they were actually the most time consuming and frustrating parts of computer assignments. The computer indeed enabled the students to solve realistic problems, but the time spent on technical details which were of minor rele- vance to the subject matter was much too long. In order to solve this difficulty, there was a tendency to provide the students with computer programs that could solve one particular type of a problem. -
Rapid Research with Computer Algebra Systems
doi: 10.21495/71-0-109 25th International Conference ENGINEERING MECHANICS 2019 Svratka, Czech Republic, 13 – 16 May 2019 RAPID RESEARCH WITH COMPUTER ALGEBRA SYSTEMS C. Fischer* Abstract: Computer algebra systems (CAS) are gaining popularity not only among young students and schol- ars but also as a tool for serious work. These highly complicated software systems, which used to just be regarded as toys for computer enthusiasts, have reached maturity. Nowadays such systems are available on a variety of computer platforms, starting from freely-available on-line services up to complex and expensive software packages. The aim of this review paper is to show some selected capabilities of CAS and point out some problems with their usage from the point of view of 25 years of experience. Keywords: Computer algebra system, Methodology, Wolfram Mathematica 1. Introduction The Wikipedia page (Wikipedia contributors, 2019a) defines CAS as a package comprising a set of algo- rithms for performing symbolic manipulations on algebraic objects, a language to implement them, and an environment in which to use the language. There are 35 different systems listed on the page, four of them discontinued. The oldest one, Reduce, was publicly released in 1968 (Hearn, 2005) and is still available as an open-source project. Maple (2019a) is among the most popular CAS. It was first publicly released in 1984 (Maple, 2019b) and is still popular, also among users in the Czech Republic. PTC Mathcad (2019) was published in 1986 in DOS as an engineering calculation solution, and gained popularity for its ability to work with typeset mathematical notation in combination with automatic computations. -
CAS (Computer Algebra System) Mathematica
CAS (Computer Algebra System) Mathematica- UML students can download a copy for free as part of the UML site license; see the course website for details From: Wikipedia 2/9/2014 A computer algebra system (CAS) is a software program that allows [one] to compute with mathematical expressions in a way which is similar to the traditional handwritten computations of the mathematicians and other scientists. The main ones are Axiom, Magma, Maple, Mathematica and Sage (the latter includes several computer algebras systems, such as Macsyma and SymPy). Computer algebra systems began to appear in the 1960s, and evolved out of two quite different sources—the requirements of theoretical physicists and research into artificial intelligence. A prime example for the first development was the pioneering work conducted by the later Nobel Prize laureate in physics Martin Veltman, who designed a program for symbolic mathematics, especially High Energy Physics, called Schoonschip (Dutch for "clean ship") in 1963. Using LISP as the programming basis, Carl Engelman created MATHLAB in 1964 at MITRE within an artificial intelligence research environment. Later MATHLAB was made available to users on PDP-6 and PDP-10 Systems running TOPS-10 or TENEX in universities. Today it can still be used on SIMH-Emulations of the PDP-10. MATHLAB ("mathematical laboratory") should not be confused with MATLAB ("matrix laboratory") which is a system for numerical computation built 15 years later at the University of New Mexico, accidentally named rather similarly. The first popular computer algebra systems were muMATH, Reduce, Derive (based on muMATH), and Macsyma; a popular copyleft version of Macsyma called Maxima is actively being maintained. -
Running Sagemath (With Or Without Installation)
Running SageMath (with or without installation) http://www.sagemath.org/ Éric Gourgoulhon Running SageMath 9 Feb. 2017 1 / 5 Various ways to install/access SageMath 7.5.1 Install on your computer: 2 options: install a compiled binary version for Linux, MacOS X or Windows1 from http://www.sagemath.org/download.html compile from source (Linux, MacOS X): check the prerequisites (see here for Ubuntu) and run git clone git://github.com/sagemath/sage.git cd sage MAKE=’make -j8’ make Run on your computer without installation: Sage Debian Live http://sagedebianlive.metelu.net/ Bootable USB flash drive with SageMath (boosted with octave, scilab), Geogebra, LaTeX, gimp, vlc, LibreOffice,... Open a (free) account on SageMathCloud https://cloud.sagemath.com/ Run in SageMathCell Single cell mode: http://sagecell.sagemath.org/ 1requires VirtualBox; alternatively, a full Windows installer is in pre-release stage at https://github.com/embray/sage-windows/releases Éric Gourgoulhon Running SageMath 9 Feb. 2017 2 / 5 Example 1: installing on Ubuntu 16.04 1 Download the archive sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 from one the mirrors listed at http://www.sagemath.org/download-linux.html 2 Run the following commands in a terminal: bunzip2 sage-7.5.1-Ubuntu_16.04-x86_64.tar.bz2 tar xvf sage-7.5.1-Ubuntu_16.04-x86_64.tar cd SageMath ./sage -n jupyter A Jupyter home page should then open in your browser. Click on New and select SageMath 7.5.1 to open a Jupyter notebook with a SageMath kernel. Éric Gourgoulhon Running SageMath 9 Feb. 2017 3 / 5 Example 2: using the SageMathCloud 1 Open a free account on https://cloud.sagemath.com/ 2 Create a new project 3 In the second top menu, click on New to create a new file 4 Select Jupyter Notebook for the file type 5 In the Jupyter menu, click on Kernel, then Change kernel and choose SageMath 7.5 Éric Gourgoulhon Running SageMath 9 Feb. -
SNC: a Cloud Service Platform for Symbolic-Numeric Computation Using Just-In-Time Compilation
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2656088, IEEE Transactions on Cloud Computing IEEE TRANSACTIONS ON CLOUD COMPUTING 1 SNC: A Cloud Service Platform for Symbolic-Numeric Computation using Just-In-Time Compilation Peng Zhang1, Member, IEEE, Yueming Liu1, and Meikang Qiu, Senior Member, IEEE and SQL. Other types of Cloud services include: Software as a Abstract— Cloud services have been widely employed in IT Service (SaaS) in which the software is licensed and hosted in industry and scientific research. By using Cloud services users can Clouds; and Database as a Service (DBaaS) in which managed move computing tasks and data away from local computers to database services are hosted in Clouds. While enjoying these remote datacenters. By accessing Internet-based services over lightweight and mobile devices, users deploy diversified Cloud great services, we must face the challenges raised up by these applications on powerful machines. The key drivers towards this unexploited opportunities within a Cloud environment. paradigm for the scientific computing field include the substantial Complex scientific computing applications are being widely computing capacity, on-demand provisioning and cross-platform interoperability. To fully harness the Cloud services for scientific studied within the emerging Cloud-based services environment computing, however, we need to design an application-specific [4-12]. Traditionally, the focus is given to the parallel scientific platform to help the users efficiently migrate their applications. In HPC (high performance computing) applications [6, 12, 13], this, we propose a Cloud service platform for symbolic-numeric where substantial effort has been given to the integration of computation– SNC. -
Books About Computing Tools
Books about Programming and Computing Tools Separate Section of: Books about Computing, Programming, Algorithms, and Software Development Collection of References edited by Stanislav Sýkora Permalink via DOI: 10.3247/SL6Refs16.001 Stan's LIBRARY and its Programming Section Extra Byte | Stan's HUB Free online texts Forward a missing book reference Site Plan & SEARCH This growing compilation includes titles yet to be released (they have a month specified in the release date). The entries are sorted by publication year and the first Author. Green-color titles indicate educational texts. You can download a PDF version of this document for off-line use. But keep coming back, the list is growing! Many of the books are available from Amazon. Entering Amazon from here helps this site at no cost to you. F Other Lists: Popular Science F Mathematics F Physics F Chemistry Visitor # Patents+IP F Electronics | DSP | Tinkering F Computing Spintronics F Materials ADVERTISE with us WWW issues F Instruments / Measurements Quantum Computing F NMR | ESR | MRI F Spectroscopy Extra Byte Hint: the F symbols above, where present, are links to free online texts (books, courses, theses, ...) Advance notices (years ≥ 2016) and, at page bottom, Related Works: Link Directories: SCIENCE | Edu+Fun 1. Garvan Frank, MATH | COMPUTING The Maple Book, PHYSICS | CHEMISTRY 2nd Edition, Chapman and Hall/CRC, February 2016. ISBN 978-1439898286. Hardcover >>. NMR-MRI-ESR-NQR 2. Green Dale, ELECTRONICS Procedural Content Generation for C++ Game Development, PATENTS+IP Packt Publishing, March 2016. Kindle >>. WWW stuff 3. Guido Sarah, Introduction to Machine Learning with Python, Other resources: O'Reilly Media, January 2016. -
Mathcad Tutorial by Colorado State University Student: Minh Anh Nguyen Power Electronic III
MathCAD Tutorial By Colorado State University Student: Minh Anh Nguyen Power Electronic III 1 The first time I heard about the MathCAD software is in my analog circuit design class. Dr. Gary Robison suggested that I should apply a new tool such as MathCAD or MatLab to solve the design problem faster and cleaner. I decided to take his advice by trying to learn a new tool that may help me to solve any design and homework problem faster. But the semester was over before I have a chance to learn and understand the MathCAD software. This semester I have a chance to learn, understand and apply the MathCAD Tool to solve homework problem. I realized that the MathCAD tool does help me to solve the homework faster and cleaner. Therefore, in this paper, I will try my very best to explain to you the concept of the MathCAD tool. Here is the outline of the MathCAD tool that I will cover in this paper. 1. What is the MathCAD tool/program? 2. How to getting started Math cad 3. What version of MathCAD should you use? 4. How to open MathCAD file? a. How to set the equal sign or numeric operators - Perform summations, products, derivatives, integrals and Boolean operations b. Write a equation c. Plot the graph, name and find point on the graph d. Variables and units - Handle real, imaginary, and complex numbers with or without associated units. e. Set the matrices and vectors - Manipulate arrays and perform various linear algebra operations, such as finding eigenvalues and eigenvectors, and looking up values in arrays. -
New Directions in Symbolic Computer Algebra 3.5 Year Doctoral Research Student Position Leading to a Phd in Maths Supervisor: Dr
Cadabra: new directions in symbolic computer algebra 3:5 year doctoral research student position leading to a PhD in Maths supervisor: Dr. Kasper Peeters, [email protected] Project description The Cadabra software is a new approach to symbolic computer algebra. Originally developed to solve problems in high-energy particle and gravitational physics, it is now attracting increas- ing attention from other disciplines which deal with aspects of tensor field theory. The system was written from the ground up with the intention of exploring new ideas in computer alge- bra, in order to help areas of applied mathematics for which suitable tools have so far been inadequate. The system is open source, built on a C++ graph-manipulating core accessible through a Python layer in a notebook interface, and in addition makes use of other open maths libraries such as SymPy, xPerm, LiE and Maxima. More information and links to papers using the software can be found at http://cadabra.science. With increasing attention and interest from disciplines such as earth sciences, machine learning and condensed matter physics, we are now looking for an enthusiastic student who is interested in working on this highly multi-disciplinary computer algebra project. The aim is to enlarge the capabilities of the system and bring it to an ever widening user base. Your task will be to do research on new algorithms and take responsibility for concrete implemen- tations, based on the user feedback which we have collected over the last few years. There are several possibilities to collaborate with people in some of the fields listed above, either in the Department of Mathematical Sciences or outside of it. -
Download the Manual of Lightpipes for Mathcad
LightPipes for Mathcad Beam Propagation Toolbox Manual version 1.3 Toolbox Routines: Gleb Vdovin, Flexible Optical B.V. Rontgenweg 1, 2624 BD Delft The Netherlands Phone: +31-15-2851547 Fax: +31-51-2851548 e-mail: [email protected] web site: www.okotech.com ©1993--1996, Gleb Vdovin Mathcad dynamic link library: Fred van Goor, University of Twente Department of Applied Physics Laser Physics group P.O. Box 217 7500 AE Enschede The Netherlands web site: edu.tnw.utwente.nl/inlopt/lpmcad ©2006, Fred van goor. 1-3 1. INTRODUCTION.............................................................................................. 1-5 2. WARRANTY .................................................................................................... 2-7 3. AVAILABILITY................................................................................................. 3-9 4. INSTALLATION OF LIGHTPIPES FOR MATHCAD ......................................4-11 4.1 System requirements........................................................................................................................ 4-11 4.2 Installation........................................................................................................................................ 4-13 5. LIGHTPIPES FOR MATHCAD DESCRIPTION ..............................................5-15 5.1 First steps.......................................................................................................................................... 5-15 5.1.1 Help ................................................................................................................5-15