The Effect of Livestock on the Physiological Condition Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Species Fact Sheet: Roe Deer (Capreolus Capreolus) [email protected] 023 8023 7874
Species Fact Sheet: Roe Deer (Capreolus capreolus) [email protected] www.mammal.org.uk 023 8023 7874 Quick Facts Recognition: Small deer, reddish brown in summer, grey in winter. Distinctive black moustache stripe, white chin. Appears tail-less with white/ cream rump patch which is especially conspicuous when its hairs are puffed out when the deer is alarmed. Males have short antlers, erect with no more than three points. Size: Average height at shoulder 60-75cm. Males slightly larger. Weight: Adults 10—25kg Life Span: The maximum age in the wild is 16 years, but most live 7 years.. Distribution & Habitat Roe deer are widespread throughout Scotland and much of England, and in many areas they are abundant. They are increasing their range. They are spreading southwards from their Scottish refuge, and northwards and westwards from the reintroduced populations, but are not yet but are not yet established in most of the Midlands and Kent. They have never occurred in Ireland. They are generally found in open mixed, coniferous or purely deciduous woodland, particularly at edges between woodland and open habitats. Roe deer feed throughout the 24 hours, but are most active at dusk and dawn. General Ecology Behaviour Roe deer exist solitary or in small groups, with larger groups typically feeding together during the winter. At exceptionally high densities, herds of 15 or more roe deer can be seen in open fields during the spring and summer. Males are seasonally territorial, from March to August. Young females usually establish ranges close to their mothers; juvenile males are forced to disperse further afield. -
About Us: Location
The Guadarrama Mountain range contains some ecologically valuable areas, located in the Community of Madrid. Spanish in nature is located in El Boalo, Madrid. In the heart of Guadarrama National Park, and only 30 minutes drive to Madrid city. Welcome to Spanish in Nature. We hope you find it useful and decide to come to see us in In this area or region there are other two our Spanish home/school in the wonderful parks. Guadarrama National Park. El Boalo. Madrid. Spain. The Peñalara Natural Park (Parque Natural de la Cumbre, Circo y Lagunas de Peñalara) is ABOUT US: a natural park in the northwest of the Community of Madrid, declared a natural Our family home, the house where I live with park in June 1990. my husband (Spanish teacher) and my 3 The park is situated in the central zone of children, will be your Spanish home/school the Sierra de Guadarrama. The reserve where you can learn the Spanish language and includes Peñalara's summit, the highest peak enjoy our house and environment and will be of the mountain system. the best Spanish school that you will ever see. One of the most interesting elements of the reserve is the Peñalara cirque, created by a We believe that learning a language can´t be glaciar. It is located between the summit of confined to the classroom, therefore our Peñalara and the Younger Sister, on the eastern Spanish home/school is the ideal place where slope of both peaks. In the Park there are 20 we mix study and fun in nature. -
For Vector-Borne Pathogens
Parasitology Research (2019) 118:2735–2740 https://doi.org/10.1007/s00436-019-06412-9 PROTOZOOLOGY - SHORT COMMUNICATION Screening of wild ruminants from the Kaunertal and other alpine regions of Tyrol (Austria) for vector-borne pathogens Martina Messner1 & Feodora Natalie Kayikci1 & Bita Shahi-Barogh1 & Josef Harl2 & Christian Messner3 & Hans-Peter Fuehrer1 Received: 25 June 2019 /Accepted: 25 July 2019 /Published online: 3 August 2019 # The Author(s) 2019 Abstract Knowledge about vector-borne pathogens important for human and veterinary medicine in wild ruminants in Tyrol (Austria) is scarce. Blood samples from Alpine ibex (Capra ibex; n = 44), Alpine chamois (Rupicapra rupicapra; n= 21), roe deer (Capreolus capreolus; n=18) and red deer (Cervus elaphus; n = 6) were collected over a period of 4 years (2015–2018) in four regions in North Tyrol, with a primary focus on the Kaunertal. Blood spots on filter paper were tested for the presence of DNA of vector-borne pathogens (Anaplasmataceae,Piroplasmida,Rickettsia and filarioid helminths). Anaplasma phagocytophilum and Babesia capreoli were detected in two of 89 (2.3%) blood samples. Rickettsia spp., Theileria spp. and filarioid helminths were not documented. One Alpine chamois was positive for A. phagocytophilum and B. capreoli. Moreover, an ibex from the Kaunertal region was positive for A. phagocytophilum. While the ibex was a kid less than 1 year old, the chamois was an adult individual. Further research is recommended to evaluate effects of climate change on infection rates of North Tyrolean wild ruminants by these pathogens and the distribution of their vectors. Keywords Anaplasma phagocytophilum . Austria . Babesia capreoli . Chamois . -
Anaplasma Phagocytophilum and Babesia Species Of
pathogens Article Anaplasma phagocytophilum and Babesia Species of Sympatric Roe Deer (Capreolus capreolus), Fallow Deer (Dama dama), Sika Deer (Cervus nippon) and Red Deer (Cervus elaphus) in Germany Cornelia Silaghi 1,2,*, Julia Fröhlich 1, Hubert Reindl 3, Dietmar Hamel 4 and Steffen Rehbein 4 1 Institute of Comparative Tropical Medicine and Parasitology, Ludwig-Maximilians-Universität München, Leopoldstr. 5, 80802 Munich, Germany; [email protected] 2 Institute of Infectology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald Insel Riems, Germany 3 Tierärztliche Fachpraxis für Kleintiere, Schießtrath 12, 92709 Moosbach, Germany; [email protected] 4 Boehringer Ingelheim Vetmedica GmbH, Kathrinenhof Research Center, Walchenseestr. 8-12, 83101 Rohrdorf, Germany; [email protected] (D.H.); steff[email protected] (S.R.) * Correspondence: cornelia.silaghi@fli.de; Tel.: +49-0-383-5171-172 Received: 15 October 2020; Accepted: 18 November 2020; Published: 20 November 2020 Abstract: (1) Background: Wild cervids play an important role in transmission cycles of tick-borne pathogens; however, investigations of tick-borne pathogens in sika deer in Germany are lacking. (2) Methods: Spleen tissue of 74 sympatric wild cervids (30 roe deer, 7 fallow deer, 22 sika deer, 15 red deer) and of 27 red deer from a farm from southeastern Germany were analyzed by molecular methods for the presence of Anaplasma phagocytophilum and Babesia species. (3) Results: Anaplasma phagocytophilum and Babesia DNA was demonstrated in 90.5% and 47.3% of the 74 combined wild cervids and 14.8% and 18.5% of the farmed deer, respectively. Twelve 16S rRNA variants of A. phagocytophilum were delineated. -
Tentative List "Lena Pillars"
TENTATIVE LIST STATE PARTY: Russian Federation DATE OF SUBMISSION: 11/07/2006 Submission prepared by: Name: E-mail: Address: Fax: Institution: Telephone: Name of Property Nature Park “Lena Pillars” The Nature Park is located in Khangalassky ulus State, Province or Region (region) of Yakutia. The NP is located on the right bank of the river Lena middle stream. Geographical coordinates of the nominated site: • The utmost north point: 124°55′52′′ east longitude; 60°43′28′′ north latitude; • The utmost south point: 127°16′30′′ east longitude; 60°49′00′′ north latitude; Latitude and Longitude or UTM •The utmost west point: coordinates 125°00′04′′ east longitude; 60 °44′ 49′′ north latitude; • The utmost east point: 128°47′55′′ east longitude; 61 °15 ′57′′ north latitude Area of the site: 485 000 ha. Area of its buffer zone: 868 100 ha. DESCRIPTION: In the NP “Lena Pillars” area the main landscape-environmental factors: the geological texture and relief, the geocryological condition and climate - are characterized with the considerable heterogeneity. Geology and relief The territory of the NP “Lena Pillars” is situated at the northern periclinale of the Aldan anteclises, complicated by the small- amplitude arched uplift and protrusions occupying the large areas. In the park area the sedimentary mantle is represented by unexposed upper Precambrian, exposed Cambrian and Quaternary deposits which lie flat or with hade of layers measured by minutes or rarely by the first degrees. Along the Sinyaya River the lower Cambrian deposits are exposed, and along the Lena and the Buotoma rivers the lower and middle Cambrian deposits are denuded. -
Nematodirus Spathiger of Small Ruminants Guang-Hui Zhao1*†, Yan-Qing Jia1†, Wen-Yu Cheng1, Wen Zhao1, Qing-Qing Bian1 and Guo-Hua Liu2*
Zhao et al. Parasites & Vectors 2014, 7:319 http://www.parasitesandvectors.com/content/7/1/319 RESEARCH Open Access Characterization of the complete mitochondrial genomes of Nematodirus oiratianus and Nematodirus spathiger of small ruminants Guang-Hui Zhao1*†, Yan-Qing Jia1†, Wen-Yu Cheng1, Wen Zhao1, Qing-Qing Bian1 and Guo-Hua Liu2* Abstract Background: Nematodirus spp. are among the most common nematodes of ruminants worldwide. N. oiratianus and N. spathiger are distributed worldwide as highly prevalent gastrointestinal nematodes, which cause emerging health problems and economic losses. Accurate identification of Nematodirus species is essential to develop effective control strategies for Nematodirus infection in ruminants. Mitochondrial DNA (mtDNA) could provide powerful genetic markers for identifying these closely related species and resolving phylogenetic relationships at different taxonomic levels. Methods: In the present study, the complete mitochondrial (mt) genomes of N. oiratianus and N. spathiger from small ruminants in China were obtained using Long-range PCR and sequencing. Results: The complete mt genomes of N. oiratianus and N. spathiger were 13,765 bp and 13,519 bp in length, respectively. Both mt genomes were circular and consisted of 36 genes, including 12 genes encoding proteins, 2 genes encoding rRNA, and 22 genes encoding tRNA. Phylogenetic analyses based on the concatenated amino acid sequence data of all 12 protein-coding genes by Bayesian inference (BI), Maximum likelihood (ML) and Maximum parsimony (MP) showed that the two Nematodirus species (Molineidae) were closely related to Dictyocaulidae. Conclusions: The availability of the complete mtDNA sequences of N. oiratianus and N. spathiger not only provides new mtDNA sources for a better understanding of nematode mt genomics and phylogeny, but also provides novel and useful genetic markers for studying diagnosis, population genetics and molecular epidemiology of Nematodirus spp. -
Manual 13 EUROPARC-Spain Series of Manuals English Version
Manual 13 EUROPARC-Spain series of manuals English Version Protected Areas in the Face of Global Change Climate Change Adaptation in Planning and Management Manual 13 Protected Areas in the Face of Global Change Climate Change Adaptation in Planning and Management English Version Presentación 1 EUROPARC-Spain. 2020 Collaborators Protected Areas in the Face of Global Change. Alberto Rovira Garcia, IRTA; Álvaro de Torres Suarez, Climate Change Adaptation in Planning and OAPN; Álvaro Hernández Jiménez, Gobierno de Aragón; Management. Amparo Mora Cabello de Alba, P.N. Picos de Europa; Ed. Fundación Interuniversitaria Fernando González Ana Pintó, OECC; Ángel Rodríguez Martin, Junta de Bernáldez para los Espacios Naturales. Madrid. 116 pp. Extremadura; Ángel Rubio Romero, Comunidad de Madrid; Ángel Vela Laína, Junta de Comunidades de Edited by Castilla-La Mancha; Antonio Curcó Masip, Generalitat Fundación Interuniversitaria Fernando González de Catalunya; Aurora de la Rosa López, Comunidad de Bernáldez para los Espacios Naturales Madrid; Carlos Montes, UAM; Carlos Moreno de Guerra, Authors MAPAMA; Carmen Allué Camacho, Junta de Castilla y José Antonio Atauri Mezquida, María Muñoz Santos León; Cesar Fernández Crespo, Gobierno de Cantabria; and Marta Múgica de la Guerra Cristina Esteban, consultora; Cristina González Onandía, Fundación Biodiversidad; David Carrera Bonet, Diputación Oficina Técnica de EUROPARC-España de Barcelona; Enrique Arrechea Veramendi, Gobierno ICEI. Finca Mas Ferré. Edif. A. Campus de Somosaguas de Aragón; Enrique Eraso, Gobierno de Navarra; Enrique E-28223 Madrid T. (34) 913 942 522 / 51 F. (34) 913 Martínez Pardo, Gobierno de Cantabria; Eva Rodríguez, 942 487 [email protected] www.redeuroparc.org Fundación Biodiversidad; Fernando Saura, consultor; Foreword Francisco Heras Hernández, OECC; Francisco Javier Carlos Montes. -
Twenty Years of Passive Disease Surveillance of Roe Deer (Capreolus Capreolus) in Slovenia
animals Article Twenty Years of Passive Disease Surveillance of Roe Deer (Capreolus capreolus) in Slovenia Diana Žele Vengušt 1, Urška Kuhar 2, Klemen Jerina 3 and Gorazd Vengušt 1,* 1 Institute of Pathology, Wild Animals, Fish and Bees, Veterinary Faculty, University of Ljubljana, Gerbiˇceva60, 1000 Ljubljana, Slovenia; [email protected] 2 Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbiˇceva60, 1000 Ljubljana, Slovenia; [email protected] 3 Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, Veˇcnapot 83, 1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected]; Tel.: +386-(1)-4779-196 Simple Summary: Wildlife can serve as a reservoir for highly contagious and deadly diseases, many of which are infectious to domestic animals and/or humans. Wildlife disease surveillance can be considered an essential tool to provide important information on the health status of the population and for the protection of human health. Between 2000 and 2019, examinations of 510 roe deer carcasses were conducted by comprehensive necropsy and other laboratory tests. In conclusion, the results of this research indicate a broad spectrum of roe deer diseases, but no identified disease can be considered a significant health threat to other wildlife species and/or to humans. Abstract: In this paper, we provide an overview of the causes of death of roe deer (Capreolus capreolus) diagnosed within the national passive health surveillance of roe deer in Slovenia. From 2000 to 2019, postmortem examinations of 510 free-ranging roe deer provided by hunters were conducted at the Veterinary Faculty, Slovenia. -
The European Fallow Deer (Dama Dama Dama)
Heredity (2017) 119, 16–26 OPEN Official journal of the Genetics Society www.nature.com/hdy ORIGINAL ARTICLE Strong population structure in a species manipulated by humans since the Neolithic: the European fallow deer (Dama dama dama) KH Baker1, HWI Gray1, V Ramovs1, D Mertzanidou2,ÇAkın Pekşen3,4, CC Bilgin3, N Sykes5 and AR Hoelzel1 Species that have been translocated and otherwise manipulated by humans may show patterns of population structure that reflect those interactions. At the same time, natural processes shape populations, including behavioural characteristics like dispersal potential and breeding system. In Europe, a key factor is the geography and history of climate change through the Pleistocene. During glacial maxima throughout that period, species in Europe with temperate distributions were forced south, becoming distributed among the isolated peninsulas represented by Anatolia, Italy and Iberia. Understanding modern patterns of diversity depends on understanding these historical population dynamics. Traditionally, European fallow deer (Dama dama dama) are thought to have been restricted to refugia in Anatolia and possibly Sicily and the Balkans. However, the distribution of this species was also greatly influenced by human-mediated translocations. We focus on fallow deer to better understand the relative influence of these natural and anthropogenic processes. We compared modern fallow deer putative populations across a broad geographic range using microsatellite and mitochondrial DNA loci. The results revealed highly insular populations, depauperate of genetic variation and significantly differentiated from each other. This is consistent with the expectations of drift acting on populations founded by small numbers of individuals, and reflects known founder populations in the north. -
European Bison
IUCN/Species Survival Commission Status Survey and Conservation Action Plan The Species Survival Commission (SSC) is one of six volunteer commissions of IUCN – The World Conservation Union, a union of sovereign states, government agencies and non- governmental organisations. IUCN has three basic conservation objectives: to secure the conservation of nature, and especially of biological diversity, as an essential foundation for the future; to ensure that where the Earth’s natural resources are used this is done in a wise, European Bison equitable and sustainable way; and to guide the development of human communities towards ways of life that are both of good quality and in enduring harmony with other components of the biosphere. A volunteer network comprised of some 8,000 scientists, field researchers, government officials Edited by Zdzis³aw Pucek and conservation leaders from nearly every country of the world, the SSC membership is an Compiled by Zdzis³aw Pucek, Irina P. Belousova, unmatched source of information about biological diversity and its conservation. As such, SSC Ma³gorzata Krasiñska, Zbigniew A. Krasiñski and Wanda Olech members provide technical and scientific counsel for conservation projects throughout the world and serve as resources to governments, international conventions and conservation organisations. IUCN/SSC Action Plans assess the conservation status of species and their habitats, and specifies conservation priorities. The series is one of the world’s most authoritative sources of species conservation information -
Designing Protected Areas for Social–Ecological Sustainability: Effectiveness of Management Guidelines for Preserving Cultural
sustainability Article Designing Protected Areas for Social–Ecological Sustainability: Effectiveness of Management Guidelines for Preserving Cultural Landscapes Patricio Sarmiento-Mateos 1,*, Cecilia Arnaiz-Schmitz 2, Cristina Herrero-Jáuregui 1, Francisco D. Pineda 1 and María F. Schmitz 1 1 Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, 28040 Madrid, Spain; [email protected] (C.H-J.); [email protected] (F.D.P.); [email protected] (M.F.S.) 2 Social-ecological Systems Laboratory, Department of Ecology, Autonomous University of Madrid, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected] Received: 14 April 2019; Accepted: 16 May 2019; Published: 20 May 2019 Abstract: Rural cultural landscapes are social–ecological systems that have been shaped by traditional human land uses in a co-evolution process between nature and culture. Protected areas should be an effective way to protect cultural landscapes and support the way of life and the economy of the local population. However, nature conservation policymaking processes and management guidelines frequently do not take culturalness into account. Through a new quantitative approach, this paper analyzes the regulatory framework of two protected areas under different management categories, located in an ancient cultural landscape of the Madrid Region (Central Spain), to identify the similarities in their conservation commitments and the effectiveness of their zoning schemes. The results show some arbitrariness in the design and management of these parks, highlighting the importance of prohibited measures in their zoning schemes that encourage uses and activities more related to naturalness than to culturalness. The recognition of protected areas as cultural landscapes and their management considering both naturalness and culturalness issues are important methods of better achieving sustainable management objectives from a social–ecological approach. -
Dictyocaulus Viviparus Genome, Variome and Transcriptome
www.nature.com/scientificreports OPEN Dictyocaulus viviparus genome, variome and transcriptome elucidate lungworm biology and Received: 10 July 2015 Accepted: 26 October 2015 support future intervention Published: 09 February 2016 Samantha N. McNulty1, Christina Strübe2, Bruce A. Rosa1, John C. Martin1, Rahul Tyagi1, Young-Jun Choi1, Qi Wang1, Kymberlie Hallsworth Pepin1, Xu Zhang1, Philip Ozersky1, Richard K. Wilson1, Paul W. Sternberg3, Robin B. Gasser4 & Makedonka Mitreva1,5 The bovine lungworm, Dictyocaulus viviparus (order Strongylida), is an important parasite of livestock that causes substantial economic and production losses worldwide. Here we report the draft genome, variome, and developmental transcriptome of D. viviparus. The genome (161 Mb) is smaller than those of related bursate nematodes and encodes fewer proteins (14,171 total). In the first genome-wide assessment of genomic variation in any parasitic nematode, we found a high degree of sequence variability in proteins predicted to be involved host-parasite interactions. Next, we used extensive RNA sequence data to track gene transcription across the life cycle of D. viviparus, and identified genes that might be important in nematode development and parasitism. Finally, we predicted genes that could be vital in host-parasite interactions, genes that could serve as drug targets, and putative RNAi effectors with a view to developing functional genomic tools. This extensive, well-curated dataset should provide a basis for developing new anthelmintics, vaccines, and improved diagnostic tests and serve as a platform for future investigations of drug resistance and epidemiology of the bovine lungworm and related nematodes. Parasitic roundworms (nematodes) of domestic animals are responsible for substantial economic losses as a consequence of poor production performance, morbidity, and mortality1.