Original Article Management of Rocker-Bottom Deformity During Ponseti Treatment of Congenital Idiopathic Clubfoot

Total Page:16

File Type:pdf, Size:1020Kb

Original Article Management of Rocker-Bottom Deformity During Ponseti Treatment of Congenital Idiopathic Clubfoot Int J Clin Exp Med 2019;12(12):13805-13811 www.ijcem.com /ISSN:1940-5901/IJCEM0100125 Original Article Management of rocker-bottom deformity during Ponseti treatment of congenital idiopathic clubfoot Wanglin Zhang, Haoqi Cai Department of Orthopedics, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiaotong Univer- sity, Shanghai 200127, China Received July 25, 2019; Accepted November 6, 2019; Epub December 15, 2019; Published December 30, 2019 Abstract: Objective: To investigate the clinical and radiographic presentations and management of rocker-bottom deformity during Ponseti treatment of congenital idiopathic clubfoot. Methods: In this retrospective study, 6 pa- tients (9 feet) with idiopathic clubfoot compared to 185 outpatients (276 feet) admitted to Shanghai Children’s Medical Center between August 2015 and July 2016 were recruited. Ponseti casting plus percutaneous Achilles tenotomy with/without Kirschner wire internal fixation of the talo-navicular joint were performed, followed by brace use. Dimeglio score, lateral radiograph of the foot in maximal dorsiflexion (the tibiocalcaneus angle, the mean calcaneus-fifth metatarsal angle and the mean talo-first metatarsal angle) and previous treatment data were re- corded. Results: Among the 6 clubfoot patients (9 feet), 3 were male and 3 female. Three patients had bilateral clubfeet, 5 cases of right clubfoot and 4 cases of left clubfoot. All patients were aged 5-19 months. Lateral radio- graph showed that the mean tibio-calcaneus angle during postoperative follow-up was (71.23±13.62)°, significantly lower compared with preoperative angle of (82.41±15.10)°. The postoperative mean calcaneus-fifth metatarsal angle was (24.98±8.81)°, significantly lower than (43.77±13.41)° before operation. The postoperative mean talo- first metatarsal angle was (22.82±11.62)°, considerably lower compared with (34.77±6.20)° before surgery. At the final follow-up, eight clubfeet were successfully corrected and merely one clubfoot was not effectively treated. Conclusions: Rocker-bottom deformity should be identified during Ponseti management of congenital idiopathic clubfoot. Lateral radiographs of the foot in the maximal dorsiflexion can assist the diagnosis. Achilles tenotomy prob- ably lowers the risk of rocker-bottom deformity. Keywords: Clubfoot, rocker-bottom deformity, Ponseti method, pediatrics Introduction tendon releasing to avoid the rocker-bottom deformity [3, 4]. The rocker-bottom deformity Congenital clubfoot is one of the most common has not been reported by Professor Ponseti as birth defects in the musculoskeletal system, one of the complications in his clubfoot studies. whereas the underlying pathogenesis remains That is why it is regarded as an iatrogenic elusive. Conservative treatment is primarily disease. adopted during the early stage [1, 2], of which the Ponseti method is currently recognized as However, favorable clinical results not only the first therapeutic option [3]. Although early depend upon the strict adherence to the correction yields a high success rate and good Ponseti protocol, but also rely on detailed qual- repeatability, it still faces the issues of residual ity controls throughout all three stages of inter- deformity and high recurrence in certain vention including cast, tenotomy and brace patients [4-7]. management [8, 9]. Nevertheless, one study of radiographic images during Ponseti treatment Through thorough investigation of subtalar of clubfoot has identified 7 patients presenting joint biomechanics, Professor Ponseti has with rocker-bottom deformity among 87 cases attempted to utilize a specialized manual and of Ponseti treatment for clubfoot. Among the 7 well-modeling cast to achieve the successful cases, 6 feet were significantly improved after correction, and adopt percutaneous Achilles Achilles tendon release and only one foot was Rocker-bottom deformity during Ponseti treatment not effectively corrected [10]. Because the feet ments were performed to confirm the diagno- of infants mostly consist of cartilage, plain X-ray sis of rocker-bottom deformity in the pediatric can only provide extremely limited information. patients. 1) For continuous fixation, arch sup- In addition, X-ray evaluation of infantile feet port clubfoot plaster casts were changed once should be performed with caution due to the per week for 4 consecutive weeks to restore damage caused by radiation exposure [11, 12]. the midfoot alignment. 2) Under general anes- Plain X-ray of the feet in the maximum dor- thesia, fluoroscopy of the lateral talo-navicular siflexion position has been proven to provide joint was performed with the feet in the maxi- significant guidance for the treatment of infan- mal dorsiflexion position. If the talo-navicular tile clubfoot [13-15]. The incidence of mild rock- joint was dorsally dislocated, it was manually er-bottom deformity during Ponseti treatment reduced and fixed with a 1.6-mm diameter has been identified by X-ray evaluation of the Kirschner wire. Then, percutaneous Achilles feet [10], suggesting that plain X-ray of the feet tenotomy was performed, as described by can identify potential abnormalities that are Dobbs et al. [16]. If the talo-navicular joint was difficult to detect by clinical observation, such properly aligned, the percutaneous Achilles as mild rocker-bottom deformity. tenotomy alone was sufficient. 3) The ankle joint was held in a neutral position with a long- We hypothesize that the risk of rocker-bottom leg cast with dorsiflexion at 15° and arch sup- deformity occurring during Ponseti treatment port cast for 4 consecutive weeks. The hard- still exists. Nevertheless, the underlying mech- ware was removed under local anesthesia, and anisms are still unknown, and relevant clinical another cast was placed for 2 consecutive manifestations and risk factors have been rare- weeks. Those without internal-fixation were ly studied. Therefore, the present study aimed fixed with the final cast for 6 consecutive to investigate the clinical and radiographic weeks. 4) The original Ponseti external brace manifestations of rocker-bottom deformity dur- was refitted. Brace management was adopted ing Ponseti management of idiopathic clubfoot initially for 23 h/day for 3 months, followed by and the preliminary treatment results were pre- wearing only while sleeping for at least 2 years. sented as follows. Follow-up Materials and methods After corresponding treatment, all patients Study design were subject to follow-up once a year for 2 years. During the follow-up, the appearance In this retrospective study, clinical data of chil- and function of bilateral feet were evaluated. dren diagnosed with clubfoot admitted to the The compliance of wearing the brace was also clubfoot specialty outpatient clinic at Shanghai observed and recorded. Lateral radiographs Children’s Medical Center between August 1, were taken starting at 6 months after corre- 2015, and July 31, 2016 were retrospectively sponding treatment for 2 years, and then once analyzed. The inclusion criteria were: 1) diagno- a year for 3 years afterwards. sis with congenital clubfoot; and 2) a brace is being fitted during Ponseti treatment. The Evaluation methods exclusion criteria were: 1) complications with other musculoskeletal system disorders; 2) The Dimeglio score system has become the those with clear nervous system disorders; 3) most universally adopted classification system those receiving other interventional therapies; of the severity of deformity [17]. The indepen- and 4) those failing to complete follow-up treat- dent sagittal and total scores were recorded. ment or with incomplete records from at least Medical history of each patient was extracted 1-year follow-up. The study was approved by the from the medical charts. ethics committee of the Shanghai Children’s Medical Center. Written informed consent was During the physical examinations of the ankle obtained from the parents of patients. dorsi-flexion, forefoot position was carefully checked in the neutral and supination posi- Treatment procedures tions. If the dorsiflexion angle in the forefoot supination position was smaller compared with After notifying the family members and obtain- that in the forefoot neutral position, the patient ing their informed consent, the following treat- is suspected to have rocker-bottom deformity. 13806 Int J Clin Exp Med 2019;12(12):13805-13811 Rocker-bottom deformity during Ponseti treatment Figure 1. Radiograph of rocker-bottom deformity. A. Lateral radiograph of the feet in the maximal dorsiflexion posi- tion. B. Radiograph of rocker-bottom deformity. C. The measurement of the tibio-calcaneal (Ti-C), calcaneo-fifth metatarsal (C-M5), and talo-first metatarsal (Ta-M1) angles. Hence, radiographic examinations of this pati- (SD). Paired t-test was utilized to statistically ent should be considered. compare the differences between the angles measured before and after treatment. A P value For radiographic examinations, lateral radio- of less than 0.05 was considered as statisti- graphs of bilateral feet were taken with the cally significant. feet in the maximal dorsiflexion position Figure( 1A). Projection methods were conducted by Results using the lateral foot radiography technique as previously described [18]. Each of the two feet Baseline characteristics was supported and maintained with the maxi- mal flexion of the ankle joint by the parents or During the study, 276 feet from 185 clubfoot guardians of the patient. After radiography, the children were examined at the
Recommended publications
  • Supplemental Information
    REVIEW ARTICLE Supplemental Information SEARCH STRATEGIES 7. exp Congenital Abnormalities/ or remifentanil or sufentanil or 8. (defect or cleft or heart defect tapentadol or tramadol or heroin Database: Ovid MEDLINE(R) In- or nalmefene or naloxone or Process and Other Nonindexed or gastroschisis or cryptorchidism or atresia or congenital or clubfoot naltrexone).mp. Citations and Ovid MEDLINE(R), or renal or craniosynostosis or 4. 1 or 2 or 3 1946 to Present hypospadias or malformation or 5. exp pregnancy/or exp pregnancy spina bifida or neural tube defect). outcome/ mp. 1. exp Analgesics, Opioid/ 6. exp teratogenic agent/ 9. 5 or 6 or 7 or 8 2. (opioid* or opiate*).mp. 7. exp congenital disorder/ 10. 4 and 9 3. (alfentanil or alphaprodine or 11. Limit 10 to (English language and 8. (defect or cleft or heart defect buprenorphine or butorphanol humans) or gastroschisis or cryptorchidism or codeine or dezocine or or atresia or congenital or clubfoot dihydrocodeine or fentanyl or Database: Ovid Embase, 1988– or renal or craniosynostosis or hydrocodone or hydromorphone 2016, Week 7 hypospadias or malformation or or levomethadyl or levorphanol spina bifida or neural tube defect). or meperidine or methadone or mp. 1. exp opiate/ morphine or nalbuphine or opium 9. 5 or 6 or 7 or 8 or oxycodone or oxymorphone 2. (opioid* or opiate*).mp. or pentazocine or propoxyphene 10. 4 and 9 3. (alfentanil or alphaprodine or or remifentanil or sufentanil or buprenorphine or butorphanol 11. Limit 10 to (human and English tapentadol or tramadol or heroin or codeine or dezocine or language and (article or book or or nalmefene or naloxone or book series or conference paper dihydrocodeine or fentanyl or “ ” naltrexone).mp.
    [Show full text]
  • Treatment and Outcomes of Arthrogryposis in the Lower Extremity
    Received: 25 June 2019 Revised: 31 July 2019 Accepted: 1 August 2019 DOI: 10.1002/ajmg.c.31734 RESEARCH ARTICLE Treatment and outcomes of arthrogryposis in the lower extremity Reggie C. Hamdy1,2 | Harold van Bosse3 | Haluk Altiok4 | Khaled Abu-Dalu5 | Pavel Kotlarsky5 | Alicja Fafara6,7 | Mark Eidelman5 1Shriners Hospitals for Children, Montreal, Québec, Canada Abstract 2Department of Pediatric Orthopaedic In this multiauthored article, the management of lower limb deformities in children Surgery, Faculty of Medicine, McGill with arthrogryposis (specifically Amyoplasia) is discussed. Separate sections address University, Montreal, Québec, Canada 3Shriners Hospitals for Children, Philadelphia, various hip, knee, foot, and ankle issues as well as orthotic treatment and functional Pennsylvania outcomes. The importance of very early and aggressive management of these defor- 4 Shriners Hospitals for Children, Chicago, mities in the form of intensive physiotherapy (with its various modalities) and bracing Illinois is emphasized. Surgical techniques commonly used in the management of these con- 5Pediatric Orthopedics, Technion Faculty of Medicine, Ruth Children's Hospital, Haifa, ditions are outlined. The central role of a multidisciplinary approach involving all Israel stakeholders, especially the families, is also discussed. Furthermore, the key role of 6Faculty of Health Science, Institute of Physiotherapy, Jagiellonian University Medical functional outcome tools, specifically patient reported outcomes, in the continuous College, Krakow, Poland monitoring and evaluation of these deformities is addressed. Children with 7 Arthrogryposis Treatment Centre, University arthrogryposis present multiple problems that necessitate a multidisciplinary Children's Hospital, Krakow, Poland approach. Specific guidelines are necessary in order to inform patients, families, and Correspondence health care givers on the best approach to address these complex conditions Reggie C.
    [Show full text]
  • The Orthopaedic Management of Arthrogryposis Multiplex Congenita
    Current Concept Review The Orthopaedic Management of Arthrogryposis Multiplex Congenita Harold J. P. van Bosse, MD and Dan A. Zlotolow, MD Shriners Hospital for Children, Philadelphia, PA Abstract: Arthrogryposis multiplex congenita (AMC) describes a baby born with multiple joint contractures that results from fetal akinesia with at least 400 different causes. The most common forms of AMC are amyoplasia (classic ar- throgryposis) and the distal arthrogryposes. Over the past two decades, the orthopaedic treatment of children with AMC has evolved with a better appreciation of the natural history. Most adults with arthrogryposis are ambulatory, but less than half are fully independent in self-care and most are limited by upper extremity dysfunction. Chronic and epi- sodic pain in adulthood—particularly of the foot and back—is frequent, limiting both ambulation and standing. To improve upon the natural history, upper extremity treatments have advanced to improve elbow motion and wrist and thumb positioning. Attempts to improve the ambulatory ability and decrease future pain include correction of hip and knee contractures and emphasizing casting treatments of foot deformities. Pediatric patients with arthrogryposis re- quire a careful evaluation, with both a physical examination and an assessment of needs to direct their treatment. Fur- ther outcomes studies are needed to continue to refine procedures and define the appropriate candidates. Key Concepts: • Arthrogryposis multiplex congenita (AMC) is a term that describes a baby born with multiple joint contractures. Amyoplasia is the most common form of AMC, accounting for one-third to one-half of all cases, with the distal arthrogryposes as the second largest AMC type.
    [Show full text]
  • Hypermobility Syndrome
    EDS and TOMORROW • NO financial disclosures • Currently at Cincinnati Children’s Hospital • As of 9/1/12, will be at Lutheran General Hospital in Chicago • Also serve on the Board of Directors of the Ehlers-Danlos National Foundation (all Directors are volunteers) • Ehlers-Danlos syndrome(s) • A group of inherited (genetic) disorders of connective tissue • Named after Edvard Ehlers of Denmark and Henri- Alexandre Danlos of France Villefranche 1997 Berlin 1988 Classical Type Gravis (Type I) Mitis (Type II) Hypermobile Type Hypermobile (Type III) Vascular Type Arterial-ecchymotic (Type IV) Kyphoscoliosis Type Ocular-Scoliotic (Type VI) Arthrochalasia Type Arthrochalasia (Type VIIA, B) Dermatosporaxis Type Dermatosporaxis (Type VIIC ) 2012? • X-Linked EDS (EDS Type V) • Periodontitis type (EDS Type VIII) • Familial Hypermobility Syndrome (EDS Type XI) • Benign Joint Hypermobility Syndrome • Hypermobility Syndrome • Progeroid EDS • Marfanoid habitus with joint laxity • Unspecified Forms • Brittle cornea syndrome • PRDM5 • ZNF469 • Spondylocheiro dysplastic • Musculocontractural/adducted thumb clubfoot/Kosho • D4ST1 deficient EDS • Tenascin-X deficiency EDS Type Genetic Defect Inheritance Classical Type V collagen (60%) Dominant Other? Hypermobile Largely unknown Dominant Vascular Type III collagen Dominant Kyphoscoliosis Lysyl hydroxylase (PLOD1) Recessive Arthrochalasia Type I collagen Dominant Dermatosporaxis ADAMTS2 Recessive Joint Hypermobility 1. Passive dorsiflexion of 5th digit to or beyond 90° 2. Passive flexion of thumbs to the forearm 3. Hyperextension of the elbows beyond 10° 1. >10° in females 2. >0° in males 4. Hyperextension of the knees beyond 10° 1. Some knee laxity is normal 2. Sometimes difficult to understand posture- forward flexion of the hips usually helps 5. Forward flexion of the trunk with knees fully extended, palms resting on floor 1.
    [Show full text]
  • Escobar Syndrome Associated with Spine and Orthopedic Pathologies
    tics: Cu ne rr e en G t y R r e a Balioglu, Hereditary Genet 2015, 4:2 t s i e d a e r r c DOI: 10.4172/2161-1041.1000145 e h H Hereditary Genetics ISSN: 2161-1041 Case Report Open Access Escobar Syndrome Associated with Spine and Orthopedic Pathologies: Case Reports and Literature Review Balioglu MB* Metin Sabanci Baltalimani Bone Disease Education and Research Hospital, Istanbul, Turkey Abstract Escobar syndrome (ES) is associated with a web across every flexion crease in the extremities (most notably the popliteal space) and other structural anomalies such as a vertical talus, clubfoot, thoracic kyphoscoliosis and severe restrictive lung disease. In our study, we evaluated 3 patients diagnosed with multiple pterygium syndrome (MPS) type Escobar. The purpose of this study was to assess the abnormalities of the vertebrae and concomitant orthopedic pathologies. Two male patients (17 and 20-year-old siblings) and one female patient (9 year-old) were diagnosed with ES by genetic analysis. Patients had been diagnosed with kyphosis and progressive scoliosis (except one), high-set palate, ptosis, low-set ears, arachnodactyly, craniofacial dysmorphism, mild deafness, clubfoot, hip luxation, and joint contractures. Patients received operations for dislocation of the hip, clubfoot correction (except the female patient), and contractures of the knee and ankle. Furthermore, patients also underwent surgery for ptosis and inguinal hernias (except the female patient). One male patient received posterior vertebral instrumentation and fusion for a progressive spine deformity. Spinal and orthopedic pathologies commonly occur in patients with ES and scoliosis, and kyphosis may progress considerably over time.
    [Show full text]
  • FLEXOR TENOTOMY: a Simplified Technique
    CHAPTER 1 FLEXOR TENOTOMY: A Simplified Technique Mickey D. Stapp, DPM Craig Camasta, DPM INTRODUCTION The key to choosing this procedure is that the digital deformity must be flexible or semi-rigid at the interpha - Tenotomies have been performed in foot and ankle langeal joint level and no contracture or a reducible surgeries for many years. Traditionally, open tenotomies deformity at the metatarsophalangeal joint level. This were performed alone, in significant tendon contractures procedure cannot serve as an alternative for an arthrodesis without osseous involvement, or in combination with or arthroplasty of the digit or a full sequential release at the osseous surgery when osseous changes were also present. metatarsophalangeal joint. A percutaneous tenotomy for Many foot and ankle surgeons have understood the flexible digital deformities would be rarely indicated for importance of tenotomies in successful digital surgeries. 1-4 multiple adjacent digits. It is most often utilized on third McGowan may have been first to describe a minimally and fourth toes. invasive technique for tenotomies. 5 The lesion pattern, hyperkeratotic, preulcerative, or Surgeons searching for less invasive procedures to full ulcer, must be taken into consideration. The majority address tendon pathology began utilizing percutaneous of lesions best amenable to this procedure are lesions tenotomies for a multitude of various foot and ankle located at the distal aspect of the digit. This procedure deformities. The vast majority of these have been described provides a simplified technique to eliminate painful distal for clubfoot deformities. 6-8 Prior to the use of percutaneous clavi or recurring ulcerative lesions (Figure 1). tenotomies in clubfoot surgery, this technique was described for various Achilles tendonopathies.
    [Show full text]
  • Equinus Deformity in the Pediatric Patient: Causes, Evaluation, and Management
    Equinus Deformity in the Pediatric Patient: Causes, Evaluation, and Management a,b,c Monique C. Gourdine-Shaw, DPM, LCDR, MSC, USN , c, c Bradley M. Lamm, DPM *, John E. Herzenberg, MD, FRCSC , d,e Anil Bhave, PT KEYWORDS Equinus Pediatric External fixation Achilles tendon lengthening Gastrocnemius recession Tendo-Achillis lengthening Different body and limb segments grow at different rates, inducing varying muscle tensions during growth.1 In addition, boys and girls grow at different rates.1 The rate of growth for girls spikes at ages 5, 7, 10, and 13 years.1 The estrogen-induced pubertal growth spurt in girls is one of the earliest manifestations of puberty. Growth of the legs and feet accelerates first, so that many girls have longer legs in proportion to their torso during the first year of puberty. The overall rate of growth tends to reach a peak velocity (as much as 7.5 to 10 cm) midway between thelarche and menarche and declines by the time menarche occurs.1 In the 2 years after menarche, most girls grow approximately 5 cm before growth ceases at maximal adult height.1 The rate of growth for boys spikes at ages 6, 11, and 14 years.1 Compared with girls’ early growth spurt, growth accelerates more slowly in boys and lasts longer, resulting in taller adult stature among men than women (on average, approximately 10 cm).1 The difference is attributed to the much greater potency of estradiol compared with testosterone in Two authors (BML and JEH) host an international teaching conference supported by Smith & Nephew.
    [Show full text]
  • Intoeing Gait in Children
    Li et al REVIEW ARTICLES Intoeinggaitinchildren YHLi,JCYLeong Objective. To review the aetiology and management of intoeing. Data sources. Medline and non-Medline literature search, and personal experience. Study selection. Studies that provided evidence-based information about the aetiology and management of paediatric intoeing gait were selected. Data extraction. Data were extracted and reviewed independently by both authors. Data synthesis. An intoeing gait affects many children and, as with flexible flatfoot, bowleg, and knock-knee, it falls into the category of physiological problems that occur in normal children. The usual causes are excessive femoral anteversion, internal tibial torsion, and metatarsus adductus. Management is based on understanding the causes and the natural course of the condition and the effectiveness of various treatment modalities. Unfortunately, due to a poor understanding of the condition, intoeing is commonly overtreated with braces or special footwear. Conclusions. Intoeing is one of the most common conditions encountered in paediatric orthopaedic practice. It is important to make an early diagnosis of pathological causes of intoeing such as cerebral palsy and develop- mental dysplasia of the hips so that treatment can be commenced as soon as possible. HKMJ 1999;5:360-6 Key words: Child; Foot deformities, congenital; Gait; Hip joint/physiology; Movement Terminology demonstrate torsion. Tibial version or torsion is the angle measured between the transmalleolar axis and Rotation refers to the twist of the femur or the tibia the bicondylar axis of the proximal tibia at the knee. about the long axis of each bone. Rotation that is nor- mal in direction and magnitude is defined as ‘version’ The embryology of lower-extremity version and that which is abnormal is termed ‘torsion’.
    [Show full text]
  • PE491 Clubfoot Correction
    Clubfoot Correction Using casting followed by shoes on a bar (the Ponseti method) The results of treating a child with clubfoot using the Ponseti method are very good. This involves stretching casts to correct the deformity, followed by shoes on a bar to hold the correction. What is the cause Clubfoot is the most common bone and joint deformity in babies. One out of of clubfoot? 1,000 babies is born with a clubfoot. Clubfoot is primarily a genetic condition, but other factors contribute to its occurrence. If your baby is born with a clubfoot you should know it was not caused by anything you did or did not do. What is the Ponseti The Ponseti method is a safe, effective treatment for the correction of method for the clubfoot that reduces the need for extensive surgery. The likely course of treatment for your child is these three steps in this order: treatment of clubfoot? 1. Casting (with foot stretching) 2. Tenotomy – cutting of the Achilles (heel) tendon 3. Bracing with special shoes on a bar Treatment starts when your baby is about 1 week old. The foot is gently stretched and manipulated for about 1 minute. After the ligaments and tendons of the foot are stretched, a long leg soft fiberglass cast is put on. This process will be repeated every week until the foot has been corrected. Most feet will need the Achilles tendon cut. Your child will then wear shoes on a bar to hold the correction. How long will the The initial correction including tenotomy takes about 2 to 3 months.
    [Show full text]
  • Complications Related to Specific Diagnoses Syndromes, Dysplasia
    Complications Related to Specific Diagnoses Syndromes, Dysplasia Paul D Sponseller MD Johns Hopkins Medical Institutions Baltimore, MD Overview • Common Themes • Marfan Syndrome •NF1 • Skeletal Dysplasia •NM • Complications Approach to Syndromes -and systemic diagnoses • Idiopathic Deformity: – Established patterns – Proven techniques • Syndromes have opposite properties – Unique problems – Step back •Get help!! Resources • OMIM (Online Mendelian Inheritance in Man) – NLM feature – 18,000 entries – Searchable by feature (i.e., pectus) + combinations (pectus AND scoliosis AND vertical talus) • Pub Med: Search individual diagnosis if known • Your friendly local geneticist – Dx & Management Common Themes: Examine Entire Spine (C,T,L) • Categories of Spinal Problems – Instability (C1-2, T12-L1) – Deformity • Kyphosis (C, T, L) • Scoliosis – Stenosis • Apply to Cervical, thoracic, lumbar Common Themes - General • Casting, Bracing rarely helps deformity – Marfan syndrome 17% efficacy • Exceptions • Use only in small, flexible curves – If not a burden Common Spinal Themes • Failure of fixation • Adding-on Common Themes- preop • Consider Spine Deformity in context of total Disability – Hurler syndrome: life expectancy < 20 yrs – Dysraphism: Infection, pressure sores, neuro deficit question benefit – Help FAMILY make cost-benefit analysis • Each family sees it differently Common Themes- preop MRI, CT • Usually high yield in syndromes – Dural ectasia – Cord size, location – Stenosis • When? – Preop or if findings dictate Common Themes -Medical Comorbidities
    [Show full text]
  • A Parents' Guide to Clubfoot and Its
    A Parents’ Guide to Clubfoot and its treatment using the Ponseti Method 1.800.461.3639 • www.whenithurtstomove.org Table of Contents Dedication and Introduction ...............................................................................2 About Dr. Ignacio Ponseti and his Method.........................................................3 Understanding Clubfoot ......................................................................................4 Clubfoot Treatment Overview .............................................................................6 Clubfoot Treatment Timeline...............................................................................8 Your Health Care Team ........................................................................................9 Your First Appointment......................................................................................10 Straightening the Foot: Casting ........................................................................11 When to Seek Medical Attention ......................................................................13 Preventing Relapse: Bracing and Surveillance ..................................................16 Exercise and Physiotherapy................................................................................21 Parent Stories......................................................................................................22 Frequently Asked Questions ..............................................................................24 Famous People With Clubfeet
    [Show full text]
  • EUROCAT Syndrome Guide
    JRC - Central Registry european surveillance of congenital anomalies EUROCAT Syndrome Guide Definition and Coding of Syndromes Version July 2017 Revised in 2016 by Ingeborg Barisic, approved by the Coding & Classification Committee in 2017: Ester Garne, Diana Wellesley, David Tucker, Jorieke Bergman and Ingeborg Barisic Revised 2008 by Ingeborg Barisic, Helen Dolk and Ester Garne and discussed and approved by the Coding & Classification Committee 2008: Elisa Calzolari, Diana Wellesley, David Tucker, Ingeborg Barisic, Ester Garne The list of syndromes contained in the previous EUROCAT “Guide to the Coding of Eponyms and Syndromes” (Josephine Weatherall, 1979) was revised by Ingeborg Barisic, Helen Dolk, Ester Garne, Claude Stoll and Diana Wellesley at a meeting in London in November 2003. Approved by the members EUROCAT Coding & Classification Committee 2004: Ingeborg Barisic, Elisa Calzolari, Ester Garne, Annukka Ritvanen, Claude Stoll, Diana Wellesley 1 TABLE OF CONTENTS Introduction and Definitions 6 Coding Notes and Explanation of Guide 10 List of conditions to be coded in the syndrome field 13 List of conditions which should not be coded as syndromes 14 Syndromes – monogenic or unknown etiology Aarskog syndrome 18 Acrocephalopolysyndactyly (all types) 19 Alagille syndrome 20 Alport syndrome 21 Angelman syndrome 22 Aniridia-Wilms tumor syndrome, WAGR 23 Apert syndrome 24 Bardet-Biedl syndrome 25 Beckwith-Wiedemann syndrome (EMG syndrome) 26 Blepharophimosis-ptosis syndrome 28 Branchiootorenal syndrome (Melnick-Fraser syndrome) 29 CHARGE
    [Show full text]