Department of Materials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supplemental Material for Molecular Simulations of Heterogeneous Ice
Supplemental Material for Molecular simulations of heterogeneous ice nucleation I: Controlling ice nucleation through surface hydrophilicity Stephen J. Cox,1, 2 Shawn M. Kathmann,3 Ben Slater,1 and Angelos Michaelides1, 2, a) 1)Thomas Young Centre and Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K. 2)London Centre for Nanotechnology, 17{19 Gordon Street, London WC1H 0AH, U.K. 3)Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States (Dated: 22 April 2015) This Supplemental Material contains further details of the simulation methods and the data fitting procedure used. A movie and still images of a nucleation event at the NP with Eads=∆Hvap ≈ 0:9 are also provided. a)Electronic mail: [email protected] 1 I. FURTHER SIMULATIONS DETAILS To construct the NP, the ASE package1 was used: 6 atomic layers were used in the f1,0,0g family of directions; 9 layers in the f1,1,0g family; and 5 layers in the f1,1,1g family, except along the (1¯; 1¯; 1)¯ direction where no layers were used. As the equations of motion for the atoms in the NP were not integrated (i.e. they were fixed) no interaction potential was defined between them, and the adsorption energy Eads of a water monomer to the NP was therefore simply defined as the total energy after geometry optimization of a single water molecule at the center of the (111) face. The velocity Verlet algorithm was used to propagate the equations of motion of the water molecules, using a 10 fs time step. -
Seebeck Coefficient in Organic Semiconductors
Seebeck coefficient in organic semiconductors A dissertation submitted for the degree of Doctor of Philosophy Deepak Venkateshvaran Fitzwilliam College & Optoelectronics Group, Cavendish Laboratory University of Cambridge February 2014 \The end of education is good character" SRI SATHYA SAI BABA To my parents, Bhanu and Venkatesh, for being there...always Acknowledgements I remain ever grateful to Prof. Henning Sirringhaus for having accepted me into his research group at the Cavendish Laboratory. Henning is an intelligent and composed individual who left me feeling positively enriched after each and every discussion. I received much encouragement and was given complete freedom. I honestly cannot envision a better intellectually stimulating atmosphere compared to the one he created for me. During the last three years, Henning has played a pivotal role in my growth, both personally and professionally and if I ever succeed at being an academic in future, I know just the sort of individual I would like to develop into. Few are aware that I came to Cambridge after having had a rather intense and difficult experience in Germany as a researcher. In my first meeting with Henning, I took off on an unsolicited monologue about why I was so unhappy with my time in Germany. To this he said, \Deepak, now that you are here with us, we will try our best to make the situation better for you". Henning lived up to this word in every possible way. Three years later, I feel reinvented. I feel a constant sense of happiness and contentment in my life together with a renewed sense of confidence in the pursuit of academia. -
What Makes a Good Descriptor for Heterogeneous Ice Nucleation on OH-Patterned Surfaces
What Makes a Good Descriptor for Heterogeneous Ice Nucleation on OH-Patterned Surfaces Philipp Pedevilla Thomas Young Centre and London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom and Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom Martin Fitzner and Angelos Michaelides∗ Thomas Young Centre and London Centre for Nanotechnology, 17-19 Gordon Street, London, WC1H 0AH, United Kingdom and Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom (Dated: October 5, 2018) Freezing of water is arguably one of the most common phase transitions on Earth and almost always happens heterogeneously. Despite its importance, we lack a fundamental understanding of what makes substrates efficient ice nucleators. Here we address this by computing the ice nucleation (IN) ability of numerous model hydroxylated substrates with diverse surface hydroxyl (OH) group arrangements. Overall, for the substrates considered, we find that neither the symmetry of the OH patterns nor the similarity between a substrate and ice correlate well with the IN ability. Instead, we find that the OH density and the substrate-water interaction strength are useful descriptors of a material's IN ability. This insight allows the rationalization of ice nucleation ability across a wide range of materials, and can aid the search and design of novel potent ice nucleators in the future. I. INTRODUCTION ing and ice formation on well-defined atomically flat sur- faces [10, 11], but these experiments are currently not ap- Nucleation is a process that plays a pivotal role in nu- plicable under atmospherically relevant conditions. -
Public Request to Take Stronger Measures of Social Distancing Across the UK with Immediate Effect 14Th March 2020
Public request to take stronger measures of social distancing across the UK with immediate effect 14th March 2020 (last update: 15th March 2020, 18:25) As scientists living and working in the UK, we would like to express our concern about the course of action announced by the Government on 12th March 2020 regarding the Coronavirus outbreak. In particular, we are deeply preoccupied by the timeline of the proposed plan, which aims at delaying social distancing measures even further. The current data about the number of infections in the UK is in line with the growth curves already observed in other countries, including Italy, Spain, France, and Germany [1]. The same data suggests that the number of infected will be in the order of dozens of thousands within a few days. Under unconstrained growth, this outbreak will affect millions of people in the next few weeks. This will most probably put the NHS at serious risk of not being able to cope with the flow of patients needing intensive care, as the number of ICU beds in the UK is not larger than that available in other neighbouring countries with a similar population [2]. Going for \herd immunity" at this point does not seem a viable option, as this will put NHS at an even stronger level of stress, risking many more lives than necessary. By putting in place social distancing measures now, the growth can be slowed down dramatically, and thousands of lives can be spared. We consider the social distancing measures taken as of today as insufficient, and we believe that addi- tional and more restrictive measures should be taken immediately, as it is already happening in other countries across the world. -
Scientific Report 2011 / 2012 Max-Planck-Institut Für Eisenforschung Gmbh Max-Planck-Institut Für Eisenforschung Gmbh
Scientific Report 2011 / 2012 Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Institut für Eisenforschung GmbH Scientific Report 2011/2012 November 2012 Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Str. 1 · 40237 Düsseldorf Germany Front cover Oxygen is one of the critical components that give rise to the excellent mechanical properties of Ti-Nb based gum metal (Ti−23Nb−0.7Ta− 2Zr−1.2O at%) and its complex deformation mechanism. Yet, its role is not fully clear, for which reason an extensive project is being carried out at MPIE (see highlight article on page 113). As a part of this project, deformation structures in gum metal (Ti−22.6Nb−0.47Ta−1.85Zr−1.34O at%) are compared to those in a reference alloy that has the same chemical composition, but no oxygen (Ti−22.8Nb−0.5Ta−1.8Zr at%). The cover page shows a light microscope image of a sample of the reference alloy deformed in uniaxial tension, revealing mechanically-induced crystallographic twin steps on a priorly-polished surface (1 cm corresponds to approx. 125 µm). Imprint Published by Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Str. 1, 40237 Düsseldorf, Germany Phone: +49-211-6792-0 Fax: +49-211-6792-440 Homepage: http://www.mpie.de Editorship, Layout and Typesetting Yasmin Ahmed-Salem Gabi Geelen Brigitte Kohlhaas Frank Stein Printed by Bonifatius GmbH Druck-Buch-Verlag Paderborn, Germany © November 2012 by Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf All rights reserved. PREFACE This report is part of a series documenting the scientific activities and achievements of the Max-Planck- Institut für Eisenforschung GmbH (MPIE) in 2011 and 2012. -
Department of Physics Review
The Blackett Laboratory Department of Physics Review Faculty of Natural Sciences 2008/09 Contents Preface from the Head of Department 2 Undergraduate Teaching 54 Academic Staff group photograph 9 Postgraduate Studies 59 General Departmental Information 10 PhD degrees awarded (by research group) 61 Research Groups 11 Research Grants Grants obtained by research group 64 Astrophysics 12 Technical Development, Intellectual Property 69 and Commercial Interactions (by research group) Condensed Matter Theory 17 Academic Staff 72 Experimental Solid State 20 Administrative and Support Staff 76 High Energy Physics 25 Optics - Laser Consortium 30 Optics - Photonics 33 Optics - Quantum Optics and Laser Science 41 Plasma Physics 38 Space and Atmospheric Physics 45 Theoretical Physics 49 Front cover: Laser probing images of jet propagating in ambient plasma and a density map from a 3D simulation of a nested, stainless steel, wire array experiment - see Plamsa Physics group page 38. 1 Preface from the Heads of Department During 2008 much of the headline were invited by, Ian Pearson MP, the within the IOP Juno code of practice grabbing news focused on ‘big science’ Minister of State for Science and (available to download at with serious financial problems at the Innovation, to initiate a broad ranging www.ioppublishing.com/activity/diver Science and Technology Facilities review of physics research under sity/Gender/Juno_code_of_practice/ Council (STFC) (we note that some the chairmanship of Professor Bill page_31619.html). As noted in the 40% of the Department’s research Wakeham (Vice-Chancellor of IOP document, “The code … sets expenditure is STFC derived) and Southampton University). The stated out practical ideas for actions that the start-up of the Large Hadron purpose of the review was to examine departments can take to address the Collider at CERN. -
Molecular Spintronics
Molecular Spintronics Gabriel Aeppli 1, Andrew Fisher 1, Nicholas Harrison 2, Sandrine Heutz 3, Tim Jones 4, Chris Kay 5 and Des McMorrow 1 1 Department of Physics and Astronomy, London Centre for Nanotechnology, University College London, London WC1E 6BT, U.K. 2 Department of Chemistry, London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, U.K. 3 Department of Materials, London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, U.K. 4 Department of Chemistry, University of Warwick, Coventry, CV4 7AL, U.K. 5 Department of Biology, London Centre for Nanotechnology, University College London, London WC1E 6BT, UK. Project Organisation Project Summary and Context Combine cheap organic electronics and high performance spintronics • Funded through the Basic Technology programme to develop molecular spintronics with outcomes in IT and biosensing. • November 2008 start, duration 4 years. Use expertise in small molecule film growth, magnetism, theory, • Includes 3 institutions (Warwick, UCL and Imperial) and 7 investigators. optoelectronics, device engineering and spin resonance applied to • Crossing boundaries: PIs experts in different branches of Science (Chemistry, Physics, Biology) and Engineering (Materials, EE). biology. • Directly employs 4 PDRAs and 3 PhD students Molecular Electronics Spintronics • Project extends boundaries: Additional academics (a.o. Hirjibehedin, OPV, OLED, GMR, MRAM Curson, Nathan, Ryan), more than 7 PhD students and PDRAs closely Transistors Magnetic HJ Semicond. polymers Magnetic linked to the project and molecules Nelson, Durrant (IC), Forrest Baibich, PRL88 Semiconductors Organic Spintronics Molecular Magnetism Molecular films Magnetic switching, as tunnelling layers spin-crossover Visibility and Outcomes Molecules BT Molecular Molecular powder, on magn. surfaces Xiong, Nature 04 Spintronics Verdaguer, Science 96 e.g. -
The Latest Research in Optical Engineering and Applications, Nanotechnology, Sustainable Energy, Organic Photonics, and Astronomical Instrumentation
OPTICS + PHOTONICS• The latest research in optical engineering and applications, nanotechnology, sustainable energy, organic photonics, and astronomical instrumentation ADVANCE THIS PROGRAM IS CURRENT AS OF TECHNICAL APRIL 2015. SEE UPDATES ONLINE: PROGRAM WWW.SPIE.ORG/OP15PROGRAM Conferences & Courses San Diego Convention Center 9–13 August 2015 San Diego, California, USA Exhibition 11–13 August 2015 CoNFERENCES EXHIBITION AND CoURSES: 11–13 AUGust 2015 9–13 AUGust 2015 San Diego Convention Center San Diego, California, USA Hear the latest research on optical engineering and applications, sustainable energy, nanotechnology, organic photonics, and astronomical instrumentation. ATTEND 4,500 Attendees Network with the leading minds SPIE OPTICS + in your discipline. PHOTONICS The largest international, multidisciplinary optical science 3,350 Papers and technology meeting in North Hear presentations America. on the latest research. 38 Courses & Workshops You can’t afford to stop learning. 180-Company Exhibition See optical devices, components, materials, and technologies. Contents Metamaterials, plasmonics, CNTs, Events Schedule . 2 graphene, thin films, spintronics, nanoengineering, optical trapping, SOCIAL, TECHNICAL, AND nanophotonic materials, nanomedicine, NETWORKING EVENTS Low-D and 2D materials - Technical ............................. 3-4 - Industry................................ 5 - Social Networking....................... 6 - Student .............................. 6-7 - Professional Development ............... 7 Thin films, concentrators, -
About Imperial College London
About Imperial College London Overview Imperial College London is one of the world’s greatest universities, renowned for its ground- breaking research, talented community of staff, students and alumni and its international reach. With a mission to achieve enduring excellence in research and education in science, engineering, medicine and business for the benefit of society, the College was founded in 1907 in South Kensington, bringing together nineteenth century institutions including the Royal College of Science, Royal School of Mines and City and Guilds College. Today Imperial collaborates extensively with neighbouring institutions, including the Royal College of Art and the Royal College of Music. From its location in this great cultural quarter, Imperial provides one of the world’s best educations in STEM subjects for more than 18,400 students, over half of whom come from overseas, reflecting its status as the UK’s most international university. Imperial has three academic faculties – Engineering, Medicine, and Natural Sciences – and the Imperial College Business School, as well as a significant number of interdisciplinary research centres focusing on challenging world problems. The College’s mission is supported by over 8,000 diverse staff, who collaborate in the UK and internationally, often across disciplines. In 2017-2018 the College had a total turnover of over £1 billion, of which £364.2 million directly supported research through grants and contracts. The College’s 2015-2020 Strategy is built on the foundations that make Imperial a strong academic institution and the talented and inspirational people who make up its community. The College’s success is recognised all over the world, as is evidenced by daily coverage of Imperial discoveries and innovations in the international media and claims many distinguished members, including 14 Nobel laureates, three Fields Medallists, and members of the Royal Further Particulars: Lecturer / Senior Lecturer in Statistics 1 Society and National Academies. -
Science Journals
SCIENCE ADVANCES | RESEARCH ARTICLE CONDENSED MATTER PHYSICS Copyright © 2021 The Authors, some rights reserved; Charge transport physics of a unique class of rigid-rod exclusive licensee American Association conjugated polymers with fused-ring conjugated units for the Advancement of Science. No claim to linked by double carbon-carbon bonds original U.S. Government Mingfei Xiao1†, Remington L. Carey1†, Hu Chen2†, Xuechen Jiao3,4, Vincent Lemaur5, Sam Schott1, Works. Distributed 1 6 1,7 8 1,9 under a Creative Mark Nikolka , Cameron Jellett , Aditya Sadhanala , Sarah Rogers , Satyaprasad P. Senanayak , Commons Attribution 6 1 1 1,10 1 Ada Onwubiko , Sanyang Han , Zhilong Zhang , Mojtaba Abdi-Jalebi , Youcheng Zhang , NonCommercial 1 8 1,11 1 1 Tudor H. Thomas , Najet Mahmoudi , Lianglun Lai , Ekaterina Selezneva , Xinglong Ren , License 4.0 (CC BY-NC). Malgorzata Nguyen1, Qijing Wang1, Ian Jacobs1, Wan Yue12, Christopher R. McNeill3, Guoming Liu1,13,14, David Beljonne5, Iain McCulloch2,6, Henning Sirringhaus1* We investigate the charge transport physics of a previously unidentified class of electron-deficient conjugated polymers that do not contain any single bonds linking monomer units along the backbone but only double-bond linkages. Such polymers would be expected to behave as rigid rods, but little is known about their actual chain Downloaded from conformations and electronic structure. Here, we present a detailed study of the structural and charge transport properties of a family of four such polymers. By adopting a copolymer design, we achieve high electron mobilities 2 −1 −1 up to 0.5 cm V s . Field-induced electron spin resonance measurements of charge dynamics provide evidence for relatively slow hopping over, however, long distances. -
Resume of Lucy Whalley
Lucy Whalley 6 Westburn Mews [email protected] Ryton, NE40 4HW lucydot.github.io Employment History Northumbria University Newcastle upon Tyne, UK Vice-Chancellor's Research Fellow Oct. 2020{present Imperial College London London, UK Research Assistant in Solar Cells Oct. 2019{March 2020 Arden Primary School Birmingham, UK Mathematics Teacher Jan. 2013{Aug. 2015 Anawim Women's Centre Birmingham, UK Research Assistant April 2014{April 2015 Academic History Imperial College London London, UK PhD in Materials Science Oct. 2015{Sep. 2019 Birmingham City University Birmingham, UK PGCE in Post-Compulsory Education Oct. 2011{Jul. 2012 University of Birmingham Birmingham, UK MSci in Theoretical Physics, First Class Honours Oct. 2007{Jul. 2011 Funding Software Sustainability Institute £3,000 Fellowship Programme March 2019 Defect Functionalized Sustainable Energy Materials Hub £3,000 Bilateral Exchange Bursary Jan. 2019 Institute of Physics £300 Computational Physics Group Travel Bursary March 2018 Research Activities • Modelling the structural, optical and transport properties of photovoltaic materials • Simulating atoms and electrons using quantum chemistry methods and solid-state physics • Developing open-source software to analyse simulation data • Using national and international High Performance Computing resources • Publishing in peer-reviewed journal (10 articles with >400 citations) • Presenting my work at conferences, symposia and seminars (including oral presentations in the UK, US, Korea and France) Achievements • Awarded the Thomas Young Centre at Imperial College London PhD Thesis Award (Jan. 2020) • Awarded Software Sustainability Institute Fellowship (March 2019) • Awarded poster prize at the ICL Department of Materials postgraduate research day (March 2018) • Certified as a Software Carpentry instructor (Dec. 2017) • Teaching judged as Outstanding by Ofsted (July 2013) • Qualified Teacher Learning and Skills Status awarded from the Institute for Learning (Jan. -
Career Pathway Tracker 35 Years of Supporting Early Career Research Fellows Contents
Career pathway tracker 35 years of supporting early career research fellows Contents President’s foreword 4 Introduction 6 Scientific achievements 8 Career achievements 14 Leadership 20 Commercialisation 24 Public engagement 28 Policy contribution 32 How have the fellowships supported our alumni? 36 Who have we supported? 40 Where are they now? 44 Research Fellowship to Fellow 48 Cover image: Graphene © Vertigo3d CAREER PATHWAY TRACKER 3 President’s foreword The Royal Society exists to encourage the development and use of Very strong themes emerge from the survey About this report science for the benefit of humanity. One of the main ways we do that about why alumni felt they benefited. The freedom they had to pursue the research they This report is based on the first is by investing in outstanding scientists, people who are pushing the wanted to do because of the independence Career Pathway Tracker of the alumni of University Research Fellowships boundaries of our understanding of ourselves and the world around the schemes afford is foremost in the minds of respondents. The stability of funding and and Dorothy Hodgkin Fellowships. This us and applying that understanding to improve lives. flexibility are also highly valued. study was commissioned by the Royal Society in 2017 and delivered by the Above Thirty-five years ago, the Royal Society The vast majority of alumni who responded The Royal Society has long believed in the Careers Research & Advisory Centre Venki Ramakrishnan, (CRAC), supported by the Institute for President of the introduced our University Research Fellowships to the survey – 95% of University Research importance of identifying and nurturing the Royal Society.