Bandicoots” (Peramelemorphia: Marsupialia) Based on Sequences for five Nuclear Genes

Total Page:16

File Type:pdf, Size:1020Kb

Bandicoots” (Peramelemorphia: Marsupialia) Based on Sequences for five Nuclear Genes Available online at www.sciencedirect.com Molecular Phylogenetics and Evolution 47 (2008) 1–20 www.elsevier.com/locate/ympev A timescale and phylogeny for ‘‘Bandicoots” (Peramelemorphia: Marsupialia) based on sequences for five nuclear genes Robert W. Meredith a,*,1, Michael Westerman b,1, Mark S. Springer a,* a Department of Biology, University of California, 900 University Avenue, Riverside, CA 92521, USA b Department of Genetics, La Trobe University, Bundoora, Vic. 3083, Australia Received 26 October 2006; revised 31 December 2007; accepted 4 January 2008 Available online 12 January 2008 Abstract Relationships among the living and recently extinct genera of bandicoots (Marsupialia: Peramelemorphia) have proven difficult to discern. Previous phylogenetic studies have used only morphology or mitochondrial DNA and have reported conflicting results in regards to their relationships. Most phylogenetic reconstructions recognize a basal split between the bilby Macrotis (Thylacomyidae) and the Peramelidae. The Peramelidae is composed of the Peramelinae (Isoodon and Perameles), Echymiperinae (Echymipera and Micr- operoryctes), and Peroryctinae (Peroryctes). Within Peramelidae, Echymipera and Microperoryctes usually group together to the exclu- sion of Peroryctes. This clade is sister to the Peramelinae. Placement of the recently extinct pig-footed bandicoot (Chaeropus: Chaeropodidae) has been ambiguous. We address the interrelationships and estimate times of divergence for the living bandicoot genera using a 6 kilobase concatenation consisting of protein-coding regions of five nuclear genes (ApoB, BRCA1, IRBP, Rag1, and vWF). We analyzed this concatenation using maximum parsimony, maximum likelihood, and Bayesian methods and estimated times of divergence using two Bayesian relaxed molecular clock methods. In all concatenated analyses, all nodes associated with the Peramelemorphia were robustly supported (bootstrap support percentages = 100; posterior probabilities = 1.00). Macrotis was recovered as basal to the remain- ing living bandicoots. Within the Peramelidae, Echymipera and Microperoryctes grouped to the exclusion of Peroryctes and this clade was sister to the Peramelinae. Only Rag1 amplified for Chaeropus; analyses based on this gene provide moderate support for an asso- ciation of Chaeropus plus Peramelidae to the exclusion of Macrotis. Both relaxed clock Bayesian methods suggest that the living ban- dicoots are a relatively recent radiation originating sometime in the late Oligocene or early Miocene with subsequent radiations in the late Miocene to early Pliocene. Ó 2008 Elsevier Inc. All rights reserved. Keywords: Marsupial; Bandicoot; Peramelemorphia; Phylogeny; Relaxed molecular clock; Bilby; Fossil 1. Introduction shared with all South American species and the Austral- asian carnivorous species; and they share the derived con- Taxonomic relationships of bandicoots (Order Peram- dition of having syndactylous hind feet (fusion of 2nd elemorphia) to other Australasian marsupials are poorly and 3rd pedal digits) with all Australasian Diprotodontia. understood. Bandicoots exhibit a mosaic of primitive and Furthermore, relationships within the order have proven derived characters. They are unique among marsupials in difficult to ascertain. having a complex allantoic placenta; they retain the plesio- Bensley (1903) argued for two distinct lineages of living morphic polyprotodont dentition, a condition that is bandicoots, one comprising the bilbies (Macrotis) and one comprising all other genera. This separation of bilbies from other living bandicoots has been supported by a number of * Corresponding authors. Fax: +1 909 787 4826. workers (see Archer and Kirsch, 1977; Westerman et al., E-mail addresses: [email protected] (R.W. Meredith), [email protected] (M.S. Springer). 1999). The bilbies (including the fossil form, Ischnodon 1 These authors contributed equally to this work. australis) have been accorded either familial or subfamilial 1055-7903/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2008.01.002 2 R.W. Meredith et al. / Molecular Phylogenetics and Evolution 47 (2008) 1–20 status (Thylacomyidae or Thylacomyinae). The six other of bandicoot taxa. Furthermore, only Kirsch et al. (1997) living bandicoot genera are usually grouped into one fam- and Westerman et al. (1999) have employed molecular dat- ily (Peramelidae) comprising three subfamilies—Perorycti- ing methods to infer the evolutionary history of bandicoots nae (Peroryctes), Echymiperinae (Echymipera, (Table 1). These studies employed fossil-calibrated molecu- Microperoryctes, and Rhynchomeles), and Peramelinae lar clocks to either DNA hybridization data (Kirsch et al., (Isoodon and Perameles). Peroryctines and echymiperines 1997) or mitochondrial 12S rRNA gene sequences (Wes- differ from peramelines in a number of derived cranial terman et al., 1999). On average, the mitochondrial point characters including a tube-like foramen rotundum and estimates of divergence time for the bandicoot subfamily are essentially forest-dwelling animals either limited to and family nodes were seven million years younger than New Guinea (Microperoryctes, Peroryctes, Rhynchomeles), the DNA hybridization estimates. or nearly so (Echymipera). Within this grouping, the Peror- Parametric (e.g., Thorne et al., 1998; Kishino et al., yctinae is regarded as being very divergent from the 2001) and semi-parametric (e.g., Sanderson, 2002) dating Echymiperinae (see Nowak and Dickman, 2005; Wilson methods are becoming increasingly common given that and Reeder, 2005). The peramelines are mainly an Austra- they allow for relaxation of the molecular clock and gener- lian group whose members share few, if any, derived char- ally perform better than strict molecular clock methods acter states. Indeed, Perameles is often considered to have (Yang and Rannala, 2006; Smith et al., 2006; Benton and the most plesiomorphic dentition of any modern Donoghue, 2007). Of considerable interest are reliable cal- bandicoot. ibration points. Benton and Donoghue (2007) suggest that There have been major difficulties in ascertaining the minimum constraints require (1) a fossil with well-sup- taxonomic relationships of the recently extinct pig-footed ported apomorphies of the given group; (2) a correct phy- bandicoot, Chaeropus ecaudatus. Few specimens of this logenetic tree; and a (3) well-dated fossil-bearing stratum. highly specialized, cursorial, semi-arid adapted herbivo- When these conditions are satisfied, the probability of a rous species were ever collected and few fossil remains have later divergence can be considered zero and the constraint been described. It has several unique derived characters can be treated as a ‘‘hard” bound (Benton and Donoghue, and Tate (1948) pointed out that Chaeropus was taxonom- 2007). When these conditions are not satisfied, ‘‘soft” ically remote from other genera. Groves and Flannery bounded constraints may be more appropriate. Maximum (1990) suggested that Chaeropus shares a number of constraints are much more controversial and difficult to derived character states with Macrotis that were often specify (Benton and Donoghue, 2007; Benton and Ayala, ignored or overlooked. For example, thylacomyids differ 2003; Hedges and Kumar, 2004; Reisz and Mu¨ller, 2004). from peramelines and peroryctines in that although they Reisz and Mu¨ller (2004) and Mu¨ller and Reisz (2005) sug- show four principal cusps, the metacone has shifted lin- gest phylogenetic bracketing. Benton and Donoghue (2007) gually and the two principal external cusps are relatively suggest a pluralistic approach that uses both ‘‘phylogenetic larger (see Rich, 1991). Chaeropus also has lingual metaco- bracketing” and considers ‘‘the absence of fossils from nids compared to other bandicoots (see Wright et al., 1991) underlying deposits” (p. 28). In addition, maximum and and ‘‘the cusps of the buccal tier [metacone and paracone] minimum constraints should be ‘‘fully substantiated” so and the crests associated with these, are major features of that any refinements in geological dates, the discovery of the tooth” (p. 232), suggesting that it may be related to new fossils, or changes in diagnostic apomorphies can be thylacomyids. incorporated into new analyses. Soft and hard bounded Westerman et al. (1999) summarized the molecular stud- analyses will recover similar estimates if the molecular data ies on bandicoot relationships. Molecular studies have con- and fossil constraints are not in ‘‘conflict” with one another sistently demonstrated a large difference between Macrotis (Yang and Rannala, 2006). Analyses employing soft (Thylacomyidae) and other bandicoots. They have also bounded constraints will out perform hard bounded analy- consistently demonstrated not only a large difference ses when poor constraints are used. Soft bounded con- between the Peramelinae (Isoodon + Perameles) and the mainly New Guinean Peroryctinae and Echymiperinae, but also that the Peroryctinae is very distinct from the Table 1 Echymiperinae. Previously estimated divergence dates in millions of years for the Peramelemorphia The mitochondrial DNA sequencing studies of Wes- terman et al. (1999) included sequences from a spirit-pre- DNA 12S rRNA hybridizationa Transversionsb served museum specimen of the extinct Chaeropus ecaudatus. This study favored Chaeropus as the sister taxon Node Peramelinae 12.36 1.75 to all other bandicoots but statistical tests failed to reject a Echymiperinae 10.51 5.26 Chaeropus + Macrotis
Recommended publications
  • BANDICOTA INDICA, the BANDICOOT RAT 3.1 The
    CHAPTER THREE BANDICOTA INDICA, THE BANDICOOT RAT 3.1 The Living Animal 3.1.1 Zoology Rats and mice (family Muridae) are the most common and well-known rodents, not only of the fi elds, cultivated areas, gardens, and storage places but especially so of the houses. Though there are many genera and species, their general appearance is pretty the same. Rats are on average twice as large as mice (see Chapter 31). The bandicoot is the largest rat on the Indian subcontinent, with a body and head length of 30–40 cm and an equally long tail; this is twice as large as the black rat or common house rat (see section 3.1.2 below). This large size immediately distinguishes the bandicoot from other rats. Bandicoots have a robust form, a rounded head, large rounded or oval ears, and a short, broad muzzle. Their long and naked scaly tail is typical of practically all rats and mice. Bandicoots erect their piles of long hairs and grunt when excited. Bandicoots are found practically on the whole of the subcontinent from the Himalayas to Cape Comorin, including Sri Lanka, but they are not found in the deserts and the semi-arid zones of north-west India. Here, they are replaced by a related species, the short-tailed bandicoot (see section 3.1.2 below). The bandicoot is essentially parasitic on man, living in or about human dwellings. They cause a lot of damage to grounds and fl oorings because of their burrowing habits; they also dig tunnels through bricks and masonry.
    [Show full text]
  • Platypus Collins, L.R
    AUSTRALIAN MAMMALS BIOLOGY AND CAPTIVE MANAGEMENT Stephen Jackson © CSIRO 2003 All rights reserved. Except under the conditions described in the Australian Copyright Act 1968 and subsequent amendments, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, duplicating or otherwise, without the prior permission of the copyright owner. Contact CSIRO PUBLISHING for all permission requests. National Library of Australia Cataloguing-in-Publication entry Jackson, Stephen M. Australian mammals: Biology and captive management Bibliography. ISBN 0 643 06635 7. 1. Mammals – Australia. 2. Captive mammals. I. Title. 599.0994 Available from CSIRO PUBLISHING 150 Oxford Street (PO Box 1139) Collingwood VIC 3066 Australia Telephone: +61 3 9662 7666 Local call: 1300 788 000 (Australia only) Fax: +61 3 9662 7555 Email: [email protected] Web site: www.publish.csiro.au Cover photos courtesy Stephen Jackson, Esther Beaton and Nick Alexander Set in Minion and Optima Cover and text design by James Kelly Typeset by Desktop Concepts Pty Ltd Printed in Australia by Ligare REFERENCES reserved. Chapter 1 – Platypus Collins, L.R. (1973) Monotremes and Marsupials: A Reference for Zoological Institutions. Smithsonian Institution Press, rights Austin, M.A. (1997) A Practical Guide to the Successful Washington. All Handrearing of Tasmanian Marsupials. Regal Publications, Collins, G.H., Whittington, R.J. & Canfield, P.J. (1986) Melbourne. Theileria ornithorhynchi Mackerras, 1959 in the platypus, 2003. Beaven, M. (1997) Hand rearing of a juvenile platypus. Ornithorhynchus anatinus (Shaw). Journal of Wildlife Proceedings of the ASZK/ARAZPA Conference. 16–20 March.
    [Show full text]
  • A Dated Phylogeny of Marsupials Using a Molecular Supermatrix and Multiple Fossil Constraints
    Journal of Mammalogy, 89(1):175–189, 2008 A DATED PHYLOGENY OF MARSUPIALS USING A MOLECULAR SUPERMATRIX AND MULTIPLE FOSSIL CONSTRAINTS ROBIN M. D. BECK* School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia Downloaded from https://academic.oup.com/jmammal/article/89/1/175/1020874 by guest on 25 September 2021 Phylogenetic relationships within marsupials were investigated based on a 20.1-kilobase molecular supermatrix comprising 7 nuclear and 15 mitochondrial genes analyzed using both maximum likelihood and Bayesian approaches and 3 different partitioning strategies. The study revealed that base composition bias in the 3rd codon positions of mitochondrial genes misled even the partitioned maximum-likelihood analyses, whereas Bayesian analyses were less affected. After correcting for base composition bias, monophyly of the currently recognized marsupial orders, of Australidelphia, and of a clade comprising Dasyuromorphia, Notoryctes,and Peramelemorphia, were supported strongly by both Bayesian posterior probabilities and maximum-likelihood bootstrap values. Monophyly of the Australasian marsupials, of Notoryctes þ Dasyuromorphia, and of Caenolestes þ Australidelphia were less well supported. Within Diprotodontia, Burramyidae þ Phalangeridae received relatively strong support. Divergence dates calculated using a Bayesian relaxed molecular clock and multiple age constraints suggested at least 3 independent dispersals of marsupials from North to South America during the Late Cretaceous or early Paleocene. Within the Australasian clade, the macropodine radiation, the divergence of phascogaline and dasyurine dasyurids, and the divergence of perameline and peroryctine peramelemorphians all coincided with periods of significant environmental change during the Miocene. An analysis of ‘‘unrepresented basal branch lengths’’ suggests that the fossil record is particularly poor for didelphids and most groups within the Australasian radiation.
    [Show full text]
  • A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes
    J Mammal Evol DOI 10.1007/s10914-007-9062-6 ORIGINAL PAPER A Phylogeny and Timescale for Marsupial Evolution Based on Sequences for Five Nuclear Genes Robert W. Meredith & Michael Westerman & Judd A. Case & Mark S. Springer # Springer Science + Business Media, LLC 2007 Abstract Even though marsupials are taxonomically less diverse than placentals, they exhibit comparable morphological and ecological diversity. However, much of their fossil record is thought to be missing, particularly for the Australasian groups. The more than 330 living species of marsupials are grouped into three American (Didelphimorphia, Microbiotheria, and Paucituberculata) and four Australasian (Dasyuromorphia, Diprotodontia, Notoryctemorphia, and Peramelemorphia) orders. Interordinal relationships have been investigated using a wide range of methods that have often yielded contradictory results. Much of the controversy has focused on the placement of Dromiciops gliroides (Microbiotheria). Studies either support a sister-taxon relationship to a monophyletic Australasian clade or a nested position within the Australasian radiation. Familial relationships within the Diprotodontia have also proved difficult to resolve. Here, we examine higher-level marsupial relationships using a nuclear multigene molecular data set representing all living orders. Protein-coding portions of ApoB, BRCA1, IRBP, Rag1, and vWF were analyzed using maximum parsimony, maximum likelihood, and Bayesian methods. Two different Bayesian relaxed molecular clock methods were employed to construct a timescale for marsupial evolution and estimate the unrepresented basal branch length (UBBL). Maximum likelihood and Bayesian results suggest that the root of the marsupial tree is between Didelphimorphia and all other marsupials. All methods provide strong support for the monophyly of Australidelphia. Within Australidelphia, Dromiciops is the sister-taxon to a monophyletic Australasian clade.
    [Show full text]
  • A Species-Level Phylogenetic Supertree of Marsupials
    J. Zool., Lond. (2004) 264, 11–31 C 2004 The Zoological Society of London Printed in the United Kingdom DOI:10.1017/S0952836904005539 A species-level phylogenetic supertree of marsupials Marcel Cardillo1,2*, Olaf R. P. Bininda-Emonds3, Elizabeth Boakes1,2 and Andy Purvis1 1 Department of Biological Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, U.K. 2 Institute of Zoology, Zoological Society of London, Regent’s Park, London NW1 4RY, U.K. 3 Lehrstuhl fur¨ Tierzucht, Technical University of Munich, Alte Akademie 12, 85354 Freising-Weihenstephan, Germany (Accepted 26 January 2004) Abstract Comparative studies require information on phylogenetic relationships, but complete species-level phylogenetic trees of large clades are difficult to produce. One solution is to combine algorithmically many small trees into a single, larger supertree. Here we present a virtually complete, species-level phylogeny of the marsupials (Mammalia: Metatheria), built by combining 158 phylogenetic estimates published since 1980, using matrix representation with parsimony. The supertree is well resolved overall (73.7%), although resolution varies across the tree, indicating variation both in the amount of phylogenetic information available for different taxa, and the degree of conflict among phylogenetic estimates. In particular, the supertree shows poor resolution within the American marsupial taxa, reflecting a relative lack of systematic effort compared to the Australasian taxa. There are also important differences in supertrees based on source phylogenies published before 1995 and those published more recently. The supertree can be viewed as a meta-analysis of marsupial phylogenetic studies, and should be useful as a framework for phylogenetically explicit comparative studies of marsupial evolution and ecology.
    [Show full text]
  • The Role of the Reintroduction of Greater Bilbies (Macrotis Lagotis)
    The Role of the Reintroduction of Greater Bilbies (Macrotis lagotis) and Burrowing Bettongs (Bettongia lesueur) in the Ecological Restoration of an Arid Ecosystem: Foraging Diggings, Diet, and Soil Seed Banks Janet Newell School of Earth and Environmental Sciences University of Adelaide May 2008 A thesis submitted for the degree of Doctor of Philosophy Table of Contents ABSTRACT...............................................................................................................................................I DECLARATION.......................................................................................................................................III ACKNOWLEDGEMENTS ....................................................................................................................... V CHAPTER 1 INTRODUCTION ............................................................................................................1 1.1 MAMMALIAN EXTINCTIONS IN ARID AUSTRALIA ...............................................................................1 1.2 ROLE OF REINTRODUCTIONS .......................................................................................................2 1.3 ECOSYSTEM FUNCTIONS.............................................................................................................3 1.4 ECOSYSTEM FUNCTIONS OF BILBIES AND BETTONGS .....................................................................4 1.4.1 Consumers..........................................................................................................................4
    [Show full text]
  • Impact of Fox Baiting on Tiger Quoll Populations Project ID: 00016505
    Impact of fox baiting on tiger quoll populations Project ID: 00016505 Final Report to Environment Australia and The New South Wales National Parks and Wildlife Service Gerhard Körtner and Shaan Gresser Copyright G. Körtner Executive Summary: The NSW Threat Abatement Plan for Predation by the Red Fox (TAP) identifies foxes as a major threat to the survival of many native mammals. The plan recommends baiting with compound 1080 (sodium monofluoroacetate) because it appears to be the most effective fox control measure. However, the plan also recognises the risk for tiger quolls as a non-target species. Although the actual impact of 1080 fox baiting on tiger quoll populations has not been assessed, this assumed risk has resulted in restrictions on the use of 1080 which render fox baiting programs labour intensive and expensive and which may compromise the effectiveness of the fox control. The aim of this project is to determine whether these precautions are necessary by measuring tiger quoll mortality during fox baiting programs using 1080. The project has been identified as a priority action (Obj. 2, action 5) of the TAP. Three experiments were conducted in north-east NSW between June 2000 and December 2001. Overall 78 quolls were trapped and 56 of those were fitted with mortality radio-transmitters. Baiting procedure followed Best Practice Guidelines (TAP) except that there was no free-feeding and baits were only surface buried. These modifications aimed to increase the exposure of quolls to bait. 1080 baits (3 mg / bait; Foxoff®) incorporating the bait marker Rhodamine B were deployed for 10 days along existing trails.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Ba3444 MAMMAL BOOKLET FINAL.Indd
    Intot Obliv i The disappearing native mammals of northern Australia Compiled by James Fitzsimons Sarah Legge Barry Traill John Woinarski Into Oblivion? The disappearing native mammals of northern Australia 1 SUMMARY Since European settlement, the deepest loss of Australian biodiversity has been the spate of extinctions of endemic mammals. Historically, these losses occurred mostly in inland and in temperate parts of the country, and largely between 1890 and 1950. A new wave of extinctions is now threatening Australian mammals, this time in northern Australia. Many mammal species are in sharp decline across the north, even in extensive natural areas managed primarily for conservation. The main evidence of this decline comes consistently from two contrasting sources: robust scientifi c monitoring programs and more broad-scale Indigenous knowledge. The main drivers of the mammal decline in northern Australia include inappropriate fi re regimes (too much fi re) and predation by feral cats. Cane Toads are also implicated, particularly to the recent catastrophic decline of the Northern Quoll. Furthermore, some impacts are due to vegetation changes associated with the pastoral industry. Disease could also be a factor, but to date there is little evidence for or against it. Based on current trends, many native mammals will become extinct in northern Australia in the next 10-20 years, and even the largest and most iconic national parks in northern Australia will lose native mammal species. This problem needs to be solved. The fi rst step towards a solution is to recognise the problem, and this publication seeks to alert the Australian community and decision makers to this urgent issue.
    [Show full text]
  • Spotted Tailed Quoll (Dasyurus Maculatus)
    Husbandry Guidelines for the SPOTTED-TAILED QUOLL (Tiger Quoll) (Photo: J. Marten) Dasyurus maculatus (MAMMALIA: DASYURIDAE) Author: Julie Marten Date of Preparation: February 2013 – June 2014 Western Sydney Institute of TAFE, Richmond Course Name and Number: Captive Animals Certificate III (18913) Lecturers: Graeme Phipps, Jacki Salkeld, Brad Walker DISCLAIMER Please note that this information is just a guide. It is not a definitive set of rules on how the care of Spotted- Tailed Quolls must be conducted. Information provided may vary for: • Individual Spotted-Tailed Quolls • Spotted-Tailed Quolls from different regions of Australia • Spotted-Tailed Quolls kept in zoos versus Spotted-Tailed Quolls from the wild • Spotted-Tailed Quolls kept in different zoos Additionally different zoos have their own set of rules and guidelines on how to provide husbandry for their Spotted-Tailed Quolls. Even though I researched from many sources and consulted various people, there are zoos and individual keepers, researchers etc. that have more knowledge than myself and additional research should always be conducted before partaking any new activity. Legislations are regularly changing and therefore it is recommended to research policies set out by national and state government and associations such as ARAZPA, ZAA etc. Any incident resulting from the misuse of this document will not be recognised as the responsibility of the author. Please use at the participants discretion. Any enhancements to this document to increase animal care standards and husbandry techniques are appreciated. Otherwise I hope this manual provides some helpful information. Julie Marten Picture J.Marten 2 OCCUPATIONAL HEALTH AND SAFETY RISKS It is important before conducting any work that all hazards are identified.
    [Show full text]
  • Phylogenetic Relationships of Living and Recently Extinct Bandicoots Based on Nuclear and Mitochondrial DNA Sequences ⇑ M
    Molecular Phylogenetics and Evolution 62 (2012) 97–108 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetic relationships of living and recently extinct bandicoots based on nuclear and mitochondrial DNA sequences ⇑ M. Westerman a, , B.P. Kear a,b, K. Aplin c, R.W. Meredith d, C. Emerling d, M.S. Springer d a Genetics Department, LaTrobe University, Bundoora, Victoria 3086, Australia b Palaeobiology Programme, Department of Earth Sciences, Uppsala University, Villavägen 16, SE-752 36 Uppsala, Sweden c Australian National Wildlife Collection, CSIRO Sustainable Ecosystems, Canberra, ACT 2601, Australia d Department of Biology, University of California, Riverside, CA 92521, USA article info abstract Article history: Bandicoots (Peramelemorphia) are a major order of australidelphian marsupials, which despite a fossil Received 4 November 2010 record spanning at least the past 25 million years and a pandemic Australasian range, remain poorly Revised 6 September 2011 understood in terms of their evolutionary relationships. Many living peramelemorphians are critically Accepted 12 September 2011 endangered, making this group an important focus for biological and conservation research. To establish Available online 11 November 2011 a phylogenetic framework for the group, we compiled a concatenated alignment of nuclear and mito- chondrial DNA sequences, comprising representatives of most living and recently extinct species. Our Keywords: analysis confirmed the currently recognised deep split between Macrotis (Thylacomyidae), Chaeropus Marsupial (Chaeropodidae) and all other living bandicoots (Peramelidae). The mainly New Guinean rainforest per- Bandicoot Peramelemorphia amelids were returned as the sister clade of Australian dry-country species. The wholly New Guinean Per- Phylogeny oryctinae was sister to Echymiperinae.
    [Show full text]
  • Season of the Marsupial Bandicoot, Isoodon Macrourus R
    Influence of melatonin on the initiation of the breeding season of the marsupial bandicoot, Isoodon macrourus R. T. Gemmell Department of Anatomy, University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia Summary. Melatonin implants were administered to 6 female bandicoots during the months of May and July. These animals, together with 6 control bandicoots were housed in large outside enclosures with mature males. Births were observed in the 6 control animals from 26 July to 2 September, but no births were observed in the 6 bandicoots with melatonin implants. These results would suggest that photoperiod, which is known to influence melatonin concentrations, may be a factor in the initiation of births in the bandicoot. However, the gradual build-up of births would suggest that other factors such as temperature and rainfall may also have some influence. Introduction The bandicoots which reside along the Eastern Australian coast are all seasonally breeding marsupials, most of the births occurring in the spring and summer months (Heinsohn, 1966; Gordon, 1971; Stoddart & Braithwaite, 1979; Gemmell, 1982; Barnes & Gemmell, 1984). The cycle of breeding activity is more pronounced as the latitude increases. In Tasmania, Victoria and New South Wales definite periods of non-breeding or anoestrus were observed, but in Queensland lactating northern brown bandicoots (Isoodon macrourus) were observed throughout the year (Hall, 1983), although there was a decrease in breeding during the months April to June (Gemmell, 1982, 1986b). This reduction in the degree of seasonality of reproduction in the bandicoot as the latitude decreases would indicate that the bandicoot is exhibiting a 'high degree of flexibility and opportunism associated with the breeding of most small mammals' (Bronson, 1985).
    [Show full text]