Solutions to Problem Set 2 (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Solutions to Problem Set 2 (PDF) Lecture 3 The Concept of Stress, Generalized Stresses and Equilibrium Problem 3-1: Cauchy’s Stress Theorem Cauchy’s stress theorem states that in a stress tensor field there is a traction vector t that linearly depends on the outward unit normal n: a. Express Cauchy’s stress theorem in index form. b. Suppose the state of stress at a point in x, y, z coordinate system is given by the matrix below. Determine the normal stress n and the shear stress on the surface defined by . Problem 3-1 Solution: (a) tnii ji (b) A normal vector to a plane specified by fx,,yz axbyczd0 is given by a Nf b c where f denotes the gradient. 1 The unit vector of the surface 23xy z9 is 2 N 1 n 1 N 2122(3)2 3 2 1 n 1 14 3 The magnitude of normal stress n can be calculated by n tn where t is the surface tra ction vector 20 10 10 2 80 11 tn 10 30 0 1 50 14 14 10 0 50 3170 Then 80 2 11720 tn 50 1 n 14 14 14 170 3 n 51Force / area The direction of the normal stress vector n is n 2 51 n 1 nn 14 3 2 Shear stress vector can be simply calculated by subtract the normal stress vector n from the traction vector t 80 2 160 / 7 13601 t 50 1 10 / 7 14 7 14 14 1703110 / 7 3 Problem 3-2: Three invariants of a stress tensor Supposethestateofstressatapointinax,y,zcoordinatesystemisgivenby 100 1 180 0200 180 0 20 a. Calculate the three invariants of this stress tensor. b. Determine the three principal stresses of this stress tensor. Problem 3-2 Solution: a) Invariants of stress tensor Recall: these values do not change no matter the coordinate system selected I1 xyz100 20 20 I1 60 I 22 2 2 xy yz zx xy yz zx (10020)(10020)20220080 I2 10000 I 2 22 2 3 x yz xyyzzx xyz yzx zxy (1002020)20020(80)2 0 I3 168000 b) Principal stresses The eigenvalue problem for a stress tensor 4 100 0 80 0200 80 0 20 is given by 100 0 80 det 0 20 0 0 80 0 20 Solve for , we have three eigenvalues 1 140 2 60 3 20 The principal stresses are the three eigenvalues of the stress tensor xp 140 yp 60 zp 20 5 Problem 3-4: Transformation Matrix Suppose the state of stress at a point relative to a x, y, z coordinate system is given by: 15 10 10 5 Try to find a new coordinate system (x’, y’) that corresponds to the principal directions of the stress tensor. a. Find the principal stresses. b. Determine the transformation matrix . c. Verify . Problem 3-4 Solution: a) Determine principal stresses The eigenvalue problem for a stress tensor 15 10 10 5 is given by 15 10 det 0 10 5 Solve for , we have two eigenvalues 1 19.14 2 9.14 The principal stresses are the two eigenvalues of the stress tensor xp 19.14 yp 9.14 6 b) Determine transformation matrix Calculate the eigenvectors for the stress tensor For 1 19.14 15 19.14 10 x1 0 10 5 19.14 x2 Set x1 1, use the first equation x2 0.414 Normalize eigenvector 1 1 1 122( 0.414) 0.414 0.92 1 0.38 For 1 9.14 15 ( 9.14) 10 x1 0 10 5 (9.14) x2 Set x1 1, use the first equation x2 2.414 Normalize eigenvector 1 1 2 1(22 2.414)2.414 0.38 1 0.92 Check 12 ? 7 12 0.920.38 0.380.92 0 12! Transformation Matrix L 12 0.92 0.38 L 0.38 0.92 b) Verify T ' L L If we transform the given stress tensor, will we arrive at the principal stresses? Note: use 4 decimal places to get principal stresses T 0.9238 0.3827 15 10 0.9238 0.3827 19.174 0 LL 0.3827 0.9238 10 5 0.3827 0.9238 0 9.14 19.174 0 ' 09 .14 8 Problem 3-5: Beam Equilibrium Derive the equation of force and moment equilibrium of a beam using the equilibrium of an infinitesimal beam element of the length dx. Problem 3-5 Solution: Consider an element of a beam of length dx subjected to 1. Distributed loads q 2. Shear forces V and Vd V 3. Moments M and M dM Equilibrium of forces in x and y direction dN FN00dNN 0 x dx dV FV0(qdxVdV)0 q () y dx Moment equilibrium of the element at point O dx MM0( qdx)(VdV)dxMdM0 2 From equation (*), dV q dx dV dV dx qdx dx 10 Substitute the above equation into the moment equilibrium equation, we have q dM ()dx 22Vdx q()dx 0 2 Ignore the second-order terms, we have dM Vdx dM V dx To sum up, the equations of force and moment equilibrium of a beam are dN 0 dx dV q dx dM V dx 11 Problem 3-6: Moderately large deflections in beams Explain which of the three equilibrium equations below is affected by the finite rotations in the theory of the moderately large deflections of beam. 1. Moment equilibrium 2. Vertical force equilibrium 3. Axial force equilibrium Problem 3-6 Solution: Consider an element of a beam of length dx subjected to 1. Distributed loads q 2. Shear forces V and Vd V 3. Moments M and M dM and under moderately large deflection Equilibrium of forces in t direction FVt 0cosqdxcos(VdV)cos0 dV q dx (1) Note: All terms involve cos 12 Moment equilibrium of the element at point O dx MM0( qdx)(VdV)dxMdM0 2 From equation (1), dV q dx dV dV dx qdx dx Substitute the above equation into the moment equilibrium equation, we have q dM ()dx 22Vdx q()dx 0 2 Ignore the second-order terms, we have dM Vdx dM V dx The moment equilibrium equation is not affected by moderately large deflection. Force Equilibrium in x direction FNx 0(dN)cosNcos0 dN 0 dx (2) The axial force equilibrium equation is not affected by moderately large deflection. 13 Define effective shear force V * as the sum of the cross-sectional shear V and the projection of the axial force into the vertical direction dw VV* Nsin VN dx (3) Force equilibrium in y direction Vd** VVq*dx0 dV * q 0 dx Combining equation (3), we have dV d dw dV dN dw d 2w NqNq2 0 dx dx dx dx dx dx dx use equation(2), we have the vertical force equilibrium equation dV d 2w Nq0 dx dx2 The vertical force equilibrium equation is affected by moderately large deflection. 14 Problem 3-7: At full draw, and archer applies a pull of 150N to the bowstring of the bow shown in the figure. Determine the bending moment at the midpoint of the bow. Problem 3-6 Solution: P is the pulling force at point A and T is the tension in the string. Force balance at point A Fx 0 PT 2cos70 0 15 P 150 T219.3N 2cos702cos70 Free body diagram where the tension T is projected in x and y direction as Tx and Ty. Moment balance at point B M B 0 TTxy0.7 0.35 MB0 Finally, the bending moment at the midpoint of the bow is MTBx0.7 Ty0.35 TTcos 700.7 sin 70 0.35 219.3 cos700.7 219.3sin 70 0.35 124.6Nm 16 Problem 3-8: A curved bar ABC is subjected to loads in the form of two equal and opposite force P, as shown in the figure. The axis of the bar forms a semicircle of radius r. Determine the axial force N, shear force V, and bending moment M acting at a cross section defined by the angle Problem 3-8 Solution: The free body diagram and force balance at angle : We can determine axial force N, shear force V according to the force balance diagram NP sin VP cos Moment balance at point B M 0 B Pr sin M 0 We have the bending moment M acting at a cross section defined by the angle MPrsin 17 Problem 3-9: The centrifuge shown in the figure rotates in a horizontal plane (the xy plane) on a smooth surface about the z axis (which is vertical) with an angular acceleration . Each of the two arms has weight w per unit length and supports a weight Ww 2.5 L at its end. Derive formulas for the maximum shear force and maximum bending moment in the arms, assuming bL /9and cL /10 Problem 3-9 Solution: Shear force density distribution and free body diagram: Where weight at the tip of arm W is considered as lumped mass 18 Force balance at any point of radius r bL wW Vr **drbLc r gg WW 2 bLr2 bLc 2gg Moment balance at any point of radius r bL wW Mr **rrdr*bLcbLcr r gg bL WW11*3 *2 rrr bLcbLcr gg32 r W1132W bLr32rbLrbLcbLc r g32g By observation maximum shear force and bending moment occurs at r=b (closest point to the center line) WW 2 VbLb2 bLc max 2gg 22 WL LWLL LL 29gg9 9 10 wL2 V 3.64 max g W113232W Mbmax Lbrb LbbL c b L c b g32g 33 22 WL11L LLWLLL LrLLL g39929 9g9 1010 wL3a M 3.72 max g 19 Problem 3-10: A simple beam AB supports two connective loads P and 2P that are distance d apart (see figure).
Recommended publications
  • Vectors, Matrices and Coordinate Transformations
    S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0.
    [Show full text]
  • 1.2 Topological Tensor Calculus
    PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space.
    [Show full text]
  • Matrices and Tensors
    APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM..
    [Show full text]
  • Chapter 5 ANGULAR MOMENTUM and ROTATIONS
    Chapter 5 ANGULAR MOMENTUM AND ROTATIONS In classical mechanics the total angular momentum L~ of an isolated system about any …xed point is conserved. The existence of a conserved vector L~ associated with such a system is itself a consequence of the fact that the associated Hamiltonian (or Lagrangian) is invariant under rotations, i.e., if the coordinates and momenta of the entire system are rotated “rigidly” about some point, the energy of the system is unchanged and, more importantly, is the same function of the dynamical variables as it was before the rotation. Such a circumstance would not apply, e.g., to a system lying in an externally imposed gravitational …eld pointing in some speci…c direction. Thus, the invariance of an isolated system under rotations ultimately arises from the fact that, in the absence of external …elds of this sort, space is isotropic; it behaves the same way in all directions. Not surprisingly, therefore, in quantum mechanics the individual Cartesian com- ponents Li of the total angular momentum operator L~ of an isolated system are also constants of the motion. The di¤erent components of L~ are not, however, compatible quantum observables. Indeed, as we will see the operators representing the components of angular momentum along di¤erent directions do not generally commute with one an- other. Thus, the vector operator L~ is not, strictly speaking, an observable, since it does not have a complete basis of eigenstates (which would have to be simultaneous eigenstates of all of its non-commuting components). This lack of commutivity often seems, at …rst encounter, as somewhat of a nuisance but, in fact, it intimately re‡ects the underlying structure of the three dimensional space in which we are immersed, and has its source in the fact that rotations in three dimensions about di¤erent axes do not commute with one another.
    [Show full text]
  • Solving the Geodesic Equation
    Solving the Geodesic Equation Jeremy Atkins December 12, 2018 Abstract We find the general form of the geodesic equation and discuss the closed form relation to find Christoffel symbols. We then show how to use metric independence to find Killing vector fields, which allow us to solve the geodesic equation when there are helpful symmetries. We also discuss a more general way to find Killing vector fields, and some of their properties as a Lie algebra. 1 The Variational Method We will exploit the following variational principle to characterize motion in general relativity: The world line of a free test particle between two timelike separated points extremizes the proper time between them. where a test particle is one that is not a significant source of spacetime cur- vature, and a free particles is one that is only under the influence of curved spacetime. Similarly to classical Lagrangian mechanics, we can use this to de- duce the equations of motion for a metric. The proper time along a timeline worldline between point A and point B for the metric gµν is given by Z B Z B µ ν 1=2 τAB = dτ = (−gµν (x)dx dx ) (1) A A using the Einstein summation notation, and µ, ν = 0; 1; 2; 3. We can parame- terize the four coordinates with the parameter σ where σ = 0 at A and σ = 1 at B. This gives us the following equation for the proper time: Z 1 dxµ dxν 1=2 τAB = dσ −gµν (x) (2) 0 dσ dσ We can treat the integrand as a Lagrangian, dxµ dxν 1=2 L = −gµν (x) (3) dσ dσ and it's clear that the world lines extremizing proper time are those that satisfy the Euler-Lagrange equation: @L d @L − = 0 (4) @xµ dσ @(dxµ/dσ) 1 These four equations together give the equation for the worldline extremizing the proper time.
    [Show full text]
  • General Relativity Fall 2019 Lecture 13: Geodesic Deviation; Einstein field Equations
    General Relativity Fall 2019 Lecture 13: Geodesic deviation; Einstein field equations Yacine Ali-Ha¨ımoud October 11th, 2019 GEODESIC DEVIATION The principle of equivalence states that one cannot distinguish a uniform gravitational field from being in an accelerated frame. However, tidal fields, i.e. gradients of gravitational fields, are indeed measurable. Here we will show that the Riemann tensor encodes tidal fields. Consider a fiducial free-falling observer, thus moving along a geodesic G. We set up Fermi normal coordinates in µ the vicinity of this geodesic, i.e. coordinates in which gµν = ηµν jG and ΓνσjG = 0. Events along the geodesic have coordinates (x0; xi) = (t; 0), where we denote by t the proper time of the fiducial observer. Now consider another free-falling observer, close enough from the fiducial observer that we can describe its position with the Fermi normal coordinates. We denote by τ the proper time of that second observer. In the Fermi normal coordinates, the spatial components of the geodesic equation for the second observer can be written as d2xi d dxi d2xi dxi d2t dxi dxµ dxν = (dt/dτ)−1 (dt/dτ)−1 = (dt/dτ)−2 − (dt/dτ)−3 = − Γi − Γ0 : (1) dt2 dτ dτ dτ 2 dτ dτ 2 µν µν dt dt dt The Christoffel symbols have to be evaluated along the geodesic of the second observer. If the second observer is close µ µ λ λ µ enough to the fiducial geodesic, we may Taylor-expand Γνσ around G, where they vanish: Γνσ(x ) ≈ x @λΓνσjG + 2 µ 0 µ O(x ).
    [Show full text]
  • Tensor Calculus and Differential Geometry
    Course Notes Tensor Calculus and Differential Geometry 2WAH0 Luc Florack March 10, 2021 Cover illustration: papyrus fragment from Euclid’s Elements of Geometry, Book II [8]. Contents Preface iii Notation 1 1 Prerequisites from Linear Algebra 3 2 Tensor Calculus 7 2.1 Vector Spaces and Bases . .7 2.2 Dual Vector Spaces and Dual Bases . .8 2.3 The Kronecker Tensor . 10 2.4 Inner Products . 11 2.5 Reciprocal Bases . 14 2.6 Bases, Dual Bases, Reciprocal Bases: Mutual Relations . 16 2.7 Examples of Vectors and Covectors . 17 2.8 Tensors . 18 2.8.1 Tensors in all Generality . 18 2.8.2 Tensors Subject to Symmetries . 22 2.8.3 Symmetry and Antisymmetry Preserving Product Operators . 24 2.8.4 Vector Spaces with an Oriented Volume . 31 2.8.5 Tensors on an Inner Product Space . 34 2.8.6 Tensor Transformations . 36 2.8.6.1 “Absolute Tensors” . 37 CONTENTS i 2.8.6.2 “Relative Tensors” . 38 2.8.6.3 “Pseudo Tensors” . 41 2.8.7 Contractions . 43 2.9 The Hodge Star Operator . 43 3 Differential Geometry 47 3.1 Euclidean Space: Cartesian and Curvilinear Coordinates . 47 3.2 Differentiable Manifolds . 48 3.3 Tangent Vectors . 49 3.4 Tangent and Cotangent Bundle . 50 3.5 Exterior Derivative . 51 3.6 Affine Connection . 52 3.7 Lie Derivative . 55 3.8 Torsion . 55 3.9 Levi-Civita Connection . 56 3.10 Geodesics . 57 3.11 Curvature . 58 3.12 Push-Forward and Pull-Back . 59 3.13 Examples . 60 3.13.1 Polar Coordinates in the Euclidean Plane .
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • The Language of Differential Forms
    Appendix A The Language of Differential Forms This appendix—with the only exception of Sect.A.4.2—does not contain any new physical notions with respect to the previous chapters, but has the purpose of deriving and rewriting some of the previous results using a different language: the language of the so-called differential (or exterior) forms. Thanks to this language we can rewrite all equations in a more compact form, where all tensor indices referred to the diffeomorphisms of the curved space–time are “hidden” inside the variables, with great formal simplifications and benefits (especially in the context of the variational computations). The matter of this appendix is not intended to provide a complete nor a rigorous introduction to this formalism: it should be regarded only as a first, intuitive and oper- ational approach to the calculus of differential forms (also called exterior calculus, or “Cartan calculus”). The main purpose is to quickly put the reader in the position of understanding, and also independently performing, various computations typical of a geometric model of gravity. The readers interested in a more rigorous discussion of differential forms are referred, for instance, to the book [22] of the bibliography. Let us finally notice that in this appendix we will follow the conventions introduced in Chap. 12, Sect. 12.1: latin letters a, b, c,...will denote Lorentz indices in the flat tangent space, Greek letters μ, ν, α,... tensor indices in the curved manifold. For the matter fields we will always use natural units = c = 1. Also, unless otherwise stated, in the first three Sects.
    [Show full text]
  • 3. Tensor Fields
    3.1 The tangent bundle. So far we have considered vectors and tensors at a point. We now wish to consider fields of vectors and tensors. The union of all tangent spaces is called the tangent bundle and denoted TM: TM = ∪x∈M TxM . (3.1.1) The tangent bundle can be given a natural manifold structure derived from the manifold structure of M. Let π : TM → M be the natural projection that associates a vector v ∈ TxM to the point x that it is attached to. Let (UA, ΦA) be an atlas on M. We construct an atlas on TM as follows. The domain of a −1 chart is π (UA) = ∪x∈UA TxM, i.e. it consists of all vectors attached to points that belong to UA. The local coordinates of a vector v are (x1,...,xn, v1,...,vn) where (x1,...,xn) are the coordinates of x and v1,...,vn are the components of the vector with respect to the coordinate basis (as in (2.2.7)). One can easily check that a smooth coordinate trasformation on M induces a smooth coordinate transformation on TM (the transformation of the vector components is given by (2.3.10), so if M is of class Cr, TM is of class Cr−1). In a similar way one defines the cotangent bundle ∗ ∗ T M = ∪x∈M Tx M , (3.1.2) the tensor bundles s s TMr = ∪x∈M TxMr (3.1.3) and the bundle of p-forms p p Λ M = ∪x∈M Λx . (3.1.4) 3.2 Vector and tensor fields.
    [Show full text]
  • Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
    Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation
    [Show full text]
  • Coordinate Transformation
    Coordinate Transformation Coordinate Transformations In this chapter, we explore mappings – where a mapping is a function that "maps" one set to another, usually in a way that preserves at least some of the underlyign geometry of the sets. For example, a 2-dimensional coordinate transformation is a mapping of the form T (u; v) = x (u; v) ; y (u; v) h i The functions x (u; v) and y (u; v) are called the components of the transforma- tion. Moreover, the transformation T maps a set S in the uv-plane to a set T (S) in the xy-plane: If S is a region, then we use the components x = f (u; v) and y = g (u; v) to …nd the image of S under T (u; v) : EXAMPLE 1 Find T (S) when T (u; v) = uv; u2 v2 and S is the unit square in the uv-plane (i.e., S = [0; 1] [0; 1]). Solution: To do so, let’s determine the boundary of T (S) in the xy-plane. We use x = uv and y = u2 v2 to …nd the image of the lines bounding the unit square: Side of Square Result of T (u; v) Image in xy-plane v = 0; u in [0; 1] x = 0; y = u2; u in [0; 1] y-axis for 0 y 1 u = 1; v in [0; 1] x = v; y = 1 v2; v in [0; 1] y = 1 x2; x in[0; 1] v = 1; u in [0; 1] x = u; y = u2 1; u in [0; 1] y = x2 1; x in [0; 1] u = 0; u in [0; 1] x = 0; y = v2; v in [0; 1] y-axis for 1 y 0 1 As a result, T (S) is the region in the xy-plane bounded by x = 0; y = x2 1; and y = 1 x2: Linear transformations are coordinate transformations of the form T (u; v) = au + bv; cu + dv h i where a; b; c; and d are constants.
    [Show full text]