History & Technologies of the Internet

Total Page:16

File Type:pdf, Size:1020Kb

History & Technologies of the Internet History & Technologies of the Internet Lecture 1 – September 22, 2016 ―Lincoln Towers University‖ Sept. 22 – Oct. 13, 2016 Thursdays 7:30-9 pm, 150 WEA Community Room Instructor: Stephen Weinstein [email protected], (646) 267-5904 Lecture notes posting site: projectopenlincolntowers.org/lincolntowersuniversity Your instructor A mostly retired engineer living in Lincoln Towers, with a PhD in electrical engineering from U.C. Berkeley and extensive experience in the communications industry. I am a member of the Boards of the 150WEA Owners Corp. and of Project Open*. My consulting website, cttcservices.com, has further personal background information. *I maintain the Project Open web site, projectopenlincolntowers.org Goals of this course 1. Provide an intuitive explanation, not requiring an engineering or computer science background, of -Internet history -The technical foundations of the Internet -Relevant basic concepts of communications and information technology. 2. Answer your questions. Don’t be afraid to ask! Please have confidence in yourself to understand basic technical concepts! Important note: This is not a course on how to use computers and Internet services. It is a course on how the Internet came to be, what it is, and from a science and engineering perspective, how it works. Topics Covered in Four Lectures Lecture 1: Internet background and Digital Media -Definitions of a few basic terms (data, digital, bit, packet & packet switching, network, protocol). -Internet definition and organizations. -Internet history (and more in future classes). If there is time, we may introduce digital media, but this will probably be left to Lecture 2. Lecture 2: Digital Media and Communications -Basic concepts: frequency, wavelength, bandwidth & data rate. -History of digital/data and wireless communication. -Why digital? - and how conventional analog media (voice, images, video) are converted to digital. -Modulation and modems. -The different kinds of communication networks supporting the Internet; protocol stacks. Lecture 3: Internet architecture & technologies -Internet architecture (routers, domain name service, …). -Connection-oriented vs. connectionless (datagram). -The most important communication protocols used in the Internet: IP, TCP, UDP, and some others. -Translating a web address (like projectopenlincolntowers.org) to an IP address. -Avoiding address depletion. Lecture 4: Internet applications -The original application level protocols: ftp, smtp, telnet -The World Wide Web: History, browsers, and web pages. -Audio and video streaming, voice over IP. -Cloud computing. -Security attacks (e.g., denial of service). -The Internet of Things. Lecture 1: Internet background and digital media Basic terms. Internet definition, organizations, and history. Digital media. BASIC TERMS Data: A set or stream of symbols or numbers that represent information. This information can be voice, video, a picture, your tax return - virtually any kind of meaningful content. These days we keep data in digital storage devices such as computer hard drives and USB memory sticks. The data is in digital format (described on the next slide). Digital: Expressed as a group of numbers chosen from a small set. We have ten fingers and that is why we use decimal numbers from the set: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 We represent an integer by multiples of powers of 10. Example: 14 (decimal) = 1x10 + 4x1 If we had two fingers, like electronic memories, we would use binary numbers to represent an integer by multiples of powers of 2. Example: 14 (decimal) is the same as 1110 (binary) = 1x8 + 1x4 + 1x2 + 0x1 14 and 1110 are both digital representations of the same quantity! Data Stream: A sequence of digital numbers (sometimes called digital ―words‖) representing an information object such as a movie. Example of decimal and binary digital data streams for the same information: 14 05 12 15 02 ….. 1110 0101 1100 1111 0010 ….. Movies streamed from Netflix or other Internet sources come in binary data streams like that above. Bit: A quantity of information, equivalent to the information generated by the toss of an unbiased coin (head or tail). Byte: 8 bits. Megabyte (MB): A million bits. Gigabyte (GB): a billion bits. A bit of information is commonly represented by ―1‖ or ―0‖ rather than ―head‖ or ―tail‖, which fits nicely into a digital data stream! We will, in the next class, explain how a speech or video signal can be represented by a data sequence of bits. Sound pressure wave in air (analog) Analog to digital conversion A/D …0111 0000 1101 0100 ... Network (for data communications): A set of originating and terminating entities, forwarding nodes, and the transport links connecting them, for conveying data traffic. Terminating device (phone, Switch (in traditional telephone network) computer, cell phone, etc.) or router (in Internet and other packet networks). Packet: A data package conveying, through a network, bits representing part or all of a message. Complete message (digital data) A series of packets, each carrying part of the message It’s a lot like packing a large shipment into a series of trucks that may possibly be of different sizes. Packet multiplexing: A mixed stream of packets from different sources. The sources are represented here by the numbers 1,2,3,4. 2-voice 3-keyboard 1-video 1-video 1-video 1-video Packet switching (routing) vs. traditional line switching at a network node Line switching: For a particular information flow for which the entire path through the network is reserved in advance, a connection is made between the input line carrying this flow and an output line on the prearranged route. Packet switching (routing) vs. traditional line switching: Packet switching, ―datagram‖ model: Without reserving a route in advance, a particular packet is transferred to a buffer for an output line that the router selects as the best next ―hop‖. If the buffer is too full, the packet will be discarded. The Internet implements this ―unreliable‖ routing mechanism, but with enough capacity, packet discards (or long delays) will be minimal. (Communication) protocol: A formal description of the format and rules for a message exchange. Several layers of protocols are usually needed to completely specify an information exchange. A packet protocol, for example, will specify, in the packet ―header‖, sending and receiving addresses, information quantity, and information type. Simple packet model: Header Information field (payload) Source & destination addresses, etc. Definitions of an internet and the Internet An internet (not the Internet) is a combination of several distinct communication networks capable of conveying data between endpoints on different networks. Access Core networks Networks Local Area Networks Bluetooth Satellite Personal Area Networks Cellular Infrared mobile WiFi Optical Core Network, (IEEE 802.11) Cable (HFC) Bluetooth metropolitan & long haul DSL Ethernet Optical fiber The Internet is the publicly available combination of multiple distinct communication networks augmented by the Internet Protocol (IP) and subscribing to Internet standards in order to convey data through this multi-network environment. IP Domain Name The Internet is one example of Server an internet Router Cellular mobile WiFi Cable (HFC) Optical Core Network, Bluetooth Wireless router metropolitan & long haul IP Ethernet Optical fiber History of the Internet Donald Davies Lawrence Roberts Paul Baran Leonard Kleinrock J.C.R. Licklider Robert Jon Vinton Kahn Postel Cerf 1961-62: MIT Prof. J.C.R. Licklider envisioned a "Galactic Network" as a globally interconnected set of computers through which everyone could quickly access data and programs from any site. Leonard Kleinrock published first paper on relevant packet switching theory. Kleinrock message switching1: "Basically, what I did for my PhD research in 1961–1962 was to establish a mathematical theory of packet networks...―. Refs: https://www.internetsociety.org/internet/what-internet/history-internet/brief-history- internet 1 L. Kleinrock, "Information Flow in Large Communication Nets", MIT RLE Quarterly Progress Report, July 1961. Mid 60s: Publications on packet switching from RAND (Paul Baran) and the National Physical Lab in the U.K. (Donald Davies). RAND was studying network survivability after nuclear war: ―If war does not mean the end of the earth in a black and white manner, then it follows that we should do those things that make the shade of grey as slight as possible: to plan now to minimize potential destruction and to do all those things necessary to permit the survivors of the holocaust to shuck their ashes and reconstruct the economy swiftly.‖1 His concept was a distributed system in which a broken route could easily be replaced by another.2 He called it ―hot potato‖ routing or adaptive ―message block switching.‖ 1 Paul Baran, ―Reliable Digital Communications Systems Using Unreliable Network Repeater Nodes‖, the RAND Corp. report P-1995, 5/27/60, www.rand.org/content/dam/rand/pubs/papers/2008/P1995.pdf 2 http://www.rand.org/about/history/baran.list.html Donald Davies invented the terms ―packet‖ and ―packet switching‖ and built early experimental packet networks. He initially worked at the National Physical Laboratory under Alan Turing, the great pioneer of computing whose WWII work broke the Enigma code and greatly contributed to the allied victory. Turing Davies NPL PS: packet switch UM: User machine (computer) T: Terminal TP: Terminal Processor R. Scantlebury & P. Wilkinson, ―The National Physical
Recommended publications
  • Analysis of Server-Smartphone Application Communication Patterns
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aaltodoc Publication Archive Aalto University School of Science Degree Programme in Computer Science and Engineering Péter Somogyi Analysis of server-smartphone application communication patterns Master’s Thesis Budapest, June 15, 2014 Supervisors: Professor Jukka Nurminen, Aalto University Professor Tamás Kozsik, Eötvös Loránd University Instructor: Máté Szalay-Bekő, M.Sc. Ph.D. Aalto University School of Science ABSTRACT OF THE Degree programme in Computer Science and MASTER’S THESIS Engineering Author: Péter Somogyi Title: Analysis of server-smartphone application communication patterns Number of pages: 83 Date: June 15, 2014 Language: English Professorship: Data Communication Code: T-110 Software Supervisor: Professor Jukka Nurminen, Aalto University Professor Tamás Kozsik, Eötvös Loránd University Instructor: Máté Szalay-Bekő, M.Sc. Ph.D. Abstract: The spread of smartphone devices, Internet of Things technologies and the popularity of web-services require real-time and always on applications. The aim of this thesis is to identify a suitable communication technology for server and smartphone communication which fulfills the main requirements for transferring real- time data to the handheld devices. For the analysis I selected 3 popular communication technologies that can be used on mobile devices as well as from commonly used browsers. These are client polling, long polling and HTML5 WebSocket. For the assessment I developed an Android application that receives real-time sensor data from a WildFly application server using the aforementioned technologies. Industry specific requirements were selected in order to verify the usability of this communication forms. The first one covers the message size which is relevant because most smartphone users have limited data plan.
    [Show full text]
  • Performance of VBR Packet Video Communications on an Ethernet LAN: a Trace-Driven Simulation Study
    9.3.1 Performance of VBR Packet Video Communications on an Ethernet LAN: A Trace-Driven Simulation Study Francis Edwards Mark Schulz edwardsF@sl .elec.uq.oz.au marksas1 .elec. uq.oz.au Department of Electrical and Computer Engineering The University of Queensland St. Lucia Q 4072 Australia Abstract medium term, we can expect that current LAN technolo- Provision of multimedia communication services on today’s gies will be utilized in the near term for packet transport of packet-switched network infrastructure is becoming increas- video applications [4,5, 61. Characterizing the performance ingly feasible. However, there remains a lack of information of current networks carrying video communications traffic is regarding the performance of multimedia sources operating therefore an important issue. This paper investigates packet in bursty data traffic conditions. In this study, a videotele- transport of real time video communications traffic, charac- phony system deployed on the Ethernet LAN is simulated, teristic of videotelephony applications, on the popular 10 employing high time-resolution LAN traces as the data traf- Mbit/s Ethernet LAN. fic load. In comparison with Poisson traffic models, the Previous work has established that Ethernet is capable of trace-driven cases produce highly variable packet delays, and supporting video communication traffic in the presence of higher packet loss, thereby degrading video traffic perfor- Poisson data traffic [6, 71. However, recent studies of high mance. In order to compensate for these effects, a delay time-resolution LAN traffic have observed highly bursty control scheme based on a timed packet dropping algorithm traffic patterns which sustain high variability over timescales is examined.
    [Show full text]
  • Communication Protocol for Schools
    Communication Protocol for Schools Communication plays a key role in creating and fostering strong, positive relationships between the school and the home. Communication is a two-way street; our schools share information with our families and community, and our families share information with our schools. The purpose of this document is to guide, manage and improve school-home communication by offering a standard format, structure and sequence for regular, ongoing communication. Communication Channels Communication can take place in a variety of formats. The message and the purpose of the communication can help determine which format is most appropriate. Generally, the more issues-driven and/or detailed the information is, the more direct the communication channel chosen should be. Communication channels include: Face-to-face communication – one-on-one meetings, School Council meetings, Parent-Student- Teacher interviews Telephone conversations Hard copy, written communication – letters sent home from the school, paper school newsletters Electronic communication – email, electronic newsletters, websites, social media When the communication requires a dialogue, such as bringing forward a question or concern or when a discussion is required on a particular topic, the preferred channels of communication are ones that allow for an immediate and ongoing interaction between the people involved. The best formats for this kind of communication are face-to-face conversations or telephone conversations. Schools and families are encouraged to use these direct channels of communication when a topic is complex or requires a dialogue. These more direct forms of communication also help us establish a personal connection, which helps build relationships that we don’t get in other forms of communication.
    [Show full text]
  • Rough Consensus and Running Code: Integrating Engineering Principles Into Internet Policy Debates
    Federal Communications Law Journal Volume 63 Issue 2 Article 2 3-2011 Rough Consensus and Running Code: Integrating Engineering Principles into Internet Policy Debates Christopher S. Yoo University of Pennsylvania Follow this and additional works at: https://www.repository.law.indiana.edu/fclj Part of the Administrative Law Commons, Communications Law Commons, Computer and Systems Architecture Commons, Internet Law Commons, and the Legislation Commons Recommended Citation Yoo, Christopher S. (2011) "Rough Consensus and Running Code: Integrating Engineering Principles into Internet Policy Debates," Federal Communications Law Journal: Vol. 63 : Iss. 2 , Article 2. Available at: https://www.repository.law.indiana.edu/fclj/vol63/iss2/2 This Symposium is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Federal Communications Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact [email protected]. SYMPOSIUM INTRODUCTION Rough Consensus and Running Code: Integrating Engineering Principles into Internet Policy Debates Christopher S. Yoo* I. TUTORIAL ............................................. 343 II. THE CONTINUING DEBATE OVER NETWORK MANAGEMENT AND QUALITY OF SERVICE ........................... 344 III. CHANGING TECHNOLOGY AND THE LIMITS OF THE LAYERED AND END-TO-END MODELS ............ ............... 346 IV. ARCHITECTURE AND NETWORK SECURITY ..................... 349 V. KEYNOTE ADDRESS BY PAUL
    [Show full text]
  • Voice Over Internet Protocol (Voip): a Brief Review
    © APR 2018 | IRE Journals | Volume 1 Issue 10 | ISSN: 2456-8880 Voice over Internet Protocol (VoIP): A Brief Review ANURAG K MADHESHIYA1, KIRAN S KALE2, SHIV K YADAV3, JIGNESHKUMAR R. VALVI4 1,2,3,4 Department of Electronics and Communication, SVNIT Surat, India Abstract -- VoIP stands for Voice over Inter Protocol. It is setting up calls, registering the calls, authenticating a communication protocol mainly used for voice and terminating the call. Protocol belonging to H.323 communication, data transfer and video calling. It is based family of protocol uses TCP and UDP connection for on packet transmission over internet network. Paul Baran transportation. For call registering and call signaling and other researchers developed the packet network in the H.225 protocol is used. For media session mid twentieth century. In 1973 Dany Cohen first demonstrated packet voice in flight simulator application. establishment and controlling H.245 is used. For Due to its digital nature it is easy to operate on this protocol. conferencing T.120 protocol is used [3]-[4]. Index Terms: MGCP, Packet, QoS, SIP I. INTRODUCTION Voice over Internet Protocol also known as Voice over IP and VoIP is a communication standard for transmission of voice signal, data transmission and video conferencing. Actually this technology follow packet switching. In packet switching first the input signal (voice, data, video) converted into digital form so other operation becomes simple after this we do encoding, compressing of digital data to make more secure transmission through channel. Then after this we transmit the signal over the channel. At receiver side we do reverse of it but it also require an addition block before receiver to store packets and reorder these packets because in packet switching different Figure 1: Call flow of H.323 packets follow different path so reaches in random manner.
    [Show full text]
  • The Future of Free Speech, Trolls, Anonymity and Fake News Online.” Pew Research Center, March 2017
    NUMBERS, FACTS AND TRENDS SHAPING THE WORLD FOR RELEASE MARCH 29, 2017 BY Lee Rainie, Janna Anderson, and Jonathan Albright FOR MEDIA OR OTHER INQUIRIES: Lee Rainie, Director, Internet, Science and Technology research Prof. Janna Anderson, Director, Elon University’s Imagining the Internet Center Asst. Prof. Jonathan Albright, Elon University Dana Page, Senior Communications Manager 202.419.4372 www.pewresearch.org RECOMMENDED CITATION: Rainie, Lee, Janna Anderson and Jonathan Albright. The Future of Free Speech, Trolls, Anonymity and Fake News Online.” Pew Research Center, March 2017. Available at: http://www.pewinternet.org/2017/03/29/the-future-of-free-speech- trolls-anonymity-and-fake-news-online/ 1 PEW RESEARCH CENTER About Pew Research Center Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping America and the world. It does not take policy positions. The Center conducts public opinion polling, demographic research, content analysis and other data-driven social science research. It studies U.S. politics and policy; journalism and media; internet, science, and technology; religion and public life; Hispanic trends; global attitudes and trends; and U.S. social and demographic trends. All of the Center’s reports are available at www.pewresearch.org. Pew Research Center is a subsidiary of The Pew Charitable Trusts, its primary funder. For this project, Pew Research Center worked with Elon University’s Imagining the Internet Center, which helped conceive the research as well as collect and analyze the data. © Pew Research Center 2017 www.pewresearch.org 2 PEW RESEARCH CENTER The Future of Free Speech, Trolls, Anonymity and Fake News Online The internet supports a global ecosystem of social interaction.
    [Show full text]
  • Growth of the Internet
    Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] Preliminary version, July 6, 2001 Abstract The Internet is the main cause of the recent explosion of activity in optical fiber telecommunica- tions. The high growth rates observed on the Internet, and the popular perception that growth rates were even higher, led to an upsurge in research, development, and investment in telecommunications. The telecom crash of 2000 occurred when investors realized that transmission capacity in place and under construction greatly exceeded actual traffic demand. This chapter discusses the growth of the Internet and compares it with that of other communication services. Internet traffic is growing, approximately doubling each year. There are reasonable arguments that it will continue to grow at this rate for the rest of this decade. If this happens, then in a few years, we may have a rough balance between supply and demand. Growth of the Internet K. G. Coffman and A. M. Odlyzko AT&T Labs - Research [email protected], [email protected] 1. Introduction Optical fiber communications was initially developed for the voice phone system. The feverish level of activity that we have experienced since the late 1990s, though, was caused primarily by the rapidly rising demand for Internet connectivity. The Internet has been growing at unprecedented rates. Moreover, because it is versatile and penetrates deeply into the economy, it is affecting all of society, and therefore has attracted inordinate amounts of public attention. The aim of this chapter is to summarize the current state of knowledge about the growth rates of the Internet, with special attention paid to the implications for fiber optic transmission.
    [Show full text]
  • The Internet and Isi: Four Decades of Innovation
    THE INTERNET AND ISI: FOUR DECADES OF INNOVATION ROD BECKSTROM President and Chief Executive Officer Internet Corporation for Assigned Names and Numbers (ICANN) 40th Anniversary of USC Information Sciences Institute 26 April 2012 As prepared for delivery It’s an honor to be here today to mark the 40th anniversary of the University of Southern California’s Information Sciences Institute. Thank you to Herb Schorr for inviting me to speak with you today and participate in the day’s events. When he steps down he will leave some very large shoes to fill. When I received Herb’s invitation, I seized upon it as an opportunity to come before you to express the sincere gratitude that my colleagues and I feel for the work and support of ISI. When I think of ICANN and its development, and all we have accomplished, I never forget that we stand upon the shoulders of giants, many of whom contributed to my remarks today. In fact, I owe a special debt of gratitude to Bob Kahn, who has been a mentor to me. I am honored that he took the time to walk through a number of details in the history I have been asked to relate. The organizers asked me to speak about the history of ISI and ICANN. They also invited me to talk a bit about the future of the Internet. In my role as President and CEO of ICANN, I have many speaking engagements that are forward looking. They are opportunities to talk about ICANN’s work and how it will usher in the next phase in the history of the global, unified Internet that many of you have helped to create.
    [Show full text]
  • What Will Historians' Verdict Be 50 Years from Now About the Impact Of
    FOR RELEASE OCTOBER 29, 2019 What Will Historians’ Verdict be 50 Years from Now About the Impact of the Internet on People’s Lives Today? Experts expect that by 2069 today’s period of human-tech evolution could come to be seen as a risks-ridden time that eventually led to a grand redefinition of civilization or it could be seen as a ‘wasted opportunity’ that simply ‘updated and replicated legacy colonial hierarchies’ By Janna Anderson Executive director, Elon University’s Imagining the Internet Center FOR MEDIA OR OTHER INQUIRIES: Owen Covington, News Bureau Director, Elon University 336.278.7413 www.elon.edu RECOMMENDED CITATION Elon University’s Imagining the Internet Center, October 29, 2019, “2069 Historians’ Verdict of Internet Impact 2019” About the Imagining the Internet Center Elon University’s Imagining the Internet Center explores and provides insights into emerging network innovations, global development, dynamics, diffusion and governance. Its research holds a mirror to humanity’s use of communications technologies, informs policy development, exposes potential futures and provides a historic record. It works to illuminate issues in order to serve the greater good, making its work public, free and open. The Imagining the Internet Center sponsors work that brings people together to share their visions for the future of communications and the future of the world. What will historians’ verdict be 50 years from now about the impact of the internet on people’s lives today? Experts expect that by 2069 today’s period of human-tech
    [Show full text]
  • A History of Software Engineering in ICS at UC Irvine
    Institute for Software Research University of California, Irvine A History of Software Engineering in ICS at UC Irvine Richard N. Taylor University of California, Irvine [email protected] October 2018 ISR Technical Report # UCI-ISR-18-5 Institute for Software Research ICS2 221 University of California, Irvine Irvine, CA 92697-3455 isr.uci.edu isr.uci.edu/publications A History of Software Engineering in ICS at UC Irvine UCI-ISR-18-5 Richard N. Taylor October 2018 Introduction A history of software engineering in ICS at UCI is a bit of a name game. The term “software engineering” was effectively coined in 1968, the same year that ICS began. But what research topics constitute software engineering has always been somewhat fluid. Nonetheless, the very first PhD student graduated by ICS was William Howden, who throughout his subsequent career as a professor was focused on a core SE topic, software testing. Software for the Internet has a long and strong history in ICS. From the creation of DNS by Paul Mockapetris through to the HTTP/1.1 protocol, the REST architectural style, and the Apache web server, software engineering concerns and approaches have been at the forefront. Indeed, a hallmark of SE research at UCI has been its interdisciplinary character; many of the key results were the consequence of looking at key software challenges in applied circumstances, such as the Internet, or as the result of working with researchers in other fields, such as human-computer interaction. Major software engineering topics at Irvine have included software reuse, programming environments, integrated software engineering environments, process, software safety, analysis and testing, security, design methods and tools, open source software, and software architecture.
    [Show full text]
  • An Evaluation Protocol for Picture Archiving and Communication System: a Systematic Review
    ORIGINAL PAPER An Evaluation Protocol for Picture Archiving and Communication System: a Systematic Review Mohsen S. Tabatabaei1, ABSTRACT Mostafa Langarizadeh1, Introduction: Picture archiving and communication system (PACS) serves to store, transmit, communi- Kamran Tavakol2 cate and manage medical images. A logical evaluation protocol assists to determine whether the system is technically, structurally and operationally fit. The purpose of this systematic review was to propose a 1Department of Health Information logical evaluation protocol for PACS, particularly useful for new hospitals and other healthcare institutions Management, School of Health Management and Information Sciences, Iran University of in developing countries. Methods and Materials: We systematically reviewed 25 out of 267 full-length Medical Sciences. Tehran, Iran articles, published between 2000 and 2017, retrieved from four sources: Science Direct, Scopus, PubMed 2School of Medicine, University of Maryland and Google Scholar. The extracted data were tabulated and reviewed successively by three independent Baltimore. Baltimore, MD, USA panels of experts that oversaw the design of this study and the process by which the PACS evaluation protocol was systematically developed. Results: The outcome data were ranked by expert panels and Corresponding author: Mohsen S. Tabatabaei, Tel: +98-990-188-0720. E-mail: [email protected] analyzed statistically, with the reliability established at 0.82 based on the Pearson’s correlation coefficient. The essential components and the best options to establish an optimal PACS were organized under nine main sections: system configuration; system network; data storage; data compression; image input; image doi: 10.5455/aim.2017.25.250-253 characteristics; image presentation; communication link; and system security, with a total of 20 compo- ACTA INFORM MED.
    [Show full text]
  • History of the Internet-English
    Sirin Palasri Steven Huter ZitaWenzel, Ph.D. THE HISTOR Y OF THE INTERNET IN THAILAND Sirin Palasri Steven G. Huter Zita Wenzel (Ph.D.) The Network Startup Resource Center (NSRC) University of Oregon The History of the Internet in Thailand by Sirin Palasri, Steven Huter, and Zita Wenzel Cover Design: Boonsak Tangkamcharoen Published by University of Oregon Libraries, 2013 1299 University of Oregon Eugene, OR 97403-1299 United States of America Telephone: (541) 346-3053 / Fax: (541) 346-3485 Second printing, 2013. ISBN: 978-0-9858204-2-8 (pbk) ISBN: 978-0-9858204-6-6 (English PDF), doi:10.7264/N3B56GNC ISBN: 978-0-9858204-7-3 (Thai PDF), doi:10.7264/N36D5QXN Originally published in 1999. Copyright © 1999 State of Oregon, by and for the State Board of Higher Education, on behalf of the Network Startup Resource Center at the University of Oregon. This work is licensed under a Creative Commons Attribution- NonCommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/deed.en_US Requests for permission, beyond the Creative Commons authorized uses, should be addressed to: The Network Startup Resource Center (NSRC) 1299 University of Oregon Eugene, Oregon 97403-1299 USA Telephone: +1 541 346-3547 Email: [email protected] Fax: +1 541-346-4397 http://www.nsrc.org/ This material is based upon work supported by the National Science Foundation under Grant No. NCR-961657. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
    [Show full text]