Editorial Overview So Sebastian Stood up and Exhorted Us, Challenged Us (While We Were Between Speakers) to Do Something About It
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mathplayer: Web-Based Math Accessibility Neil Soiffer Design Science, Inc 140 Pine Avenue, 4Th Floor
MathPlayer: Web-based Math Accessibility Neil Soiffer Design Science, Inc 140 Pine Avenue, 4th Floor. Long Beach, CA 90802 USA +1 562-432-2920 [email protected] ABSTRACT UMA[4] and Lambda[9]. Both projects have a strong focus on MathPlayer is a plug-in to Microsoft’s Internet Explorer (IE) that two-way translation between MathML and multiple braille math renders MathML[11] visually. It also contains a number of codes. They also include some standalone software for voicing features that make mathematical expressions accessible to people and navigating math. with print-disabilities. MathPlayer integrates with many screen Our work differs from previous work mainly in its focus – readers including JAWS and Window-Eyes. MathPlayer also MathPlayer is a mainstream application that is also designed to works with a number of TextHELP!’s learning disabilities work with popular assistive technology (AT) software. Our goal is products. to allow people to continue to use tools that they are already familiar with such as JAWS and IE, and not require them to use a Categories and Subject Descriptors different browser simply because the document they are reading H.5.4 [Information Systems]: Information Interfaces and contains mathematical expressions. Presentation—User Issues. 2. MATHPLAYER FEATURES General Terms MathPlayer is a free plug-in for IE that displays MathML in Web Design, Human Factors. pages. Because MathML is not an image format, MathPlayer is able to dynamically display a mathematical expression that Keywords matches the document’s font properties such as size and color. Hence, if a user chooses to read a document using a larger font Print Disabilities, Visual Impairments, Math Accessibility, size than standard or chooses a particular color scheme, the math Assistive Technology, MathML will also be displayed using that larger font size or color scheme. -
Abstracts Ing XML Information
394 TUGboat, Volume 20 (1999), No. 4 new precise meanings assigned old familar words.Such pairings are indispensable to those who must work in both languages — or those who must translate from one into the other! The specification covers 90 pages, the introduction another 124.And this double issue has still more: a comparison between SGML and XML, an introduction to Document Object Models (interfaces for XML doc- uments), generating MathML in Omega, a program to generate MathML-encoded mathematics, and finally, the issue closes with a translation of the XML FAQ (v.1.5, June 1999), maintained by Peter Flynn. In all, over 300 pages devoted to XML. Michel Goossens, XML et XSL : unnouveau d´epart pour le web [XML and XSL:Anewventure for the Web]; pp. 3–126 Late in1996, the W3C andseveral major soft- ware vendors decided to define a markup language specifically optimized for the Web: XML (eXtensible Markup Language) was born. It is a simple dialect of SGML, which does not use many of SGML’s seldom- used and complex functions, and does away with most limitations of HTML. After anintroduction to the XML standard, we describe XSL (eXtensible Stylesheet Language) for presenting and transform- Abstracts ing XML information. Finally we say a few words about other recent developments in the XML arena. [Author’s abstract] LesCahiersGUTenberg As mentioned in the editorial, this article is intended Contents of Double Issue 33/34 to be read in conjunction with the actual specification, (November 1999) provided later in the same issue. Michel Goossens, Editorial´ : XML ou la d´emocratisationdu web [Editorial: XML or, the Sarra Ben Lagha, Walid Sadfi and democratisationof the web]; pp. -
Improving the Representation and Conversion of Mathematical Formulae by Considering Their Textual Context
Erschienen in: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries - JCDL '18 / Chen, Jiangping et al. (Hrsg.). - New York : ACM Press, 2018. - S. 233-242. - ISBN 978-1-4503-5178-2 https://dx.doi.org/10.1145/3197026.3197058 Improving the Representation and Conversion of Mathematical Formulae by Considering their Textual Context Moritz Schubotz1, André Greiner-Petter1, Philipp Scharpf1, Norman Meuschke1, Howard S. Cohl2, Bela Gipp1 1Information Science Group, University of Konstanz, Germany ([email protected]) 2Applied and Computational Mathematics Division, NIST, U.S.A. ([email protected]) ABSTRACT Moritz Schubotz1, André Greiner-Petter1, Philipp Scharpf1, Norman Mathematical formulae represent complex semantic information 1 2 1 in a concise form. Especially in Science, Technology, Engineering, Meuschke , Howard S. Cohl , Bela Gipp and Mathematics, mathematical formulae are crucial to commu- nicate information, e.g., in scientific papers, and to perform com- putations using computer algebra systems. Enabling computers to access the information encoded in mathematical formulae requires machine-readable formats that can represent both the presentation and content, i.e., the semantics, of formulae. Exchanging such infor- 1 INTRODUCTION mation between systems additionally requires conversion methods In STEM disciplines, i.e., Science, Technology, Engineering, and for mathematical representation formats. We analyze how the se- Mathematics, mathematical formulae are ubiquitous and crucial to mantic enrichment of formulae improves the format conversion communicate information in documents, such as scientific papers, process and show that considering the textual context of formulae and to perform computations in computer algebra systems (CAS). reduces the error rate of such conversions. Our main contributions Mathematical formulae represent complex semantic information are: (1) providing an openly available benchmark dataset for the in a concise form that is independent of natural language. -
TEX/LATEX, Mathml, Tex4ht: Essential Tools for Creating Accessible Documents
TEX/LATEX, MathML, TeX4ht: essential tools for creating accessible documents Jacek Polewczak [email protected] Mathematics, CSU Northridge, CA 91330 USA TEX/LATEX, MathML, – p. 1 The goals Assembly of the tools for creating (ADA/508 compliant) accessible documents, including text, math, graphics, and field oriented (chemistry, physics, law, music); TEX/LATEX, MathML, – p. 2 The goals Assembly of the tools for creating (ADA/508 compliant) accessible documents, including text, math, graphics, and field oriented (chemistry, physics, law, music); Delivery of platforms’ specific (Linux, Mac, Windows) tools to the faculty/students through: TEX/LATEX, MathML, – p. 2 The goals Assembly of the tools for creating (ADA/508 compliant) accessible documents, including text, math, graphics, and field oriented (chemistry, physics, law, music); Delivery of platforms’ specific (Linux, Mac, Windows) tools to the faculty/students through: ISO images for CD/DVD burning available on a CSUN server, TEX/LATEX, MathML, – p. 2 The goals Assembly of the tools for creating (ADA/508 compliant) accessible documents, including text, math, graphics, and field oriented (chemistry, physics, law, music); Delivery of platforms’ specific (Linux, Mac, Windows) tools to the faculty/students through: ISO images for CD/DVD burning available on a CSUN server, master copies available for CD/DVD duplication, TEX/LATEX, MathML, – p. 2 The goals Assembly of the tools for creating (ADA/508 compliant) accessible documents, including text, math, graphics, and field oriented (chemistry, physics, law, music); Delivery of platforms’ specific (Linux, Mac, Windows) tools to the faculty/students through: ISO images for CD/DVD burning available on a CSUN server, master copies available for CD/DVD duplication, online downloading of particular packages; TEX/LATEX, MathML, – p. -
Mathml Slides
MathML 1 Mathematical Typesetting ● Mathematical typesetting differs in significant ways from typesetting of ordinary text. ● Mathematical typesetting uses a different font with different spacing between characters than ordinary typesetting. ● It is frequently not line-oriented. ● It has complex alignments both horizontally and vertically. ● It uses a huge character set. ● It has some symbols that change size and have other typesetting around them that depend on the situation 2 XML ● XML stands for Extensible Markup Language. It represents yet another effort by the W3C to divorce content from presentation. Whereas CSS allows us to take most formatting out of a document, but continues to require a restricted set of typesetting commands concerning the structure of the document, XML removes most of the restrictions on the structural commands. XML allows an author to determine the structure of a document, create tags to describe that structure, and leave all the formatting for later. ● XML has a stricter syntax than HTML, but really has very few rules. The only requirements for a well-formed XML file are as follows: 1. Every opening XML tag must have a corresponding closing tag: for example <tag> must be followed by </tag>. 2. Tags must be nested properly. The last tag to open must be the first to close. 3. <tag/> is considered to be equivalent to <tag></tag>. 4. There must be one tag, called the root tag, which does not appear in the content of any other tag. 3 XML ● What are the tags? That is up to us. We can define the tags, their relationship to each other, and the way in which their content will be formatted on a page. -
Authoring Web Pages with Mathml for Cross-Browser Display
Authoring Web Pages with MathML for Cross-browser Display Presented by: Bob Mathews Design Science, Inc. AMATYC 2005 2 3 4 5 view: transformed source | original source same page viewed in Firefox 1.5 XHTML + MathML Sample Page This page demonstrates the new MathPlayer 2.0 support for XHTML + MathML pages. It renders properly in Internet Explorer 6 with MathPlayer 2.0, Netscape 7+, Mozilla 1.4+, and Firefox 1.0+. Here is a sample equation: 1 lim x→∞ x You can use this as a template for creating your own interoperable XHTML + MathML pages. <?xml version="1.0"?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1 plus MathML 2.0//EN" "http://www.w3.org/TR/MathML2/dtd/xhtml-math11- f.dtd" [ <!ENTITY mathml "http://www.w3.org/1998/Math/MathML"> ]> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>XHTML + MathML Sample Page</title> </head> <body> <h1>XHTML + MathML Sample Page</h1> <p>This page demonstrates the new MathPlayer 2.0 support for XHTML + MathML pages. It renders properly in Internet Explorer 6 with MathPlayer 2.0, Netscape 7+, and Mozilla 1.4+.</p> <p>Here is a sample equation:</p> <math display="block" xmlns="&mathml;"> <mi>g</mi> <mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow> <mo>=</mo> <mrow> <mfrac> <mi>α</mi> <mi>x</mi> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </math> <p>You can use this as a template for creating your own interoperable XHTML + MathML pages.</p> </body> </html> <?xml version="1.0"?> <html xmlns="http://www.w3.org/1999/xhtml" xmlns:m="http://www.w3.org/1998/Math/MathML"> <head> <OBJECT ID="mathplayer" CLASSID="clsid:32F66A20-7614-11D4-BD11-00104BD3F987"> <!--comment required to prevent this becoming an empty tag--> </OBJECT> <?IMPORT NAMESPACE="m" IMPLEMENTATION="#mathplayer" ?> <title>XHTML + MathML Sample Page</title> When MathPlayer detects the proper DOCTYPE declaration, it automatically </head> adds the object tag, processing instruction, and namespace prefix. -
Firefox OS Web Apps for Science
Firefox OS Web Apps for Science Raniere Silva and Frédéric Wang Mozilla MathML Project June 10, 2014 Abstract In this document, we describe recent work made by the Mozilla MathML team to help publishing scientific content using Web technologies. We focus on the Firefox OS platform currently being developed by Mozilla that provides a good framework to create mathematical user interfaces on mobile devices. Contents 1 The Web Platform 3 1.1 Overview ............................................... 3 1.2 Basic HTML5 Features ........................................ 3 1.3 Styling of Mathematics ........................................ 4 1.4 TeXZilla ................................................ 4 1.5 Advanced HTML5 Features ..................................... 5 2 Firefox OS 6 2.1 Overview ............................................... 6 2.2 Math Suite .............................................. 6 2.3 Math Cheat Sheet .......................................... 7 2.4 TeXZilla App ............................................. 7 2.5 DynAlgebra .............................................. 8 A The Web Platform 12 A.1 1-mathml-in-html ........................................... 12 A.2 2-mathml-in-svg ........................................... 12 A.3 3-mathml-javascript ......................................... 12 A.4 4-mathml-fonts ............................................ 13 A.5 5-canvas ................................................ 15 A.6 6-mathml-in-webgl .......................................... 15 A.7 7-web-component .......................................... -
Mathml Applications Neil Soiffer, Design Science Inc
MathML Applications Neil Soiffer, Design Science Inc Browsers o Internet Explorer + MathPlayer o Firefox and other Mozilla based browsers (eg, Netscape 7) o Amaya Browser Plug-ins, Scripts and Extensions o Abacus abacus.mozdev.org Extension for Mozilla-based applications for writing and editing MathML expressions. o ASCIIMathML www1.chapman.edu/~jipsen/asciimath.html JavaScript allows incorporating mathematical formulas on webpages using a simple linear math notation. o GtkMathView-Bonobo helm.cs.unibo.it/software/gtkmathview-bonobo Bonobo (GNOME) wrapper for GtkMathView which allows GtkMathView to be embedded inside Bonobo applications. GtkMathView is a C++ rendering engine for MathML documents. o MathPlayer www.dessci.com/en/products/mathplayer MathML display engine for Internet Explorer. o Techexplorer www.integretechpub.com/techexplorer Renders TeX, LaTeX, and MathML. Java APIs provide programmatic access to techexplorer and document properties. o WebEQ www.dessci.com/en/products/webeq Toolkit (edit, view, graph, evaluate) for building web pages that include interactive math. o webMathematica www.wolfram.com/products/webmathematica Enables creation of web sites that allow users to compute (using Mathematica) and visualize results directly from a web browser. Scientific Computation o jscl-meditor jscl-meditor.sourceforge.net Java symbolic computing library and a mathematical front-end to access it. Exports MathML. o Maple www.maplesoft.com/products/maple Symbolic and numeric computation system with support for importing and exporting MathML. o Mathcad www.adeptscience.co.uk/products/mathsim/mathcad Numerical and graphical scratchpad that supports MathML export. o Mathematica www.wolfram.com Technical computing system with high-quality mathematical typesetting and editing with support for importing and exporting MathML. -
Arun Ram- Mathml for Math Research Papers
MathML for mathematics research articles Arun Ram Department of Mathematics University of Wisconsin, Madison Madison, WI 53706 USA [email protected] and Department of Mathematics and Statistics University of Melbourne Parkville VIC 3010 Australia [email protected] 1. Introduction Given the ubiquity with which the internet has taken over our lives and the extent to which society is using web pages written in HTML it is, perhaps, a bit surprising that research mathematicians still use TeX to distribute their results. Current web browsers and authoring tools are much more friendly towards formatting, graphics, animation, colors and cross referencing. The possibilities are endless, and it is a pity that we don't currently have them available in our standard mathematics presentations. For example, color, animated graphics, proofs that appear only when you want (click on) them, point and click jumping to references and previous equations, are only a few of the possible tools that mathematicians might like. Perhaps it is time that we, as a community, make the switch and stop using TeX in favor of web markup. In fact, some TeX addons (HyperTeX [HT], Beamer [Bm]), attempt to incorporate some weblike features. In 1998, MathML version 2 was released by the World Wide Web Consortium, the standards organisation for Web markup. So what is holding up our conversion? On one hand, research mathematicians are right to be hesitant to try to convert to MathML because the existing software is sometimes user unfriendly and this can be very frustrating. On the other hand, it is a vicious circle, because mathematicians have not demanded better software, software for MathML has developed extremely slowly. -
Mathedit, a Browser-Based Visual Mathematics Expression Editor
Proceeding of The 11th Asian Technology Conference in Mathematics, HongKong, December 2006, pp. 271-279. MathEdit, A Browser-based Visual Mathematics Expression Editor Wei Su1, Paul.Wang2, Lian Li1, Guanyu Li1, Yanjuan Zhao1 1Lanzhou University, Lanzhou, Gansu,730000, China 2 Kent State University, Kent, Ohio 44242-0001, USA Abstract. MathEdit is a browser-based interactive editor for mathematical expressions being developed jointly by researchers at Kent State University (USA) and Lanzhou University (China). MathEdit is an open source software written in JavaScript and DOM. It makes use of browser support, either natively or via a plug-in, for MathML display. The dynamic nature of MathEdit makes it useful for mathematical web sites to enable users to create/edit/submit mathematical expression. MathEdit is also an important tool for WME (Web-based Mathematics Education) and MAG (Mathematics Assessment Grid), both are on-going research projects at Kent and Lanzhou. We present the design and implementation of MathEdit, its user interface, program architecture, and API. Also discussed is the flexibility and extensibility of MathEdit. 1. Introduction This research collaboration between ICM at Kent State University and the Department of Computer Science at Lanzhou University (LZ) started in 2004 when LZ got interested in adopting WME (Web-based Mathematics Education) [11, 12, 21] for use in China. WME is a modern distributed system on the Web for mathematics education. The approach is to provide each participating school with a website that is comprehensive, well-organized, dynamic, interactive, hands-on and ready to use by teachers for mathematics teaching in the classroom. An interesting sub-project for WME is to create a simple to use editor for users to input mathematical expressions. -
Evaluating Information Retrieval and Access Tasks NTCIR’S Legacy of Research Impact the Information Retrieval Series
The Information Retrieval Series 43 Tetsuya Sakai · Douglas W. Oard · Noriko Kando Editors Evaluating Information Retrieval and Access Tasks NTCIR’s Legacy of Research Impact The Information Retrieval Series Volume 43 Series Editors ChengXiang Zhai, University of Illinois, Urbana, IL, USA Maarten de Rijke, University of Amsterdam, Netherlands and Ahold Delhaize, Zaandam, Netherlands Editorial Board Nicholas J. Belkin, Rutgers University, New Brunswick, NJ, USA Charles Clarke, University of Waterloo, Waterloo, ON, Canada Diane Kelly, University of Tennessee at Knoxville, Knoxville, TN, USA Fabrizio Sebastiani, Consiglio Nazionale delle Ricerche, Pisa, Italy Information Retrieval (IR) deals with access to and search in mostly unstructured information, in text, audio, and/or video, either from one large file or spread over separate and diverse sources, in static storage devices as well as on streaming data. It is part of both computer and information science, and uses techniques from e.g. mathematics, statistics, machine learning, database management, or computational linguistics. Information Retrieval is often at the core of networked applications, web-based data management, or large-scale data analysis. The Information Retrieval Series presents monographs, edited collections, and advanced text books on topics of interest for researchers in academia and industry alike. Its focus is on the timely publication of state-of-the-art results at the forefront of research and on theoretical foundations necessary to develop a deeper understanding of methods and approaches. More information about this series at http://www.springer.com/series/6128 Tetsuya Sakai • Douglas W. Oard • Noriko Kando Editors Evaluating Information Retrieval and Access Tasks NTCIR’s Legacy of Research Impact 123 Editors Tetsuya Sakai Douglas W. -
Math on the Web: a Status Report September, 2003 Focus: Interactive Math
Math on the Web: A Status Report September, 2003 Focus: Interactive Math by Robert Miner and Paul Topping, Design Science, Inc. To view this paper online, where the links and references are live, go to http://www.dessci.com/webmath/status. We plan on updating this report as the world of Math on the Web changes. Join our Math on the Web mailing list and we'll notify you when the report is updated: http://www.dessci.com/webmath. Design Science How Science Communicates™ Design Science, Inc. • 4028 Broadway • Long Beach • California • 90803 • USA • 562.433.0685 • 562.433.6969 (fax) • [email protected] • www.dessci.com Math on the Web: A Status Report Focus: Interactive Math by Robert Miner and Paul Topping A bias toward future trends is hard to avoid in a will explore some of the reasons why MathML periodic status report. Reading and writing about technology doesn't appear to have percolated down how things will be better tomorrow is more appeal- to the authors in the trenches yet, and what ing than the difficulties of today. Past issues of this software vendors can do to help end-users take report have doubtless been guilty of “future bias” advantage of the benefits of MathML as part of the by focusing mostly on emerging technologies and larger XML world. new products. As a counterweight, in this report, we will look at some empirical evidence about the MathML Consolidates Gains as math actually on the web today. XML Data Format The methodology is simple. We take a look at the Archival Data vs.