Morphological and Molecular Characterization, Assessment of Nutritional Composition and Micropropagation of Cocoyam (Xanthosoma

Total Page:16

File Type:pdf, Size:1020Kb

Morphological and Molecular Characterization, Assessment of Nutritional Composition and Micropropagation of Cocoyam (Xanthosoma Morphological and Molecular Characterization, Assessment of Nutritional Composition and Micropropagation of Cocoyam (Xanthosoma sagittifolium (L.) Schott) from Ethiopia Eyasu Wada Wachamo Addis Ababa University Addis Ababa, Ethiopia June, 2018 Morphological and Molecular Characterization, Assessment of Nutritional Composition and Micropropagation of Cocoyam (Xanthosoma sagittifolium (L.) Schott) from Ethiopia A Dissertation Submitted to the Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biology (Applied Genetics) By Eyasu Wada Wachamo Addis Ababa University Addis Ababa, Ethiopia June, 2018 Declaration I, the undersigned, declare that this Dissertation is my original work and its composition has never been submitted elsewhere for any other award. All sources of materials used for the Dissertation have been duly acknowledged. Name: Eyasu Wada Wachamo Signature: ___________________ Date: _______________ Acknowledgments First and foremost, I am highly indebted to express my deepest and genuine appreciation to my supervisors: Dr. Tileye Feyissa, Dr. Kassahun Tesfaye and Prof. Zemede Asfaw for their excellent guiding, follow-up and support. Next, I would like to owe my special thanks to Dr. Kifle Dagne and Asfaw Kifle (PhD prospective graduate) for their special pieces of support. I would also like to thank Prof. Daniel Potter from Plant Science Department, University of California-Davis (UCDavis), USA and Prof. Dr. Birgit Gemeinholzer and Prof. Dr. Volker Wessmann from Justus Liebig University Giessen (JLU), Germany for inviting me to their Molecular Biology Laboratories as a visiting scholar. I extend my deepest acknowledgments to different institutions that have provided financial support: Department of Microbial, Cellular and Molecular Biology and Graduate Program Office of Addis Ababa University (SIDA project), Wolaita Sodo University and The German Academic Exchange Service (DAAD). I am thankful to Areka Agricultural Research Center, Department of Plant Sciences of UCDavis and Systematic Botany Group of JLU for making the laboratories accessible for this study. I am grateful to the Ethiopian Institute of Biodiversity for giving me permits to export X. sagittifolium leaf samples to UCDavis and JLU for molecular analyses. My unreserved thanks go to farmers for providing information of the crop. I have many thanks to driver Mr. Beyene Dilbore and field and laboratory technical assistances: Mr. Abeje Yilma, Mr. Wolde Pilto, Mr. Sied Mohammed, Mrs. Eyerusalem Natinael, Ms. Gloria Diaz-Britz, Mrs. Hela Krufzick, Mrs. Sabine Mutz and Mr. Peter Seum for providing unreserved technical help. Many other persons also stretched their hands for help during this research work. Although I cannot mention all of their names, Prof. Hoysign Won, Mr. Genene Gezahegn, Mr. Girma, Mrs. Tigist Markos, Mrs. Christena Muller, Mr. Teshome Matusala and Mr. Micheal Mears can be mentioned as their representatives. Finally, my deepest thanks go to my wife Meseret Gano, my children Fitsum Eyasu and Keleul Eyasu, and my nieces Suna Esayas and Konjit Minota for their patience and encouragement at all times of this study period. May God Bless You All! i Dedication This Dissertaion is dedicated to my mother Asase Anebo and my late father Wada Wachamo for giving me the foundation of learning that they never enjoyed themselves. The efforts that they made for my education are in my mind. I have been able to appreciate the value of learning. ii Table of Contents page Acknowledgments ............................................................................................................................... i Dedication .......................................................................................................................................... ii Table of contents……………………………………………………………………………………iii List of Tables .................................................................................................................................... vii List of Figures ................................................................................................................................. viii List of Appendices ............................................................................................................................ ix List of Acronyms and Abbreviations ................................................................................................. x Abstract ............................................................................................................................................. xi Chapter One ..................................................................................................................................... 1 General Introduction ....................................................................................................................... 1 1.1 Background .............................................................................................................................. 1 1.2 Statement of the problem ......................................................................................................... 4 1.3 Research questions, hypotheses and objectives ....................................................................... 5 1.3.1 Research questions ..................................................................................................... 5 1.3.2 Hypotheses ........................................................................................................................ 5 1.3.3 Objectives of the study .......................................................................................................... 6 1.4 Organization of the dissertation ............................................................................................... 7 Chapter Two ..................................................................................................................................... 8 Literature Review ............................................................................................................................. 8 2.1 Origin and distribution of cocoyam ......................................................................................... 8 2.2 Taxonomic description of cocoyam ......................................................................................... 8 2.3 Etymology and common names ............................................................................................... 9 2.4 Botanical description of cocoyam .......................................................................................... 10 2.5 Importance and use values of cocoyam .................................................................................. 10 2.6 Nutritional profile of cocoyam ............................................................................................... 11 2.7 Growth condition and cultivation of cocoyam ....................................................................... 12 2.8 Cocoyam breeding and tissue culture ..................................................................................... 13 2.9 Assessment of genetic diversity ............................................................................................. 14 2.9.1 Morphological markers ................................................................................................... 15 2.9.2 Biochemical Markers ....................................................................................................... 16 2.9.3 Molecular Markers .......................................................................................................... 17 2.10 Molecular marker techniques ............................................................................................... 18 2.11 State of knowledge on cocoyam genetic diversity ............................................................... 22 iii Table of contents continued Chapter Three ................................................................................................................................ 24 Farmers’ Knowledge and Perception of the Constraints, Trait Preferences, Uses and Management Practices of Cocoyam (Xanthosoma sagittifolium (L.) Schott) in Ethiopia ........ 24 Abstract ........................................................................................................................................... 24 3.1 Introduction ............................................................................................................................ 25 3.2 Materials and methods ........................................................................................................... 27 3.2.1 Description of the study area ........................................................................................... 27 3.2.2 Sampling frame and informant selection ......................................................................... 27 3.2.3 Ethical consideration ....................................................................................................... 28 3.2.4 Data collection and analysis ............................................................................................ 28 3.3 Results .................................................................................................................................... 30 3.3.1 Age of farmers and their experiences in cocoyam cultivation .......................................
Recommended publications
  • Diasporus Anthrax Istributio D (Lynch, 2001): New Records and Geographic Distribution Felipe Duarte-Cubides* and Nayibe Cala-Rosas Raphic G Eo G N O
    Check List 8(2): 300-301, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N Amphibia, Anura, Eleutherodactylidae, Diasporus anthrax ISTRIBUTIO D (Lynch, 2001): New records and geographic distribution Felipe Duarte-Cubides* and Nayibe Cala-Rosas RAPHIC G EO G N O 1 Universidad de Antioquia, Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Grupo Herpetológico de Antioquia, Calle 67 # 53-108, OTES * Corresponding author. E-mail: [email protected] N Bloque 7-121, A.A. 1226. Medellín, Colombia. Abstract: Diasporus anthrax D. anthrax During fieldwork in the Departamentos of Antioquia and Santander we found several specimens of . The new records extend northward its known geographic distribution. We report, for the first time, the presence of on the Cordillera Oriental and discuss some taxonomic implications of these new findings. Diasporus anthrax Lynch, 2001, is a small frog endemic to Colombia (Figure 1), inhabiting the tropical It is located in the Departamento humid forests of the northern Cordillera Central, at the Las Brisas, municipio de Maceo (06°32’49” N, 74°38’37” Magdalena´s river valley from 280 and 1200 m elevation W, 499 m elevation). (Lynch 2001; Savage 2002; Acosta-Galvis et al. 2006). It is de Antioquia at ca 52.1 km from the type locality. The characterized by the presence of an oval palmar tubercle specimen was collected after a drizzle on a tree branch and and reddish coloration on the thighs and over the back of fromis deposited the Natual at the Reserve Museo Refugio de Herpetología Natural Rio Universidad Claro located de the humerus (Lynch 2001).
    [Show full text]
  • Studies on the Flowers and Stems of Two Cocoyam Varieties
    s Chemis ct try u d & o r R P e s Ogukwe et al., Nat Prod Chem Res 2017, 5:3 l e a r a r u t c h a DOI: 10.4172/2329-6836.1000263 N Natural Products Chemistry & Research ISSN: 2329-6836 Research Article Open Access Studies on the Flowers and Stems of Two Cocoyam Varieties: Xanthosoma sagittifolium and Colocasia esculenta Ogukwe CE*, Amaechi PC and Enenebeaku CK Department of Chemistry, Federal University of Technology, PMB 1526, Owerri, Imo State, Nigeria Abstract Qualitative and quantitative phytochemical composition of the flowers and stem sap ofXanthosoma sagittifolium and Colocasia esculenta were evaluated using standard methods. The result showed that the flowers contain saponins (6.61% and 5.50% respectively for the two species). Alkaloids of 6.22 and 9.80% respectively were also obtained from the result. Other Phytoconstituents like flavonoids, glycosides, phenols, steroids, and tannins were also evaluated. The proximate analysis revealed that the flowers contain high protein content (37.87% and 22.56% respectively), high moisture content and crude fat. Colocasia esculenta showed high percentage of total carbohydrate. The flowers of the two species of Cocoyam can therefore serve as spices and source of protein in local meals. Keywords: Flowers; Xanthosoma esculenta; Colocasia esculenta; used in preparing local soups and dishes. This was used to improve Nutrients; Spices the quality and the nutritional value of the meal thereby making it palatable. Thus, this dried flower of cocoyam was used in place of Introduction modern day synthetic spices or seasoning. This research work has Cocoyam is a common name for more than one tropical root and therefore been designed to evaluate the probable nutrients of the vegetable crop belonging to the Arum family (Aroids).
    [Show full text]
  • Atoll Research Bulletin No. 503 the Vascular Plants Of
    ATOLL RESEARCH BULLETIN NO. 503 THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS BY NANCY VANDER VELDE ISSUED BY NATIONAL MUSEUM OF NATURAL HISTORY SMITHSONIAN INSTITUTION WASHINGTON, D.C., U.S.A. AUGUST 2003 Uliga Figure 1. Majuro Atoll THE VASCULAR PLANTS OF MAJURO ATOLL, REPUBLIC OF THE MARSHALL ISLANDS ABSTRACT Majuro Atoll has been a center of activity for the Marshall Islands since 1944 and is now the major population center and port of entry for the country. Previous to the accompanying study, no thorough documentation has been made of the vascular plants of Majuro Atoll. There were only reports that were either part of much larger discussions on the entire Micronesian region or the Marshall Islands as a whole, and were of a very limited scope. Previous reports by Fosberg, Sachet & Oliver (1979, 1982, 1987) presented only 115 vascular plants on Majuro Atoll. In this study, 563 vascular plants have been recorded on Majuro. INTRODUCTION The accompanying report presents a complete flora of Majuro Atoll, which has never been done before. It includes a listing of all species, notation as to origin (i.e. indigenous, aboriginal introduction, recent introduction), as well as the original range of each. The major synonyms are also listed. For almost all, English common names are presented. Marshallese names are given, where these were found, and spelled according to the current spelling system, aside from limitations in diacritic markings. A brief notation of location is given for many of the species. The entire list of 563 plants is provided to give the people a means of gaining a better understanding of the nature of the plants of Majuro Atoll.
    [Show full text]
  • Universidad Central “Marta Abreu” De Las Villas Facultad De Ciencias Agropecuarias
    Universidad Central “Marta Abreu” de Las Villas Facultad de Ciencias Agropecuarias Tesis en opción al Título Académico de Master en Agricultura Sostenible Las pudriciones secas de la malanga (Xanthosoma y Colocasia). Etiología y sintomatología. Autor: Ing. Amaurys Dávila Martínez Tutores: Dr.Cs. Lidcay Herrera Isla Dra.C. Maryluz Folgueras Montiel Santa Clara, 2011 Dedicatoria A mis hijos, es para ustedes el fruto de mis mayores esfuerzos. A mi esposa, por brindarme su comprensión y apoyo en todo momento. A mis padres y hermanos, a quienes con su esfuerzo y dedicación les debo todo lo que soy. Agradecimientos A mis tutores Dr.Cs. Lidcay Herrera Isla y Dra.C. Maryluz Folgueras Montiel, por sus valiosos aportes en la elaboración de esta investigación. Al Ing. René Cupull del Laboratorio de Microbiología Agrícola de la Facultad de Agronomía por aportar sus experiencias y conocimientos sobre el tema, colocando sus instalaciones en función del resultado. A la Dra. Lilian Morales, Msc. Nilo Maza, Dr. Luis Ruiz, Msc. Ernesto Espinosa y Msc. Magaly García por la revisión del texto y sus oportunos consejos. A los compañeros del laboratorio de manejo de plagas. Muy especialmente a: José Efraín González, María del Carmen Castellón, Julián González, Xiomara Rojas, Dahert García, Guillermo Cartaya, Yanisleidy García y Heliodoro Fuentes, por su constante colaboración. A los compañeros del grupo de bioinformática del INIVIT, Carmen, Raisa, Machado y Osmany. Al colectivo de la biblioteca, Ramón Pérez, Raquel Rojas, Teresa Rodríguez y Yamilet Valle. A Robertico, Yuniel, Wilfredo, Camilo por su apoyo en la realización de este trabajo. A María Oliva y Jesús García, por su esfuerzo profundo y cotidiano.
    [Show full text]
  • Florida Exotic Pest Plant Councils 2017 List Of
    CATEGORY II (continued) Gov. The 2017 list was prepared by the Scientific Name** Common Name List Zone FLEPPC List Definitions: Exotic – a species FLEPPC Plant List Committee Florida Exotic Pest Plant Tradescantia spathacea oyster plant C, S introduced to Florida, purposefully or accidentally, from a (Rhoeo spathacea, Rhoeo discolor) natural range outside of Florida. Native – a species Patricia L. Howell, Chair 2012-2017, Broward Tribulus cistoides puncture vine, burr-nut N, C, S Council’s 2017 List of whose natural range includes Florida. Naturalized County Parks, Natural Resources and Land Vitex trifolia simple-leaf chaste tree C, S Management Section, [email protected] Washingtonia robusta Washington fan palm C, S exotic – an exotic that sustains itself outside cultivation Invasive Plant Species Wisteria sinensis Chinese wisteria N, C (it is still exotic; it has not “become” native). Invasive Stephen H. Brown, UF / IFAS Lee County Xanthosoma sagittifolium malanga, elephant ear N, C, S exotic – an exotic that not only has naturalized, Extension, Parks and Recreation Division, The mission of the Florida Exotic Pest Plant but is expanding on its own in Florida native plant [email protected] Council is to support the management of invasive Recent changes to plant names exotic plants in Florida’s natural areas by communities. Janice Duquesnel, Florida Park Service, Florida providing a forum for the exchange of scientific, Department of Environmental Protection, educational and technical information. Old Name New Name Abbreviations: Government List (Gov. List): [email protected] www.fleppc.org Possession, propagation, sale, and/or transport of Aleurites fordii Vernicia fordii David W.
    [Show full text]
  • Xanthosoma Sagittifolium(L.) Schott
    Xanthosoma sagittifolium (L.) Schott AR A CE A E/ARUM F E/ARUM A MILY Common Name: Elephant ear, arrowleaf elephant ear, cocoyam, uncooked leaves and roots are intestinal irritants, and saponins in malanga raw corms may be toxic (Morton 1972). Synonymy: Arum sagittifolium L., Caladium sagittifolium (L.) Vent., Distribution: Herbarium specimens documented from Broward, Xanthosoma hoffmannii Schott. (misapplied) Hernando, Lake, Leon, Marion, Miami-Dade, Pinellas, Polk, and Origin: Northern South America Seminole counties (Wunderlin and Hansen 2002). Also recorded Botanical Description: Stout, perennial herb to 2 m (6.6 ft) tall with from Alachua, Citrus, Martin, Putnam, St. Johns, and Wakulla a thickened, tuberous, underground stem (corm) and numerous counties (FLEPPC 2002). Naturalized in Alabama, Texas, Puerto smaller tuberous offshoots (cormels); spreads by slender rhizomes; Rico, the Virgin Islands (USDA NRCS 2002), and New Zealand exudes milky, watery sap when cut. Leaves arising from tip of cen- (LRNZ 2002). Spread throughout the Caribbean, Asia, Africa, and tral corm, and having sheathing, overlapping bases; petioles to 1.5 the Pacific Islands as a food crop (Bown 2000). m (5 ft) long, succulent, round near leaf blade, lower petiole chan- Life History: Fast growing from cormels (vegetative bulbils) that neled, attached to leaf blade between the 2 lobes at leaf margin; quickly sprout in moist conditions; can form mature plants with- leaf blades to 1 m (3.2 ft) long and 1 m (3.2 ft) across, arrowhead in 14-20 weeks (Igbokwe 1984). Corms, pieces of corms, and shaped to broadly heart shaped, glabrous, light green with a waxy, cormels can develop into new plants (Saese et al.
    [Show full text]
  • Phytochemical Screening and Mineral Elements Composition of Xanthosoma Sagittifolium Inflorescence
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Asian Journal of Plant Science and Research, 2014, 4(6):32-35 ISSN : 2249-7412 CODEN (USA): AJPSKY Phytochemical screening and mineral elements composition of Xanthosoma sagittifolium inflorescence *Ukpong I. J., Abasiekong B. O. and Etuk B. A. Department of Science Technology, Akwa Ibom State Polytechnic, Ikot, Osurua _____________________________________________________________________________________________ ABSTRACT The phytochemical screening of the ethanolic extract and the mineral elements composition of cocoyam inflorescence was determined using standard analytical methods. The results revealed that cocoyam inflorescence is a good source of both micro and macro elements. Iron was found to be present in high concentration (39.332mg/100g), followed by zinc (31.332mg/100g), magnesium (7.660mg/100g) and copper (3.833mg/100g). Potassium had the highest concentration (52.997mg/100g) among the macro elements followed by phosphorus (44.439mg/100g), sodium (19.333mg/100g) and calcium (17.666mg/100g). The phytochemical screening revealed that terpenoids, cardiac glycosides and tannins were highly present (+++), flavonoids and alkaloids were moderately present (++) while saponins and steroids were present in trace (+) amounts. The presence of these elements and phytochemicals in appreciable quantities highlights the nutritional and therapeutic value of cocoyam inflorescence. Keywords : phytochemical screening, mineral elements, cocoyam inflorescence. _____________________________________________________________________________________________
    [Show full text]
  • Cocoyams (Xanthosoma Caracu, X. Atrovirens and X
    MORTON:COCOYAMS 85 veqelabb Section COCOYAMS (XANTHOSOMA CARACU, X. ATROVIRENS AND X. NIGRUM), ANCIENT ROOT- AND LEAF- VEGETABLES, GAINING IN ECONOMIC IMPORTANCE Julia F. Morton Cuba (32). Also, the term MALANGA is applied specifically to Colocasia esculenta in Puerto Rico Directory Morton Collectanea, and is defined as "taro" in Webster's International University of Miami Dictionary, with a cross-reference to YAUTIA, Coral Gables which is defined as applicable principally to any There are some 38 or 40 species of Xanthosoma species of Xanthosoma. (family Araceae), all indigenous to the American The existing confusion is a serious matter for Tropics (1, 12, 43). Some of them are considered the agriculturist seeking information, for there by ethnobotanists and archaeologists to be among are some major differences in the two crops: for the oldest root crops in the world (4, 45) and it example, the Xanthosoma species require good is strange that there is little readily available in drainage while taro can be grown in lowlands too formation on the economically important species wet for Xanthosoma culture. Also, Colocasia escu of this genus. Generally, in literature on root lenta, which should be readily recognized by its crops, Xanthosoma species are discussed jointly peltate leaves, is not limited to tropical regions with the taro (Colocasia esculenta Schott) and and is grown throughout the coastal plain of our this practice tends to obscure the distinction be southern States as far north as South Carolina, tween the two crops. The cocoyams (Xantho where it is commonly called ELEPHANT'S EAR soma spp.), though superior comestibly and nu (a name popularly given to ornamental forms of tritionally, remain the lesser known.
    [Show full text]
  • Intoduction to Ethnobotany
    Intoduction to Ethnobotany The diversity of plants and plant uses Draft, version November 22, 2018 Shipunov, Alexey (compiler). Introduction to Ethnobotany. The diversity of plant uses. November 22, 2018 version (draft). 358 pp. At the moment, this is based largely on P. Zhukovskij’s “Cultivated plants and their wild relatives” (1950, 1961), and A.C.Zeven & J.M.J. de Wet “Dictionary of cultivated plants and their regions of diversity” (1982). Title page image: Mandragora officinarum (Solanaceae), “female” mandrake, from “Hortus sanitatis” (1491). This work is dedicated to public domain. Contents Cultivated plants and their wild relatives 4 Dictionary of cultivated plants and their regions of diversity 92 Cultivated plants and their wild relatives 4 5 CEREALS AND OTHER STARCH PLANTS Wheat It is pointed out that the wild species of Triticum and rela­ted genera are found in arid areas; the greatest concentration of them is in the Soviet republics of Georgia and Armenia and these are regarded as their centre of origin. A table is given show- ing the geographical distribution of 20 species of Triticum, 3 diploid, 10 tetraploid and 7 hexaploid, six of the species are endemic in Georgia and Armenia: the diploid T. urarthu, the tetraploids T. timopheevi, T. palaeo-colchicum, T. chaldicum and T. carthlicum and the hexaploid T. macha, Transcaucasia is also considered to be the place of origin of T. vulgare. The 20 species are described in turn; they comprise 4 wild species, T. aegilopoides, T. urarthu (2n = 14), T. dicoccoides and T. chaldicum (2n = 28) and 16 cultivated species. A number of synonyms are indicated for most of the species.
    [Show full text]
  • Bibliography on UNDERUTILIZED ROOTS and TUBERS CROPS
    InternationalInternational PlantPlant GeneticGenetic ResourcesResources InstituteInstitute Bibliography on UNDERUTILIZED ROOTS AND TUBERS CROPS Dimary Libreros, compiler International Plant Genetic Resources Institute Americas Group Bibliography on UNDERUTILIZED ROOTS AND TUBERS CROPS compiled by Dimary Libreros Cali, Colombia, Abril 2001 Bibliography on Underutilized Roots and Tubers Crops iii Contents Introduction ........................................................................................................... iv Plant Pathology ..................................................................................................... 1 Plant Breeding ....................................................................................................... 3 Plant Propagation.................................................................................................. 9 Taxonomy and Evolution .................................................................................... 11 Crop Management and Production .................................................................... 17 Plant Physiology .................................................................................................. 21 Entomology ......................................................................................................... 24 Roots and Tubers Chemical Composition.......................................................... 24 iv Bibliography on Underutilized Roots and Tubers Crops INTRODUCTION Roots and tubers crops are present in the diet of
    [Show full text]
  • Variation in Y Chromosome, Mitochondrial DNA and Labels of Identity in Ethiopia
    Title Page Variation in Y chromosome, mitochondrial DNA and labels of identity in Ethiopia Christopher Andrew Plaster The Centre for Genetic Anthropology Department of Genetics Evolution and Environment University College London 1 Declaration of ownership I, Christopher Andrew Plaster, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Statement of work performed by Christopher Plaster Approximately 20% of all DNA extractions, 40% of all Y chromosome genotypings and 65% of mtDNA sequencing data was generated by myself, with the remainder generated by technicians and students (as part of other and ongoing projects at TCGA) prior to the commencement of my PhD studies. I checked all previous data generated by others for consistency with the data generated by myself. All processing of mtDNA data, and all statistical analysis was performed by myself. All DNA samples and ethnographic information was collected in the field by Dr Ayele Tarekegn. 2 Abstract There is a paucity of genetic studies of Ethiopia. This thesis aims to establish the extent and distribution of variation in NRY and mtDNA genetic markers as well as ethnic and linguistic labels of identity in 45 ethnic groups. A wide range of NRY and mtDNA haplogroups were observed, including both those typically observed in Africa and those more frequently observed outside Africa. Significant correlations were revealed between NRY and mtDNA diversity. Nearly all ethnic groups were significantly differentiated from each other, although the pattern of similarities indicates some recent gene flow between northern ethnic groups and some groups to the south.
    [Show full text]
  • The Foundation for Indigenous ICT in Ethiopia Daniel Yacob
    The Foundation for Indigenous ICT in Ethiopia Daniel Yacob Abstract Ethiopia’s standards body, the Quality and Standards Authority of Ethiopia, has legalized the nation’s first character set standard. The highly anticipated standard, ES 781:2002, sets the foundation that future computer, software, and electronic communication standards of Ethiopia will be built upon. With “Ethiocode” now at hand, Ethiopia is braced to take on much awaited standards for localization and native language support. While working towards international acceptance of the new character set, this next phase of work is already underway. ES 781 specifies all symbols required for orthography in every part of the country. The standard includes the 345 “basic” characters found already in Unicode 4.0, plus it introduces 114 characters targeted for the “Extended Ethiopic” domain of the Unicode Roadmap. While perhaps new to electronic standardization, a number of the “extended” elements have been in active use for over 1400 years and may present some new software challenges. This paper reviews these new characters, standards activity in Ethiopia and their implications over the next few years. Introduction “Ethiopic”, as we know it in Unicode 4.0 today1, is not the character set of any single language. Rather, Ethiopic in Unicode is the collection of character sets used by Ethiopia’s three most spoken and widely known languages. The Ethiopic specification was carefully considered and was designed to meet the broadest needs that available and reliable information could allow. Indeed it has proven itself to be a solid foundation for an electronic orthography. While devised with the best information available at the time, it was fully anticipated that, as a specification built around the requirements of only a few languages from a land with nearly ninety, it would eventually have to be updated.
    [Show full text]