9.8.2013

Contents

 Bioenergy Research at Metla  Biomass availability estimations  Motivation  Terms and concepts Overview of Finnish Wood Fuel Supply  Feedstock  Biomass models Chains  Assessment examples  project-level Robert Prinz  regional  national Finnish Forest Research Institute (Metla)  International  Finnish Wood Fuel Supply PromoBio Chains Training Week th  Operational Efficiency in Forest 09 April 2013 Energy  Forest Fuel Supply and Quality

8/9/2013 2

Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi

Metsäntutkimuslaitos (Metla) The Finnish Forest Research Institute Finnish MetlaForest Eastern Research Finland in Joensuu Institute Joensuu

Finnish Forest Research Institute R&D activities & Forest Energy in Finland

Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi

Metla 2013 Metla since 1917- Core activities: subordinated to the Ministry of Agriculture and Forestry • production and implementation of research results • knowledge transfer and information Staff of Metla in Finland services • approximately 750 employees • research supporting activities • incl. 370 researchers • State authority tasks

Four Regional Units: Budget • ~55 Mio € • Southern Finland • Eastern Finland • Western Finland • Northern Finland

1 9.8.2013

Metla ’s Mission Metla ’s Research

Metla builds the future of the forest sector of Finland by producing and •research is organised into problem-oriented disseminating information and know-how for the well-being of society projects and multi-disciplinary research programmes •150 projects Research priorities: •large number of projects are jointed national • Forest-based enterprise and and/or international, in collaboration with business activities universities, research organisations and other R&D • Social impact of forests organisations • Structure and functioning of forest ecosystems and • Information data bank on forestry and the forest environment

Research Programmes Metla Eastern Finland

Forests and water Renewing wood product value H2O (2013-2017) chains and timber procurement solutions Joensuu , Punkaharju and Suonenjoki Units PUU (2009–2013) Centre in Joensuu Forest Sector Foresight - project group Director prof. Jari Parviainen MTU (2012 - 2015) Wellbeing from forests Staff: 200 employees (100 scientists) HYV (2008–2013) ForestEnergy2020 (2012–2016) Mission Joint research programme LYNET-research programmes Multidisciplinary approach to promote, regional economic and enterprise with VTT Technical (in finnish) activities based on forests and forest products Research Centre of Finland * Bioeconomy (2011 - 2015) * Climate change (2011 – 2015) State authority tasks Forests and silviculture in * Sustainable land use (2011 - the future • National Forest Inventory 2014) • inspection of plant protection products MHO (2012–2016) * Baltic sea (2011 - 2015) • measuring roundwood and sawn timber

9

9.8.2013

Strengths of forest cluster in Metla Joensuu 1981 Joensuu -  Location: densely forested area, traditional forest products Customer manager Jari Miina manufacturing region in Finland Staff 130 (incl. 80 researcher)

 Networking: Metla and University of Eastern Finland - Faculty of Natural and Forest Sciences located on same campus area; Seven research disciplines lead by a professor/senior scientist distance to EFI and local forestry stakeholders are short • forest management planning (Prof. Mikko Kurttila) • silviculture and environmental impacts from forestry (Prof. Leena Finér)  EU´s Regional Target Area: finance of research through • wooden-based biomass and forest technology (Prof. Antti Asikainen) rural/regional development structural funds are available • wood science and technology (Prof. Erkki Verkasalo) • economy of forest enterprices (Prof. Pekka Ollonqvist) • international forestry, especially countries with economies in transition and  Bridge between EU and : geographically close to Republic of Russian forestry (Prof. Timo Karjalainen) and Russia • forest inventory methodologies and data calculations (Dr. Kari T. Korhonen)

2 9.8.2013

Examples of forest research with wide applications Bioenergy Research at Metla • enterprise activities in wooden

• updated information on roundwood trade, stumpage and delivery prices of  ForestEnergy2020 research programme roundwood in Finland, Baltic States  Joint programme at METLA and VTT and  10 thematic areas covering the whole span of forest energy value chain • forecasts on stumpage prices, trade of  www.forestenergy2020.org forest industry products on markets foreign

• Russian forestry, internet service:

www.idanmetsatieto.fi

14

8/9/2013

Forest ownership: • State 26% • Private 60% • Companies 9% • Others 5%

FINLAND’S FORESTS

Forests in Finland Intensive Forest Mgmt  Forests cover 23 million ha (76%)  Main tree species  Boreal forests  Pine (Pinus sylvestris)  Private forest  Spruce (Picea abies) cover 83% of  Birch (Betula pubescens/pendula) roundwood  Rotation period 80-120 years removal  Forest mgmt  Forestry and  Pre-commercial thinning forest industries  1-3 thinnings account for 6% of  Final felling the GDP  Soil preparation/Planting

3 9.8.2013

Before Establishing a Biomass Fuelled Heating or Power Plant, You Need to Know…

 How much there is feedstock?  What kind of material is it?  Where is it located?  What is the cost of fuel at Biomass Availability Estimations plant?  How much of the resource is available?  How does the availability Robert Prinz & Perttu Anttila evolve in time? Photo: Juha Laitila

-> Plant (or project) level case studies 20 8/9/2013 Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi

Decision Support for Policy-Makers and Large Market Players

 Ambitious targets for increase of renewables The use of forest chips in Finland and the target for 2020  EU’s 20-20-20 targets  In Finland 13.5 Mm 3 of forest chips should be Terms and Concepts used in 2020

Ylitalo (2012) -> Large-scale studies at the regional, national, EU and global levels

21 22

8/9/2013 8/9/2013

What Is Forest Energy? Types of Potentials

 Determines the approach and methodology  Depends often on data availability

FAO (2004)  Forest energy = energy produced of woody biomass from forest  Here we focus on the estimation of the supply potential and availability of the biomass resource  Forest energy is always bioenergy -> ’Bio’ Vis et al. (2010)

prefix is not necessary! 23 24 8/9/2013 8/9/2013

4 9.8.2013

Aspects to Be Considered How to harmonise methods?

 Approach  Resource focused  Demand driven  Integrated  Timeframe  Past  Present  Future  Geographical coverage  Scope  Biomass Energy Europe (BEE) project  Resolution produced a handbook for biomass potential estimation (Vis et al. 2010)  Units  Solid-m3, loose-m3 Berndes et al. (2003)  Visit http://www.eu-bee.info/  Tonne (t)  Joule (J), watthour (Wh), tonne of oil equivalent (toe)

25 26

8/9/2013 8/9/2013

Tree Allometry

Biomass Models

Hakkila (1992)

27 28

8/9/2013 8/9/2013

Estimation of Biomass Some Published Models • Biomass of crown and stump predicted with biomass functions  Finland or Biomass Expansion Factors  Hakkila (1972, 1979, 1991) (BEF)  Repola (2008, 2009) • Explanatory variables may  include  Marklund (1988)  Petersson (1999, 2006) •tree species  Comparison •dbh  Kärkkäinen (2005) •height  Repola, Ojansuu & Kukkola (2007) •crown length  Canada •age  Lambert et al. (2005)  Europe •site type  Zianis et al. (2005) • BEF is a simple version of a Repola et al. 2007  Global (IPCC) biomass function  Penman et al. 2003 • BEF converts timber volume to whole tree biomass 29 30

5 9.8.2013

An Example of Biomass Models Accumulation of Crown Biomass

 Bucking and delimbing height affect accumulation of crown biomass  Models for relative accumulation

Repola et al. 2007 Tahvanainen & Forss 2008

31 32

8/9/2013 8/9/2013

Accumulation of Crown Biomass Accumulation of Crown Biomass

Räisänen 2010 Räisänen 2010

33 34

8/9/2013 8/9/2013

ComBio Tool ComBio Tool

Pasanen 2010 Pasanen 2010

35 36

8/9/2013 8/9/2013

6 9.8.2013

Conversion to Other Units

Net calorific heating value of forest chips as a function of moisture • If tons are not the desired unit, a conversion needed • Other frequently used units •m3 •MWh Project-level Assessments • Basic densities and net calorific values from literature

Alakangas (2000)

37 38

8/9/2013

Resource-Focused Cost-Supply Method Origin of Forest Chips in Finland

 based on forest resource data  tree & plot level data  stand-level data  regional data  varies in time and space  biomasses estimated with biomass models or factors  constraints for wood production and procurement  road network Photo: Jutta Kuure

 available data varies case by case -> you have to play with what you have!

39 40

8/9/2013 9.8.2013

Logging Residues from Final Fellings Stumps from Final Fellings

 crown biomass  branches  leaves / needles  stumps  stemwood loss  coarse roots  defected wood  mostly spruce  under-sized tops  small-sized stems

 mostly spruce Photo: J. Laitila Photo: J. Laitila

41 42

8/9/2013 8/9/2013

7 9.8.2013

Defected Stemwood Small Trees from Young Forests

 delimbed stemwood  whole trees  large-sized  ”pulp wood”  mostly imported  mostly broadleaved, but also pine and spruce

Photo: P. Anttila Photo: J. Laitila

43 44

8/9/2013 8/9/2013

Constraints Reduce Availability Procedure An Example of Small Tree Potential

1. Decide upon the supply Theoretical potential chains to be compared Constraints:

2. Estimate how much • Accumulation of industrial roundwood, max. 25 m 3/ha energy wood available • Accumulation of energy fraction, min. 25 m 3/ha • Peatland stands and stands on mineral soil with site 3. Calculate transportation poorer than Myrtillus -type were excluded distances • Minimum for mean stem size, 10 dm 3 • Suggested cutting is urgent or delayed 4. Calculate costs of each working phase 5. Present the results Estimated technical potential

45 46

8/9/2013 8/9/2013

Effect of Constraints Transport Distances

Accumulation, m 3/year 2 000 000 • Calculated in GIS 1 800 000 Total via real road 1 600 000 1 400 000 network 1 200 000 • From each supply 1 000 000 800 000 site to the plant 3 600 000 Industrial roundwood < 25 m /ha Energy fraction > 25 m 3/ha 400 000 Peatlands and poor sites excl. 3 200 000 Mean stem size > 10 dm Cutting urgent or delayed 0 10 20 30 40 50 60 70 80 90 100 110 Distance to Joensuu, km

47 48

8/9/2013 8/9/2013

8 9.8.2013

Example of Results (Wick, Scotland) Example of Results (Soria, Spain)

Cumulative Yearly Harvesting possibilities (m³) 400 by Road transport distance Periods between Years 2003 - 2026 350 Almazan, Thinning, Roadside 300 Landing 140000 Cabrejas del Pinar, Thinning, 250 Roadside Landing 120000 San Pedro Manrique, Thinning, 2003-2006 Roadside Landing 100000 200 2007-2011 Almazan, Thinning, Terminal GWh/a 80000 2012-2016 150 Cabrejas del Pinar, Thinning, m³ 2017-2021 60000 Terminal 2022-2026 100 San Pedro Manrique, Thinning, 40000 Terminal 50 20000

0 0 0 20 40 60 80 100 120 6 7 8 9 10 11 12 13 14 15 16 17 18 19 km Röser et al. (2011) €/MWh Anttila et al. (2011)

49 50

8/9/2013 8/9/2013

Advanced Spatially Explicit Method

Regional Assessments

51 52

8/9/2013 8/9/2013

Use of wood fuels can be increased sustainably

National Assessments

53 54

8/9/2013 9.8.2013

9 9.8.2013

Techno-Economical Potential of Forest Chips in Finland Spatial Distribution of Potential Logging residues Spruce stumps Energy wood from from final fellings from final fellings young forests

Target 2020

Made in Finland

Laitila et al 2010 Laitila et al 2008

55 56

9.8.2013 8/9/2013

Spatial Market Model Spatial Distribution of Demand

By municipality

 Demand and supply of energy  Demand concentrated produced from fuels on population centres  Endogenous supply, demand, and prices of forest chips

 Exogenous roundwood harvests

Kallio et al. 2011  Transports are essential cost factor for forest chips !!

57

8/9/2013

Forest Biomass Resources in Finland in 2020

 Biggest problem not the technical availability, but the supply cost and International Assessments logistics

Photo: Jutta Kuure

59 60

8/9/2013 8/9/2013

10 9.8.2013

Forest Energy Resources in the EU Global Potential of Modern Fuelwood

Anttila et al. 2009

61 62

8/9/2013 8/9/2013

References  Alakangas, E. 2000. Suomessa käytettyjen polttoaineiden ominaisuuksia. Technical Research Centre of Finland, VTT Research Notes 2045.  Alakangas, E. 2010. European standard (EN 14961) for wood chips and hog fuel, Forest Bioenergy 2010, 31 st Aug – 3rd Sep 2010, Book of proceedings. FINBIO Publications 47, p. 329-340.  Anttila, P., Karjalainen, T. & Asikainen, A. 2009. Global potential of modern fuelwood. Working Papers of Finnish Forest Research Institute 118.  Anttila, P., Asikainen, A., Laitila, J., Broto, M., Campanero, I., Lizarralde, I., Rodríguez, F. 2011. Potential and supply costs of wood chips from forests in Soria, Spain. Forthcoming in Forest Systems.  Berndes, G., M. Hoogwijk and R. Van den Broek. 2003. The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy 25(1): 1-28.  FAO. 2004. Unified bioenergy terminology. UBET. 50 p. Available from: http://www.fao.org/docrep/007/j4504e/j4504e00.htm.  Hakkila, P. 1972. Mechanization harvesting of stumps and roots. Communicationes Instituti Forestalis Fenniae 77(1), 71 p.  Hakkila, P. 1979. Wood density surveys and dry weight tables for pine, spruce and birch stems in Finland. Communicationes Instituti Forestalis Fenniae 96(3), 59 p.  Hakkila, P. 1991. Crown mass of trees at the harvesting phase. Folia Forestalia 773, 24 p.  Hakkila, P. (toim.). 1992. Metsäenergia. Metlan tiedonantoja 422. 51 s.  Hakkila, P. 2004. Developing technology for large-scale production of forest chips. Final report of Wood Energy Technology Programme 1999–2003.  Kallio, A.M.I., Anttila, P. McCormick, M. & Asikainen, A. 2011. Are the Finnish targets for the energy use of forest chips realistic - assessment with a spatial market model. Journal of Forest Economics 17(2): 110-126.  Kärkkäinen, L. 2005. Evaluation of performance of tree-level biomass models for forestry modeling and analyses. Väitöskirja. Joensuun yliopisto.  Laitila, J., Asikainen, A. & Anttila, P. 2008. Energiapuuvarat. In: Kuusinen, M., Ilvesniemi, H. (Eds.), Energiapuun korjuun ympäristövaikutukset.  Laitila et al. 2010.  Lambert, M-C; Ung, C-H; Raulier, F. 2005. Canadian national tree aboveground biomass equations. Canadian Journal of Forest Research 35(8): 1996-2018.  Mantau, U. 2010. Is there enough wood for Europe? pp 15-27. In: EUwood - Final report. Hamburg/, September 2010. 148 p.  Marklund, G. 1988. Biomass functions for pine, spruce and birch in Sweden. Swedish University of Agricultural Sciences. Department of Forest Survey Report 45. 71 p.  Penman et al. 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. Intergovernmental Panel on Climate Change. Available from: http://www.ipcc- nggip.iges.or.jp/public/gpglulucf/gpglulucf.html.  Petersson, H. 1999. Biomassafunktioner för trädfraktioner av tall, gran och björk i Sverige. Arbetsrapport 59 1999. 31 sidor.  Petersson, H. 2006. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scandinavian Journal of Forest Research. 21(7):84-93.  Räisänen, T. 2010.  Repola, J., Ojansuu, R. & Kukkola, M. 2007. Biomass functions for Scots pine, spruce and birch in Finland. Metlan työraportteja 53.  Röser, D., Asikainen, A., Stupak, I. & Pasanen, K. 2008. Forest energy resources and potentials. In: Röser, D., Asikainen, A., Raulund-Rasmussen, K. (Eds.), Sustainable use of forest biomass for energy. A synthesis with focus on the Baltic and Nordic region. Springer, Dortrecht, pp. 9-28.  Röser et al. 2011.  Sikanen, L. et al. 2012. Effect of Moisture Content of Solid Biofuels onTransportation Costs and CO2 Emissions in the Context of Road Transportation and Vehicle Limitations. Manuscript.  Tahvanainen, T. & Forss, E. 2008. Individual tree models for the crown biomass distribution of Scots pine, Norway spruce and birch in Finland. Forest Ecology and Management 255(3-4): 455.  Torén, J., Wirsenius, S., Anttila, P., Böttcher, H., Dees, M., Ermert, J., Paappanen, T., Rettenmaier, N., Smeets, E., Verkerk, P.J., Vesterinen, P., Vis, M.W. & Woynowski, A. 2011. Biomass Energy Europe. Executive Summary, Evaluation and Recommendations. 82 p.  Vis et al. 2010. Harmonization of biomass resource assessments. Volume I. Best Practices and Methods Handbook. 220 p. http://www.eu-bee.com/default.asp?SivuID=24158  Verkerk, P.J., Eggers, J., Anttila, P., Lindner, M. & Asikainen, A. 2010a. Potential biomass supply from forests 2010 - 2030. In: Mantau, U. (ed.). EUwood - Real potential for changes in growth and use. p. 71-96.  Verkerk, P.J., Anttila, P., Lindner, M. & Asikainen, A. 2010b. The realistic supply of biomass from forests. In: Mantau, U. (ed.) EUwood - Real potential for changes in growth and use of EU forests. Final report. p. 56-79.  Verkerk, P.J., Anttila, P., Eggers, J., Lindner, M. & Asikainen, A. 2011. The realisable potential supply of woody biomass from forests in the European Union. Forest Ecology Finnish Wood Fuel Supply Chains and Management 261(11): 2007-2015.  Ylitalo, E. 2012. Puun energiakäyttö 2011. Metsätilastotiedote 16/2012. Available from: http://www.metla.fi/metinfo/tilasto/julkaisut/mtt/2012/puupolttoaine2011.pdf.  Zianis, D., Muukkonen, P., Mäkipää, R. & Mencuccini, M. 2005. Biomass and stem volume equations for tree species in Europe. Silva Fennica Monographs 4. 63 p.

Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest Research Institute www.metla.fi

Large scale Large scale 50 - 500 MW 50 - 500 MW

Medium scale Medium scale 1 - 50 MW 1 - 50 MW

Domestic scale Domestic 5 - 20 kW 5 - 20 kW

Small scale Small scale 5 - 20 kW Finland & Sweden 20 - 1000 kW

11