MarineAquariumTradeReefMonitoringProtocol DataAnalysisandInterpretationManual

DomingoOchavilloandGregorHodgson November2006

MAQTRAC Data Analysis & Interpretation Manual 2006 i MAQTRACMarineAquariumTradeCoralReefMonitoring Protocol DataAnalysis&InterpretationManual DomingoOchavillo GregorHodgson 2006 PrintedinManila,Philippines. Citation: Ochavillo,D.andG.Hodgson.2006.MAQTRACmarineaquariumtradecoralreef monitoringprotocoldataanalysisandinterpretationmanual.ReefCheckFoundation. California,USA.39pp. ThispublicationismadepossiblethroughfundsofUSAIDundertheTransformingthe Marine Aquarium Trade (TMAT) Project and the International Finance Corporation Global Environment Facility, Marine Aquarium Market Transformation Initiative in cooperation with the Marine Aquarium Council and the Community Conservation InvestmentForum. Foradditionalcopiesofthispublication,pleasecontact: ReefCheckFoundation P.O.Box1057 17575PacificCoastHighway PacificPalisades,CA90272USA Tel:+13102302371 Email:[email protected]

MAQTRAC Data Analysis & Interpretation Manual 2006 ii www.ReefCheck.org

MAQTRAC MarineAquariumTradeCoralReefMonitoringProtocol

DataAnalysis&Interpretation Manual

November2006

Domingo Ochavillo and Gregor Hodgson

With transition matrix model for coral population trajectory analysis by Dr. Wilfredo Licuanan

MAQTRAC Data Analysis & Interpretation Manual 2006 iii Table of Contents

ListsofTables,FiguresandAppendices………………………………….………….v

Acronyms...... 6

Chapter1:Background...... 7

Chapter2:DeterminingTotalAllowableCatchforFishandInvertebratesOther than...... 9

2.1 NaturalmortalityandYieldperrecruitcasestudies(centralPhilippinesdata).. 10

Chapter3:CatchPerUnitEffort(CPUE)Data ...... 15

3.1CPUEcasestudies(BatasanIslandandnearbyreefs,centralPhilippines)...... 16

Chapter4:MatrixPopulationModels&CoralCollection ...... 21

4.1 Anacropora matthaiicasestudyinLampung,southSumatra(Indonesia)...... 22

Chapter5:Conclusion ...... 29

Bibliography ...... 32

Appendices ...... 34

MAQTRAC Data Analysis & Interpretation Manual 2006 iv Lists Tables 1: Naturalmortalityrates(M),growthrates(k)foreightfishand oneinvertebrate…………………………………………………………………….. 12 2: Relativeabundanceoffourfishfamiliesinfourcollection areassurveyedinthePhilippines…………………………………………………. 13 3: Proportionofpopulationsofornamentalssuggestedassustainable collectionlevelsbasedonestimatednaturalmortalityrates…………………… 13 4: Populationparameters,extractionratesandTACsforvarious ornamentalsincentralPhilippines………………………………………………… 14 5: SizeclassdataofA. matthaiiinLampung,Indonesia………………………….. 23 6: Recommendedprobabilitiesofgrowthtonextsizeclasses inscleractiniancorals(basedinGomezetal.1985)…………………………... 24 7: DerivedtransitionmatrixfortheA. matthaiipopulation inLampung,Indonesia…………………………………………………………….. 25 Figures 1: Flowofdataanalysisforornamentalfishandinvertebrates…………………… 9 2: Inverserelationshipbetweengrowthrate(k)andLinfinity…………………….. 12 3: CPUEtrendsfortheC. rostratusinBatasan,Bohol,Philippines.. 17 4: InterquarterlymeanCPUEanalysisforC. rostratusinBatasan,Bohol…….. 18 5: Interannualtrendsincatchperuniteffortforvariousornamentalsin centralPhilippines………………………………………………………………….. 19 6: PopulationtrajectoryanalysisforA. matthaiiusingthematrixtransitionmodel 26 7: PredictedchangesinthepopulationofA. matthaiiataleveltosustainstock abundance(15%totalmortalityinthetargetsize)……………………………… 27 Appendices 1: FisheriesModelsandtheirApplicabilitytotheOrnamentalTrade…………….. 34

MAQTRAC Data Analysis & Interpretation Manual 2006 v Acronyms

CITES ConventionontheInternationalTradeinEndangeredofWild FloraandFauna CPUE catchperuniteffort ELEFAN ElectronicLengthFrequencyAnalysis FiSat FAOICLARMFishStockAssessmentTools MAC MarineAquariumCouncil MAQTRAC MarineAquariumTradeCoralReefMonitoringProtocol MSY Maximumsustainableyield SC sizeclass SPR SpawningStockBiomassPerRecruit TAC Totalallowablecatch VPA VirtualPopulationAnalysis YPR Yieldperrecruit

MAQTRAC Data Analysis & Interpretation Manual 2006 6 Background ……………………

The ornamental trade is a rapidly expanding industry that sources a highpercentageoforganismsfromtheoftenoverfishedanddegraded coralreefsofthePhilippinesandIndonesia.Thereisapotentialthreat forcollectiontodrivelocalpopulationstounviablelevels.Ifthetrade istobesustainable,catchlimitsconstituteanimportantmanagement strategy in addition to the establishment of notakemarine protected areasandothercoralreefrehabilitationactivities. ThisDataAnalysisandInterpretationManualoftheMarineAquariumTradeCoralReef Monitoring Protocol (MAQTRAC) is an accompanying volume to the MAQTRAC Field Operations Manual. This manual has been developed as a guide for scientists to be abletoanalyzeornamentalfisherieswithlimitedhistoricaldataandtosettotalallowable catchlimitsfortargetedornamentalpopulations.Theconceptoftotalallowablecatch (TAC)isanewconceptfortheornamentalfisheryinboththePhilippinesandIndonesia. TotalAllowableCatchasaReferencePoint ‘Reference points’ such as total allowable catch are used to manage a fishery. A referencepointisdefinedasavaluederivedfromtechnicalanalysistomanageastock (Caddy 1998). Reference points are largely based on models that are mathematical conceptualizations of the populations of target species. In practical terms, these reference points may have a poorlydefined level of error. The determination of referencepointstomanagefisherieshasbeendifficultevenindevelopedcountriesthat have invested substantial time and finances on research. The difficulties have been largelyduetoerrorsatdifferentlevels:(1)processerrorsduetonature’svariability;(2) measurement error; (3) model uncertainties; and (4) estimation error due to combinations of the above factors. For example, due to the cryptic nature of various

MAQTRAC Data Analysis & Interpretation Manual 2006 7 ornamental species it can be assumed that MAQTRAC surveys produce conservative estimates of stock abundances therefore giving conservative estimates of population abundances.Evenamonghighlyvisibleornamentals,thephysicalcomplexityofcoral reefsprovideshidingplacesfurtherleadingtounderestimatesofabundance. Developingtechnicalreferencepointsfortheaquariumtradeischallengingbecauseitis amultispeciesfishery,andthereisverylittleinformationregardinghistoricalcatchand effortandontheecologyofthetargetspecies.Thedevelopmentofreferencepointsfor the ornamental trade requires a combination of traditional fisheries models, practical guidelines and most importantly, empirical experience, that can de derived from an adaptivemanagementapproach. Totalallowablecatchdevelopedfortheaquariumtradecanbeusedtoprovideinterim referencepointsthatwillbesubsequentlyrefinedasmoredataaregathered.Annual target population surveys are required as part of the Ecosystem and Fisheries ManagementstandardundertheMACcertificationprogram.

MAQTRAC Data Analysis & Interpretation Manual 2006 8 Determining Total Allowable Catch for Fish and Invertebrates Other than Corals ……………………

In cases where longterm catch records are not available, total allowable catch can be estimated from natural mortality rates. In cases wherein catch records are available, yieldperrecruit analysis canbeused.Bothmethodscanalsobeusedtoestimatearangeof catch limits. (See Appendix 1 for a review of fisheries models and their applicability to ornamental fisheries). The following is a diagram of the flow of analysisandthesubsequentdeterminationoftotalallowablecatch. Sizeclassdata NoSizeclassdata Growthrate(k) CatchRecords Lengthinfinity(LLengthinfinity(L∞ ) TotalMortality(Z) NaturalMortalityRate(M ) RelativeYield PerRecruitAnalysis CatchRecords TotalAllowableCatch Flowofdataanalysisforornamentalfishand 1 Figure invertebrates

MAQTRAC Data Analysis & Interpretation Manual 2006 9 2.1 Natural mortality and Yieldperrecruit case studies (central Philippines data) Populationparameters(growth,mortalityandrelativeyieldperrecruitestimation)were derivedforvariousspeciesthathadrepresentativesizeclassdatausingFiSatsoftware. (The FiSat software can be downloaded free of charge from the website http://www.fao.org/fi/statist/fisoft/fisat/downloads.htm.) To be representative, the analysisrequiressizeclassdatafromrecruits,juvenilesandadultsofaminimumof150 individuals. Typically, it is NOT possible to obtain this number of observations from a single population of aquarium fish species such as the Emperor Angelfish, therefore other methods must be used. But for naturally abundant species such as Green Chromis,thesedataprovideaviewofthepopulationgrowthtrajectorywhichisthebasis forthistypeofstockassessment.Lengthatfirstcapturedata(thesmallestsizeofthe speciescollectedinthetrade)wereobtainedfromcatchrecordsofcollectors.Thelatter dataareimportantinrelativeyieldperrecruitanalysis. A stepbystep list is given below regarding how to calculate natural mortality and analyze relative yieldperrecruit for fish and invertebrates (except corals) using FiSat software.Coralsrequireadifferentapproach. 1.Obtainsizeclassdataforaspeciesincludingrecruitstoadultswithatotalof150 200individuals.ThedataareinputtotheFiSatsoftwareforthefollowingsteps.

2. Divide the size data into several classes. We recommend a 1 cm interval for damselfishsizeclassesandforotherfishesthathaveamaximumsizeofaround 5to6cm;2to3cmsizeclassintervalsforanemonefishes;3to4cmsizeclass intervalsforandotherfishesthathaveamaximumsizefrom15to 20 cm; and 5 cm groupings for the bigger angelfishes (e.g. Chaetodontoplus mesoleucus) and other fishes with maximum size more than 20 cm. (Encode datainthenecessaryqueryinFiSat.);

3. ToestimatethegrowthcoefficientkandLinfinity,goto(a)Assessquery;(b)to directfitoflengthfrequencydata;(c)toELEFAN1;andthen(d)kscan;

MAQTRAC Data Analysis & Interpretation Manual 2006 10 4. To estimate total mortality rate (Z), go to (a) Assess; then to (b) Mortality Estimation;thento(c)Zfromsteadystatesample;thento(d)Lengthconverted catchcurve;andthento(e)CatchCurve;

5. Toestimatethenaturalmortalityrate(M),goto(a)Assess;thento(b)Mortality Estimation;thento(c)NaturalMortality;andthento(d)Pauly’sMequation.Use 280C for temperature in tropical situations. The inverse of the natural log of natural mortality M is a provisional catch limit estimate, and is expressed as a percentageofthestandingstock.

Forafisherywithhistoricalcatchrecordsproceedtoyieldperrecruitanalysis:

6. Calculate separately the ratio of M/k and lc/Linfinity. The number lc (lengthat firstcapture) is the smallest size collected for that species in the ornamental trade.

7. Forrelativeyieldperrecruitanalysis,goto(a)Assess;thento(b)BevertonHolt

Y/R Analysis; then to (c) Knifeedge; and then (d) fillin the value M/k and lc/L infinity.

8. NotethereferencepointE10,theexploitationratereferencepoint.

Natural mortality (M) rates in relation to stock abundance were derived for several ornamentaltargetfishandoneinvertebrate(theblueseastar)inthecentralPhilippines usinggrowth rate(k) and L values using the FiSat software (Table 1). These natural mortality rates in relation to the population can be used as speciesspecific reference points.Whendataarelacking,thenaturalmortalityrateofonespeciescanbeusedas anestimateforothersimilarspeciesfromthesamefamiliesand/orecologicallysimilar specieswithinadequatesizeclassdata. In general, the results indicate trends of relatively smaller fish species (based on L∞ comparisons)havinghighergrowthrates(k)thanrelativelylargerones(e.g.Amphiprion clarkii versus Chaetodontoplus mesoleucus) (Figure 2). These smallersized fish speciesalsohavehighernaturalmortalityrates.

MAQTRAC Data Analysis & Interpretation Manual 2006 11 Table1:Naturalmortalityrates(M),growthrates(k)foreightfish andoneinvertebrate. Linfinity Species Group k M (cm) Premnas biaculeatus Fish 1.3 17.85 2.45 Amphiprion ocellaris Fish 1.6 6.83 3.67 Amphiprion clarkii Fish 1.8 13.13 3.3 Dascyllus aruanus Fish 1.3 6.83 3.2 Bodianus mesothorax Fish 1.4 23.1 2.39 Chaetodontoplus mesoleucus Fish 0.92 27.3 1.65 Cheilodipterus quinquelineatus Fish 1.5 9.98 3.16 rostratus Fish 1.4 20.48 2.47 Linkia laevigata Invert. 1.3 39.9 1.96

45 40 35 30 25 20 Linfinity 15 10 5 0 0.7 0.9 1.1 1.3 1.5 1.7 1.9 k(growthrate) Inverse relationship between growth rate (k) and 2 Figure L-infinity. Theresultsbelowindicatethatthetotalallowablecatchbasedonnaturalmortalityrates roughlyreflecttherelativeabundanceofthesetargetornamentalsincoralreefs(Table 2). The results shown in Table 3 results indicate a good ruleofthumb of collection limits. However, mortality rates may vary with specific areas so growth rates and L infinityshouldstillbedeterminedwheneverpossible.

MAQTRAC Data Analysis & Interpretation Manual 2006 12 Table 2: Relative abundance of four fish families for four collection areas surveyed in the Philippines. %relative Commonname abundance Pomacentridae Damselfishes 80 Labridae Wrasses 13 Chaetodontidae Butterflyfishes 5 Pomacanthidae Angelfishes 2 Table3:Proportionofpopulationsofornamentalssuggestedassustainablecollection levelsbasedonestimatednaturalmortalityrates.

TAC Species CommonName As%ofPop. Amphiprion clarkii AfricanClownfish 25 Amphiprion frenatus TomatoClownfish 25 Amphiprion ocellaris FalsePerculaClownfish 25 Amphiprion perideraion PinkSkunkClownfish 25 Balistoides viridescens TitanTriggerfish 10 Bodianus axillaris AxilspotHogfish 10 Bodianus diana DianaHogfish 10 Bodianus mesothorax CoralHogfish 10 Centropyge vroliki HalfblackAngelfish 5 adiergastos PandaButterflyfish 15 Chaetodon baronessa BaronessButterflyfish 15 Chaetodon bennetti BennettButterflyfish 15 Chaetodon melannotus BlackbackButterflyfish 15 Chaetodon octofasciatus EightBandedButterflyfish 15 Chaetodon rafflesi RafflesiButterflyfish 15 Chaetodon speculum OvalspotButterflyfish 15 Chaetodon trifasciatus MelonButterflyfish 15 Chaetodontoplus mesoleucus QueenAngelfish 5 Cheilio inermis CigarWrasse 10 Cheilodipterus quinquelineatus FivelinedCardinalfish 20 Chelmon rostratus ChelmonButterflyfish 10 Coris gaimard RedWrasse 10 Dascyllus aruanus ThreeDamselfish 20 Dascyllus reticulatus ReticulatedDamselfish 20 Dascyllus trimaculatus DominoDamselfish 20 Gomphosus varius Green/BrownBirdWrasse 10 Halichoeres chloropterus GreenWrasse 10 Halichoeres hortulanus MarbleWrasse 10 Hemigymnus melapterus BlackEyeThicklip 10 Heniochus acuminatus Black&WhiteHeniochus 10 Heniochus chrysostomus BrownHeniochus 10 Heniochus varius FakeHeniochus 10 Pomacanthus sextriatus SexbarredAngelfish 5

MAQTRAC Data Analysis & Interpretation Manual 2006 13 Pygoplites diacanthus RegalAngelfish 5 Thalassoma lunare MoonWrasse 10 Zanclus cornotus MoorishIdol 10 Zebrasoma veliferum SailfinTang 10 The following tables show the results for natural mortality estimation and the relative yieldperrecruit analyses for several ornamental target fish species in Batasan Island andnearbyreefs,Boholprovince,centralPhilippines:

Table4:Populationparameters,extractionratesandTACsforvariousornamentalsin centralPhilippines. Maximum Species k L∞ M E E10 Recorded AnnualCatch TAC Premnas biaculeatus 1.3 17.85 2.45 0.16 0.307 5129(in2002) 9841 Amphiprion ocellaris 1.6 6.83 3.67 0.31 0.361 613(in2005) 712 Chaetodontoplus mesoleucus 0.92 27.3 1.65 0.23 0.413 560(in2002) 998 Chelmon rostratus 1.4 20.48 2.47 0.26 0.402 1850(in2004) 2846 Ideally, relative yieldperrecruit analyses are derived from numerous annual surveys. Totalallowablecatchisestimatedfromtheseanalysestogetherwithcatchrecords.If annualcatchrecordsareavailable,thenumberscorrespondingroughlytotheextraction rates at E10 would be the total allowable catch (assuming linear relationships). Relative yieldperrecruit analyses assume populations at equilibrium. This is a constraint given the dearth of historical catch data in the aquarium trade. What is currently indicated as unsustainable extraction rates may be due to collection levels severalyearsbeforeespeciallyinatargetspeciesthatisrelativelylonglived. Theexploitationrateswerethencomparedtothemaximumrecordedannualcatchfrom 2002 to 2005. The estimates of total allowable catch based onthe relative yieldper recruit analysis are shown in Table 4. The TAC was derived from proportional relationships of exploitation rate (E), maximum catch, and E10. For example, the clownfishPremnas biaculeatusTACwasestimatedinrelationtoE10(thesustainable exploitationrate)andtotheproportionofEtomaximumrecordedcatch. TACfortheclownfishP. aculeatus: TAC = (5129*0.307)/0.16 Inthiscase,theTACforP. aculeatuswascalculatedas9841.

MAQTRAC Data Analysis & Interpretation Manual 2006 14 Catch-Per-Unit Effort (CPUE) Data …………………

Ornamental fishing is a highly targeted activity. Each week, fish buyerswillsendalistoftheirfishorderstothefishermen.Thiswillbe a subset of a long list of available target species. Fishermen only catch what is ordered and in specific quantities. However, some speciesarealwayshighindemandsothesewillbecollectedroutinely duringatypicalfishingtrip.

Thecatchperuniteffort(CPUE),usuallyexpressedinnumberorweightoffishperunit time spent fishing per fisherman, is a useful indicator that can be used to manage a fishery.Ifafisheryisoverfished,andtheefficiencyofthefishermenisconstant,then over time, the CPUE would be expected to decline as it takes increasing amounts of time to catch the same number of fish. CPUE is thus a proxy estimator of species abundance.However,incaseswhereverylownumbersoffishofagivenspeciesare ordered,theuseofCPUEmaybemisleadingduetorelativelyfewdata.

CPUEisanimportantmonitoringtoolinMACcertifiedcollectionareasduetotherelative ease with which data can be collected. It is a complementary tool to compare with changes in temporal abundance as determined from MAQTRAC surveys. It is the primary tool for very cryptic species that are not recorded during MAQTRAC surveys. Under MAC certification, coordinators are required to maintain a log of the number organisms caught during a recorded period of time in a particular collection site. In practicefishermenmaybereluctanttorevealexactlywheretheywerefishing.

MAQTRAC Data Analysis & Interpretation Manual 2006 15 Assessment of the collectors’ CPUE over time (over multiple reproductive periods) shouldprovideareasonablemetricfromwhichthestatusofthefisherycanbegauged. SuddenorsignificantdeclinesinCPUEmayindicatepotentialoverexploitationthatcan beassessedwithadditionalMAQTRACsurveys.ItisimportanttonotethatCPUEwill vary widely between collectors, locations and perhaps seasonally. As a practical managementtool,adeclineinCPUEshouldbeusedtotriggerarecommendation foraproportionalreductioninexploitationrates.Forexample,adeclineof30%in theCPUEofanornamentaltargetshouldleadtoadecreaseinfishingeffortby 30%untilCPUEcanbestabilized. 3.1CPUEcasestudies(BatasanIslandandnearbyreefs,centralPhilippines) CPUE,definedasthenumberoffishcollectedperhourbyacollector,wasdetermined forthreespeciesbasedonlogbookdatafromBatasanIsland,MunicipalityofTubigon, ProvinceofBohol,Philippinesforseveralmonthsin2002andinterannuallyfrom2002 to2005.Thenumberofindividualfishasrecordedinthelogbookwasdividedbythree hours (the average fishing period in the village). Each collector had individual catch recordssoCPUEwasexpressedperunitfisherman.CPUEwasdeterminedforoneof themostcommonlycaughtfish,thebutterflyfishChelmon rostratus.Thisisaspecies thatisalwaysinhighdemand.Theintraannualtrendsincatchperuniteffortconstitute animportantguidelineastowhethercollectioncanstillcontinueintheshortterm.The interannual trends in catchperunit effort are important indications of total allowable catchespeciallyforhighlycrypticspecieslikethemandarinfishSynchiropus splendidus andthebandedsharkChiloscyllium puntatum.Thelatteriscollectedasjuvenilesand eggs. TheCPUEtrendswithin2002forthechelmonbutterflyfishareshowninFig.3.There were high levels of CPUE during May to June, September and during December in 2002.Thesetrendsmaybeduetoincreasedabundanceofthesetargetornamentals (followingknownrecruitmentperiodsfromMarchtoAprilandfromAugusttoSeptember in the Philippines) and/or increased orders from markets in Europe and the U.S. Traditionally, trade trends indicate higher orders during winter months from these markets.

MAQTRAC Data Analysis & Interpretation Manual 2006 16 CPUETrendsforC. rostratus (2002) CPUETrendsforC. rostratus (2002)

10.0010.00 y=0.0077x+1.843y=0.0077x+1.843 9.009.00 2 RR2=0.0002=0.0002 8.008.00 7.007.00 6.006.00 5.005.00 4.004.00 3.003.00 2.00 CPUE(number/hour) 2.00 CPUE(number/hour) 1.001.00 0.000.00 0 2 4 6 8 10 12 0 2 4 6 8 10 12 MonthMonth

CPUEtrendsforthebutterflyfishC. rostratusin 3 Figure Batasan,Bohol,Philippines InterquarterlyanalysesofmeansshouldalsobeusedforCPUEanalysisforresource management decisions at a secondary level. The third and fourth quarter data were selectedforanalysisforthisexamplebecauseoftheavailabilityofseveraldatapoints. Inthisanalysis,themeansbetweenthetwoquartersactuallyincreasedsothecollection continued.Ontheotherhand,anysignificantdeclinebetweenquartersshouldleadtoa proportionatedecreaseinfishingeffort(e.g.numberofchelmontobecollected)forthe next quarter. For instance, any significant 50% decline in the mean CPUE analysis shouldresulttothedecreaseofnumberofchelmonbutterflyfishthatcanbecollectedby 50%inthenextquarter.

MAQTRAC Data Analysis & Interpretation Manual 2006 17 3.50 3.00 2.50 2.00 1.50 1.00 0.50

AverageCPUE(number/hour) 0.00 3rdquarter 4thquarter QuarteroftheYear

InterquarterlymeanCPUEanalysisforC. rostratusin Figure 4 Batasan,Bohol.Theanalysisdidnotindicateanydecline socollectionwasallowedtocontinue. CPUEasestimatorofTACforcrypticspecies Interannualtrendsincatchperunitefforttogetherwithhistoricalcatchrecordscanbe usedasroughestimatesoftotalallowablecatchforhighlycrypticspecies.Thefigures belowshowlargeannualvariation,butnodecliningtrendforanyspeciesoverthefour yearperiod.Therefore,itappearsthattheseexploitationratesaresustainable,andthe meanofannualcatchhasbeenchosenastheprovisionalTAC.Thebandedshark(both juvenilesandeggs)wasusedasanexampleherebecausesufficientdataareavailable. However,thisspeciesshouldbeassessedonitssuitabilityfortradegiventheshark’s lowfecundityandinappropriatesizeformostaquariumkeeping.

MAQTRAC Data Analysis & Interpretation Manual 2006 18 InterannualCPUETrendsforMandarinfish InterannualCPUETrendsforJuvenilePanther Grouper 30.00 25.00 3.50 y=0.2698x537.54 3.00 20.00 R2=0.0154 y=0.0688x+138.37 2.50 R2=0.035 15.00 2.00

CPUE 1.50 10.00 CPUE 1.00 5.00 0.50 0.00 0.00 2001 2002 2003 2004 2005 2006 2001 2002 2003 2004 2005 2006 Year Year InterannualCPUETrendsforjuvenileBanded InterannualCPUETrendsforBandedShark Shark Eggs 6.00 12.00 5.00 y=0.0446x+90.129 10.00 2 y=0.019x+38.842 4.00 R =0.0045 8.00 R2=0.0007 3.00

6.00 CPUE

CPUE 2.00 4.00 2.00 1.00 0.00 0.00 2001 2002 2003 2004 2005 2006 2001 2002 2003 2004 2005 2006 Year Year Interannualtrendsincatchperuniteffortforvariousornamentals Figure 5 incentralPhilippines. Based on the above data and historical catch records, we have the following recommendationsfor annual TACs specifically for the reefs in Batasanisland and the vicinity: 1.) For the highly cryptic mandarinfish Synchiropus splendidus, we recommended totalannualcatchtobe5000individualsbasedoncatchrecordsandtrendsin CPUEfortheBatasanreefswithanareaof24km2. 2.) ForthejuvenilebandedsharkChiloscyllium punctatum,werecommendedTAC at 350 individuals per year based on catch records and trends in CPUE. We recommendedcollectionofeggsat100peryearbasedonnosignificantdecline during 2005. However, we have also recommended that this species be assessedregardingitssuitabilityforcollection.Bandedsharksaretargetedas juvenilesandeggs,apracticethatmightleadtogrowthoverfishing.Thisshark

MAQTRAC Data Analysis & Interpretation Manual 2006 19 alsohaslowfecundityandgrowstoasizethatcannotbeeasilymaintainedby hobbyistsinhomeaquaria. 3.) ForthepanthergrouperCromileptis altivelis,werecommendedannualcollection of 300 based on intra and interannual trends in catchperunit effort. This ornamental is targeted as a very young juvenile and adults are not commonly recorded. High collection might cause growth overfishing. The CPUE data indicatedadeclinein2004(seeFigure5).Inhindsight,collectionshouldhave decreased in the early quarter of 2004 following the relatively higher mean in 2003.Fortunately,CPUEincreasedagainin2005.

MAQTRAC Data Analysis & Interpretation Manual 2006 20 Matrix Population Models & Coral Collection …………………………………………

Coral reefs are subject to a range of natural and manmade disturbances, from blast fishing to coral bleaching. As an added disturbance and as a fishery, coral collection should be managed in order not to aggravate the effects of these disturbances on reefs. Coralcollectionshouldnotbeallowedonreefsthathaveexperiencedbleachingevents and/orheavilyimpactedbyotherdisturbancessuchasstorms,blastfishingandcrown ofthornsstarfishinfestation.Collectionlevelsshouldalsobesettomakesurethatat least the local population has the capacity for replacement and regeneration. This is importantsincemanycoralstargetedbytheaquariumtradeareslowgrowing. Unlike other exploited stocks such as cod or salmon, few analogous fisheries models have been applied to corals as a management tool. A few of the traditional fisheries models were applied only to a limited extent to corals (e.g. mushroom corals). For example, Ross (1984) used yieldperrecruit analysis to determine the ecologically sustainablesizeof damicorniscoralthatiscollectedintheaquariumtrade. Thedearthoftoolsforcoralfisheriesisunderstandablebecausetheircollectiondoesnot havealonghistoryunliketemperatefishstockssuchascodandhaddock.Countries facedwithdevelopingquotashaveusedavarietyofmethodstotrytoderivethem.In Indonesia,coralquotasareestimatedmainlyfromtradedata. Matrix models, as a predictive tool, may be applicable to the coral ornamental trade managementasapopulationbasedframeworkespeciallyinsettingcatchlimits.Matrix models provide opportunities to project shortterm and longterm changes relevant in coral populations under different mortality (with or without collection), growth and

MAQTRAC Data Analysis & Interpretation Manual 2006 21 recruitment rates and thus provide basis for estimating sustainable collection levels. Thesemodelsalsoincorporateindividualshrinkageratesinthesemodeledpopulations. This is critical since size in corals does not necessarily approximate age due to interactions(thatcanleadtoshrinkage)withotherpotentiallyspacelimitedandrelatively immobileorganisms(e.g.Hughes1984).Modelingtheeffectofcollectionisanalogous to the studies of Done (1987, 1988) that predicted the effects of natural disturbance (e.g.,Acanthaster planciinfestation)onthepopulationsofPoritesspp..Coralcollection fortheornamentaltradeisanadditionaldisturbanceandcanbefactoredinasincreased mortalityrate. Operationally, the transition matrix defines the probability that colonies in a particular sizewillgrowintoalargersizeclass,remaininthesamesizeclass,die,orshrink/break intoasmallersizeclass.Theprobabilitiesinthediagonalofthesizeclassifiedmatrix arethelikelihoodsofindividualsinagivensizeclasstoremaininthesamesizeclass; belowthediagonalareprobabilitiesofgrowthtolargersizeclasses;andthoseabove the diagonal represent shrinkage to smaller size classes. Contribution to total recruitmentofreproducingsizeclassesareindicatedandincludedinthefirstrowofthe matrix (see Table 7). The transition matrix is multiplied by the vector that is the observedsizefrequencydistributioninthepopulationunderstudy. 4.1 Anacropora matthaiicasestudyinLampung,southSumatra(Indonesia) ThechangesinthepopulationsofAnacropora matthaiiinLampung,southSumatrain Indonesia were modeled to estimate sustainable levels of collection. The data were collected during MAQTRAC surveys conducted in 2004. Lampung is an important source of corals in Indonesia for international and local trade. For the data analysis, coralcoloniesweregroupedaccordingtosizecategoriesusedbytheornamentaltrade: small(5.0cm),medium(5.1to15.0cm),large(15.1to25.0cm)andextralarge(>25.0 cm.). Ideally, the transition matrix should have probabilities of shrinkage, growth, and non growthandestimatesofcontributionofeachcolonytorecruitment(sexualandasexual), allofwhichareempiricallyderived.However,inmostcasessuchdataarelacking.For

MAQTRAC Data Analysis & Interpretation Manual 2006 22 theLampungcasestudy,weestimatedprobabilitiesofsurvivorshipbasedonobserved distributionofsizeclasses.Thisassumesasteadystateconditionforthepopulation.In addition, we estimated contribution of each colony to recruitment by assumingthat all coralsinthesmallestsizeclasswereproductsoftheadultsinthearea ThefollowingarethedatausedformodelingpopulationchangesforA. matthaii:

Table5:SizeclassdataofA. matthaiiin Lampung,Indonesia. Sizeclass Category Number ≤5cm SC1 121 5.1to15cm SC2 125 15.1to25cm SC3 4 >25cm SC4 0 ThedataforAnacropora matthaiiindicatedthattherewere121coloniesthatwere5.0 cm and smaller (SC1); 125 colonies that were between 5.0 and 15.0 cm (SC2); 4 coloniesbetween15.0and25.0cm;andnocoloniesabove25.0cm. Assumptions:

1.) Corals of sizes 5 cm and smaller are the recruits to the population (e.g. ChiapponeandSullivan1996,Edmunds2000).

2.) ColonieswithinsizeclassesSC2andSC3contributeequallytorecruitment (e.g.ChiapponeandSullivan1996,Edmunds2000).Thisassumesadegree ofclosureinthepopulationpopulationintheabsenceofdataonhowmuch the local and external populations are contributing to recruitment. ChiapponeandSullivan(1996)showedevidenceofpossibleselfrecruitment ofbothbroodingandbroadcastspawningcoralsintheFloridaReefTract.

ThefollowingisastepbystepguidelineinusingmatrixmodelsforA. matthaiidata: 1.) Calculatethecontributionofmaturecoloniestorecruitment(firstrowofthe matrix):

MAQTRAC Data Analysis & Interpretation Manual 2006 23 a.) Transform all data to natural logarithm. Take the sum of the log transformed data for the sexually mature size classes (SC2 and SC3). Calculate the ratio of the logtransformed abundance of size class SC1 (recruits)tothissum.

2.) Calculatesurvivorshiprate:

a.) Derivetheslopeofnaturallogtransformedabundancedatabyimposing atrendlineinthegraphoptionofanyspreadsheetprogram.Thisslopeis the instantaneous mortality rate. The inverse of this number is the mortalityratein%.Thecomplementofthisnumberisthesurvivorship. For example, the instantaneous mortality rate was 1.7 or 6% in A. matthaii.Thesurvivorshipwasestimatedat94%.

b.) Derivesizespecific(ofthetargetsizecategory5to15cmtothenextsize class)survivorshiprateseparatelyfromtheslopeofthelogtransformed dataofthesizeclassesofinterest(SC2andSC3)asdescribedabove. The rate of survivorship from SC2 (the target coral size) to SC3 was estimatedtobe68%(comprisingbothnaturalandfishingmortality).

3.) Calculatetheprobabilityofgrowthtothenextsizeclass:

a.) Inthiscase,theprobabilityofgrowingfromSC1toSC2was100%;from SC2toSC3was66%growthprobabilitybasedondatafromGomezetal. 1985.).

Thefollowingtableisaroughguideforgrowthprobabilityvaluesforfastand slowgrowingcorals:

Table6:Recommendedprobabilitiesofgrowth tonextsizeclassesinscleractiniancorals (basedinGomezetal.1985). I.Fastgrowingcorals(e.g.Acroporaspp.) SC1 SC2 SC3 SC4 SC1 *** SC2 1 *** SC3 *** 0.66 *** SC4 *** *** 0.66 ***

MAQTRAC Data Analysis & Interpretation Manual 2006 24 II.Slowgrowingcorals(e.g.Gonioporaspp.) SC1 SC2 SC3 SC4 SC1 *** SC2 0.8 *** SC3 *** 0.3 *** SC4 *** *** 0.3 ***

4.) Calculatetheprobabilityofgrowingandsurvivingtothenextsizeclass:

a.) Theprobabilityofgrowingtothenextsizeclassisacombinationofthe probabilityofsurvivorshipandthegrowthrateofthecoralspecies.These were estimated from steps 2 and 3. In this case, the probability of growing to the next size class was estimated at 94%from SC1to SC2 withgrowthprobabilityat100%andsurvivorshipat94%;45%fromSC2 to SC3, based on 68% survivorship rate and 66% growth probability basedondatafromGomezetal.1985.).

Table7:DerivedtransitionmatrixfortheA. matthaii populationinLampung,Indonesia. SC1 SC2 SC3 SC1 0.000 0.700 0.700 SC2 0.94 0.000 0.000 SC3 0.000 0.45 0.000

5.) Runthetransitionmatrixmodel.ForA. matthaii,themodelindicatesthatthe collectionlevelisnotsustainablegiven68%survivorshipofthetargetedsize (SC2)tothenextsizeclass(SC3)andwithgrowthprobabilityat66%.

MAQTRAC Data Analysis & Interpretation Manual 2006 25 ProjectedPopulationBehavior 140 120 100

80 SC1 SC2 60 SC3 Abundance

40 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Year PopulationtrajectoryanalysisforA. matthaiiusingthe Figure 6 matrixtransitionmodel. 6.) Calculate TAC as % of the population by successively decreasing (from 100%) the probability of survivorship until the lambda, λ, (the index of the ability of the population to replace itself) gets to less than 1 at 20 years period.Forexample,inA. matthaiiat85%survivorshipofthetargetclass SC2toSC3,λis1.Atlowersurvivorship,λisbelow1.Therefore,15%of SC2 abundance is the TAC for A. matthaii in Lampung. This absolute number can be derived from the average density (with upper limit) and estimated coral reef area. There is a caveat to this TAC as % of the population.ThisassumesthatwhatiscollectedasTACalreadyincorporates the natural mortality rate. Simply, you collect including those what were supposedtodie. Operationally, the transition matrix is multiplied to the size classes iteratively and the changes in population are predicted. The predicted changes of the A. matthaii population in Lampung based on the sizeclass data and assumptions on its vital statisticsareshownbelow.Theresultsindicatethatharvesting15%oftheabundance ofthesizeclassSC2ofA. matthaiiinLampungstillmaintainsthepopulation’sabilityto

MAQTRAC Data Analysis & Interpretation Manual 2006 26 replaceitself.Therefore,TACas%ofthepopulationhastobebelow15%.Inthiscase werecommend10%.

ProjectedPopulationBehavior

160

140

120

100 SC1 80 SC2 SC3 Abundance 60

40

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Year

PredictedchangesinthepopulationofA. matthaiiatalevel Figure 7 tosustainstockabundance(15%totalmortalityinthe targetsize).

Ideally, catch records should be available indicating what this level of collection is in termsofcoloniescollectedannuallyandasaproportionofthelocalpopulation.Rough estimates of this collection level can be determined by interviewing the area’s local collectorsandtheexportersinthecapital. With resurveys, more data on the vital statistics of coral population being exploited should become available. Growth (including shrinkage and nongrowth) mortality and recruitmentrateswillbemorerefined.Thepredictedchangesinthepopulationcanalso beverifiedduringtheseresurveys. Similar to the situation in the fish surveys, size class data and therefore matrix and transitionmodelscanonlybegeneratedfromseveralspeciesofcoralsoutofalonglist. We recommend using matrix models for species with good data (range of size class from recruits to adults and ideally at least 100data recorded). Ideally, matrix models

MAQTRAC Data Analysis & Interpretation Manual 2006 27 shouldbedoneattheminimumforslowandfastgrowingspeciesandthesenumbers appliedtootherspecieswithsimilarecologiesandgrowthrates. Fisheriesdependentmonitoringofspecieslevelcatchstatistics Asnoted,CPUEisanadditionaltoolthatcanbeusedtohelpmanagecoralcollection. Thisismorecriticalforcoralspeciesorspeciesgroupsthatarenotrecordedduringthe fisheriesindependent surveys. Fisheriesdependent data include catch statistics recordedbycoordinators,onthetotalnumberofcoralscollected,thesiteofcollection, the period of collection (e.g. number of hours) and the rates of wastage. Rates of wastageshouldalsobetrackedideallyuptotheimporterlevel.Thelatterinformationis critical in tracking which corals have low survivorship during transport and therefore shouldbeconsideredtothelistofunsuitableforcollection. OtherRelevantResearchIssues For longterm management strategies, the collection of key ecological data that are speciesspecificisimportant.Forcorals,thereisaneedtocollectareaspecificdataon growth rates and mortality rates through tagging of targeted ornamental species. For fish,thereisaneedtocollectgrowthratesusingagebasedtechniques.Sincefishage based fisheries assessment techniques are relatively expensive, such studies should prioritizehighlycollectedspecies(e.g.thebutterflyfishC. rostratus,theclownfishesP. biaculeatus and A. ocellaris, and the mandarinfish S. splendidus). For both fish and corals, there is also a need to collect information on sizeatfirst reproduction to help developsizelimitstopreventgrowthoverfishing.

MAQTRAC Data Analysis & Interpretation Manual 2006 28 Conclusion ………………………

Most countries with a marine ornamental industry do not have a national plan or framework for its management. The certification program under the Marine Aquarium Council facilitates the local management of ornamental fisheries. A critical aspect of the certification program is the formulation of the Collection Area ManagementPlan.Thismanagementplanrequirestheestablishment ofnotakemarineprotectedareasandthesettingupoftotalallowablecatchforcurrently collectedspeciesandthosethathavepotentialforthetrade.Settingreferencepoints suchascollectionlimitsisjustoneofthemanagementstrategiesbeingdevelopedby Reef Check for the certification program under the Marine Aquarium Council. Other activitiesincludetheestablishmentofnotakemarineprotectedareas. Determining reference points entails the use of traditional fisheries models that have been originally developed for slowgrowing temperate species. Most of these models are data intensive and have been facilitated through longterm data collection in the fisheriesofdevelopedcountries.Mostdevelopingcountriesdon’thavethemeansfor such expensive research programs. Fisheries in the latter countries are also multispeciesinnatureandlandingsaretypicallydiffuseanddifficulttotrack.Therefore, thesemodelshavelimitedapplicationstothefisheriessituationsindevelopingcountries. There is a general consensus that under these dataless fisheries, ecosystem management approach such as the establishment of notake zones, seasonal fishing andsizelimitsmaybemoreappropriate.However,applicationofseasonalandsize limitsrequiresahighdegreeofgovernmentinvolvementthatisimpracticalindeveloping countries.

MAQTRAC Data Analysis & Interpretation Manual 2006 29 Theestablishmentoftotalnotakezoneshasparticularlybecomepopularandimportant sincetheyalsopreservethehabitatsandthemultispeciesecologicalrelationshipsina collectionarea.Thereareindicationsthattotalnotakezonescanaccomplishwhatthey were established to do. However, the establishment of notake zones usually takes several years given the need to consult various stakeholders and ensure meaningful buyinfortheirlongtermsustainability.Therefore,usingoutputcontrolssuchastotal allowablecatchisalsodeemedanimportantmanagementtool. UndertheMACprogram,outputcontrolsmaybeeasiertoenforcebecausedemandcan beregulatedthroughtheordersystem.Theinputcontrolisprobablymorechallenging because of internal (by nonMAC certified local collectors) and external poaching. In addition,thephenomenonofrovingcollectionseemstobeprevalentwhereinfishermen collectoutsidetheirmunicipalwaters.Inmostareas,collectionsitesareoftenremoteso poaching cannot be monitored. This also makes the rotation of collection sites inapplicableasamanagementstrategyduetotheirremotenessfrommonitoring. Output control means determining reference points usually derived from traditional fisheriesmodels.Obviously,thesemodelshavetobemodified,verifiedandtheirresults resetinanadaptiveapproachtomanagement.Basedonthereviewoffisheriesmodels, the yieldperrecruit analysis and recent catch records have some application in the ornamentaltrade.TheuseofnaturalmortalityratesasFMSYcanbeaverificationtoolto thisapproachorasaseparatetoolwhencatchrecordsarenotavailable.Somerough generalizationscanbemadeabouttherelationshipofMandFMSYanditisimportantthat thesebeverifiedintheaquariumtradesituation.Furthermore,sizelimitsshouldbeset becausetheyhavebiologicalandtradebasesfornoncollectionandavoidingwastage. Another output control is the development of aspecies list that prevents unnecessary collection of organismsfrom coral reefsthat will certainly die in captivity due to some specificecologicalrequirements. Equallychallengingisthedeterminationofthetotalallowablecatchforcorals.Forsome countriessuchasIndonesia,thereisactivecollectionandinternationalexportofcorals. There are catch limits but these approaches have not taken into account specific collectionareasizeclassdistributionandgrowthandmortalityparameters.Wehaveput forward a general model and theoretical approach in setting total allowable catch for

MAQTRAC Data Analysis & Interpretation Manual 2006 30 corals. Obviously, this model will be more refined especially with more empirical and speciesspecificdataavailableforsomeparameters. Summary Theaquariumtradeisarapidlyexpandingindustryandthereisathreatofovercollecting targetspeciesespeciallysincemostoftheseorganismscomefromthewild.Manyof the target organisms are also particularly vulnerable to overharvesting since they possess complex life history characteristics, limited and highly specific habitat requirementsandhigheconomicvaluewhentradedlive.Theestablishmentofmarine protected areas, preferably as total notake zones, is an important strategy in the management of the aquarium trade. It is also important to set sustainable collection limits. Traditionally, total allowable catch (TACs) limits have been based on fisheries models. However, these traditional fisheries models are highly data intensive. Therefore,traditionalfisheriesmodelshavetobemodifiedinthesesituationsbyadding general rulesofthumb and empirical approach. We have put forward methods for managing the aquarium tradeand we envision morerefinements asmore empirically deriveddatabecomeavailable.

MAQTRAC Data Analysis & Interpretation Manual 2006 31 Bibliography……………………………

AngPOJr.andDeWreedeRE.1990Matrixmodelsforalgallifehistorystages.Mar.Ecol. Prog.Ser.59:171181

BeddingtonJandCookeJG.1983.The potential yield offishstocks.FAOFish.Tech.Pap. 242,47. BevertonRJHandHoltSJ.1957.Onthedynamicsofexploitedfishpopulations.Fish.Invest. Ministr.Agric.Fish.Food(GreatBritain)Ser.II19,533. BrucknerAW.2002.ProceedingsoftheInternationalWorkshopontheTradeofStonyCorals: Development of Sustainable Management Guidelines (April 912, 2001, Jakarta, Indonesia). U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service. NOAA Technical Memorandum NMFSOPR23,September2002. CaddyJ.1998.Ashortreviewofprecautionaryreferencepointsandsomeproposalsfortheir useindatapoorsituations.FAOFisheriesTechnicalPaper379. CaddyJFandCsirkeJ.1983.Approximationstosustainableyieldforexploitedandunexploited stocks.Oceanogr.Trop.18(1):315 Caswell H. 1990. Matrix population models: construction, analysis and interpretation. Hall Caswell.2ndedition. Chiappone M and Sullivan KM. 1996. Distribution, abundance and species composition of juvenilescleractiniancoralsintheFloridareeftract.Bull.Mar.Sci.58(2):555569 ColeF,KoenigC,EklundAandGrimesC.1999.Managementandconservationoftemperate reeffishesinthegroupersnappercomplexofthesoutheasternUnitedStates.American FisheriesSocietySymposium23:233242 DerisoRB.1982.Relationshipoffishingmortalitytonaturalmortalityandgrowthatthelevelof maximumsustainableyield.Can.J.Fish.Aquat.Sci.39:10541058 DohertyPJ.2002.Variablereplenishmentandthedynamicsofreeffishpopulations.InP.Sale (ed.)Coralreeffishes:dynamicsanddiversityinacomplexecosystem.327358 Done, T.J. 1987. Simulation of the effects of Acanthaster planci on the population structure of massive corals in the Porites: evidence of population resilience? Coral Reefs 6: 7590 Done,T.J.1988.Simulationsoftherecoveryofpredisturbancesizestructureinpopulationsof Poritesspp.damagedbycrownofthornsstarfish.Mar.Biol.100:5161 Edmunds PJ. 2000. Patterns in the distribution of juvenile corals and coral reef community structureinSt.John,USVirginIslands.Mar.Ecol.Prog.Ser.202:113124 FrancisRC.1974.Relationshipoffishingmortalitytonaturalmortalityatthelevelofmaximum yieldunderthelogisticstockproductionmodel.J.Fish.Res.BoardCan.31:15391542

MAQTRAC Data Analysis & Interpretation Manual II 2006 32 Froese R and Pauly D. 2000. FishBase 2000: concepts, design and data sources. ICLARM Contribution,1594.ICLARM:LosBaños,Laguna,Philippines.ISBN9718709991.XVII, 344pp GayaniloFC,SparrePandPaulyD.2002.FAOICLARMFishStockAssessmentTools.Food andAgricultureOrganizationoftheUnitedNations,Rome. Gomez E, Alcala A, Yap H, Alcala L and Alino P. 1985. Growth studies of commercially important scleractinians. Proceedings of the 5th International Coral Reef Congress 6: 199204 HarriottVJ.2003.Cancoralsbeharvestedsustainably?Ambio32(2):130133 HilbornRandWaltersC.1992.Quantitativefisheriesstockassessment:choice,dynamicsand uncertainty.ChapmanandHall,NewYork. HughesT.1984.Populationdynamicsbasedonindividualsizeratherthanage:ageneralmodel withareefcoralexample.AmericanNaturalist123:778795 HughesT.1990.Recruitmentlimitation,mortalityandpopulationregulationinopensystems:a casestudy.Ecology71(1):1220 Johannes RE. 1998. The case for dataless marine resource management: examples from tropicalnearshorefinfisheries.TREE13(6):243246 Jones GP, Milicich MI, Emslie MJ and Lunow C. 1999. Selfrecruitment in a coral reef fish population.Nature(London)402:802804 Nievales F. 1993. Characterization of some population biology parameters of the reef coral Pocillopora damicornis(Linnaeus)inTaklongIsland,Guimaras.Master’sThesis.Marine ScienceInstituteUniversityofthePhilippinesDiliman. PattersonK.1992.Fisheriesforsmallpelagicspecies:anempiricalapproachtomanagement targets.Rev.Fish.Biol.Fish.2:321338 RossM.1984.AquantitativestudyofthestonycoralfisheryinCebu,Philippines.P.S.Z.N.I. Mar.Ecol.5:7591 SadovyYandVincentA.2002.Ecologicalissuesandthetradesinlivereeffishes.InP.Sale (ed.)Coralreeffishes:dynamicsanddiversityinacomplexecosystem.391420 SwearerSE,CaselleJE,LeaDWandWarnerRR.1999.Larvalretentionandrecruitmentinan islandpopulationofacoralreeffish.Nature(London)402:799802

MAQTRAC Data Analysis & Interpretation Manual II 2006 33 Appendices ………………………………

Appendix1. FisheriesModelsandtheirApplicabilitytotheOrnamentalTrade

There is a significant literature infisheries management andthe models developed to derivereferencepoints(e.g.HilbornandWalters1992).Oneoftheearliestmodelsis theconceptofsustainablecatchas50%ofvirginstockpopulations.However,thereare fewunexploitedcoralreefstoderivesuchreferencepoints.

Surplus production models are used to determine what fishing pressure is offset by population growth. This is the maximum sustainable yield (MSY) and used to be the ‘holygrail’infisheriesscience.Operationally,thisinvolveslongtermtimeseriesdataon catchandeffort.Theassumptionsofthesemodelsincludelogisticpopulationgrowth. The maximum biomass of the population is the carrying capacity of the environment. Populationsinthewild,however,fluctuatewildlysothisiseasiertoassumeintheory than in practice. These models also assume densitydependent processes whereas population fluctuations may be driven by changing levels of recruitment (reviewed in Doherty2002).Theotherdisadvantageofsurplusproductionmodelsisthattheyignore agestructureandotherdemographicparameters.

Catchdataarecriticalindeterminingsurplusproduction.Inreality,catchrateschange as thefisheries maturedue to increasing efficiency. Sadovy and Vincent (2002) also arguedthatsurplusproductionmodelsareinapplicablefortheaquariumtradebecause oflowopportunityandinvestmentscostsandtheinherentcharacteristicofthetradethat putshighpremium(andprice)onrarespecies.Thelatterargumentimpliesthatdecline inabundancewillstillbeprofitableduetoincreasingpricewithrarityandlowoperation costs.

LikethederivationofMSY,thelatestfisheriesmodelsrequirealevelofdatathatisnot usuallyavailableintheaquariumfishery.Withgooddataonthepresentandpaststatus of the targeted stocks, Virtual Population Analysis (VPA) can project what is the population’s sustainable catch limits. VPA uses the current cohort size and works

MAQTRAC Data Analysis & Interpretation Manual II 2006 34 backwards.However,theanalysisrequiresdataonpopulationsizes,andannualnatural andfishingmortalityrates.

Theanalysisofthespawningstockbiomassperrecruit(SPR)ratiosisanimportanttool to determine recruitment overfishing. Basically, the analysis can infer how much spawningbiomassisneededforpopulationstopersist.However,theanalysisrequires data on fecundity, stockrecruitment relationships, ageatfirst maturity, and mortality rates. In addition, this model has been postulated to be inapplicable especially to hermaphroditicreeffishes(Coleetal.1999).

Sustainableexploitationoffisheriesneedstobalancereproduction,bodygrowth,fishing mortalityandnaturalmortality.Yieldperrecruit(YPR)models,inaway,aresuperiorto surplus production models because they separate these components in stock assessment analyses. Yieldperrecruit models approximate what fishing mortality is sustainable given population growth parameters and mortality rates that are inferred fromagestructuredataandlengthatfirstcapturedata. Thefundamentalyieldperrecruitmodelassumesasteadystate,i.e.thatrecruitmentis constant, and hence the age structure of the population is the same if we followed a single cohort through time. Hence, yield is measured ‘per recruit’ (Beverton and Holt 1957).Thereisevidencethatagestructureisfarfromconstantinreeffishpopulations (reviewedinDoherty2002). Because of equilibrium assumptions, yieldperrecruit analyses only predict longterm effects.Forexample,adecreaseinfishingeffortasshowntobeoptimalinthisanalysis doesnotimmediatelytranslatetoincreasedcatch.Thedurationofthepredictionsalso dependuponthelongevityofthefishspeciesandlengthofitsexploitation.Theduration of the transition period can be several years for fish of high longevity and shorter for shortlived fish. For very shortlivedfish,the distinction between short and longterm effectsdoesnotevenapplybecausethestockisneveratequilibrium(FroeseandPauly 2000).Thedistinctionbetweenshortlivedandlonglivedspecieshasnotbeenclearly defined. Estimatesofnaturalmortalityratesarenecessaryinyieldperrecruitanalyses.Pauly’s empirical equation is commonly used in estimating natural mortality rates. Estimates

MAQTRAC Data Analysis & Interpretation Manual II 2006 35 usingthisapproach,however,donothaveconfidenceintervalsmakingyieldperrecruit estimateslessreliable.Thepotentialeffectoffishingmortalityonthespawnersandon futurerecruitmentisalsoignoredinyieldperrecruitanalyses.Thisiscriticalsincethere isevidenceofpopulationselfrecruitmentinreeffishpopulations(Sweareretal.1999 Jonesetal.1999).Overfishingofspawningadultsmaymeanlowerrecruitmentinthe future.

TherelationshipbetweenNaturalMortality(M)andFMSY

Caddy and Csirke (1983) presented data on the relationships between M and FMSY.

TheirdataindicatedthatFMSYrangesfromathirdtofivetimesthevalueofMandthey suggestthatM=FMSYisnotacommonsituation.Thesewiderangingestimatesalso suggest that there is a need to accumulate empirical information on the relationship between reference points such as FMSY and biological criteria such as M. However, Patterson (1992) has showed some useful generalizations that are relevant to high mortalitytropicalspecies.Heexaminedalargenumberofstocksofsmallpelagicfish withhighnaturalmortalityrates.Heshowedthatmeanexploitationratesover0.4(F= 2/3M)consistentlycausedstockstodecline,whileexploitationratiosbelow0.33(F=½ M)havegenerallyallowedstockstoincreaseinsize.(Thisisanotherreferencepointfor theyieldperrecruitanalyses.)SeveralresearchershavealsoagreedthatFMSYislarger thanM(Francis1974,Deriso1982andBeddingtonandCooke1983).Thisiscertainly thecaseforthosefisherieswhererecruitmentislargelyindependentofstocksize(e.g. coralreeffishes)andwheremostofthelandingsarefromthepreviousyear’srecruits. DeterminingCatchLimitsforOrnamentalCorals TheinternationaltradeincoralsisregulatedundertheConventionontheInternational Trade in Endangered Species of Wild Flora and Fauna (CITES) agreement. The requirements under the CITES agreement include the provision that the exports are identifiedtothespecieslevelbutthisisimpracticalduetotherecognizedcomplexitiesof coralidentification.Theprovisionalsoincludesthatcollectionwillnotbedetrimentalto thespecies.Oneapproachtomeetingthe“nodetriment”requirementofCITESistoset export quotas for a trade country. This has presented complications for Indonesia, where quotas are largely based on existing practices without adequate scientific

MAQTRAC Data Analysis & Interpretation Manual II 2006 36 evidenceforecologicalsustainability.Themajorcoraltaxacollectedintheornamental trade are the colorful, largepolyped species such as Euphyllia spp., Goniopora spp., Catalaphyllia jardinei, and Trachyphyllia geoffroyi. There is also little ecological information available on many of these species to provide a basis for sustainable collectionlimits. The use of models that predict population changes is an attractive tool for coral ‘fisheries’management.Forinstance,matrixmodelshavebeenusedinunderstanding thedynamicsofbiologicalsystems(Caswell1990).Transitionmatriceshavebeenused topredictchangesinthepopulationdynamicsofinvertebratesandvertebrates.These matrixmodelsvariouslyuseage,sizeandstageclassifieddataandtransitionmatrices topredictlongtermpopulationchanges.Theprojectedpopulationchangesusingthese models have been corroborated in the observations of organisms such as the corals Agaricia agaricites (Hughes 1984), and Poritesspp. (Done 1987, 1988), the bryozoan Cellepora pumicosa (Hughes 1990) and a brown alga (Ang and De Wreede 1990). Hughes (1984) showed that a sizeclassified matrix model from field data and a transition matrix that incorporates vital processes such as mortality, growth and recruitment could be functional tools in measuring and predicting coral population densityundernonperturbedorperturbed(e.g.severestorm)conditionsattimescales thatareotherwiseimpossibletomeasureatthetimeofstudy.Done(1987,1988)also usedasimilarpopulationmodeltoevaluatethedamageofthecrownofthornstarfish Acanthaster plancioutbreaksonPoritespopulations. Thereislittleavailableempiricalinformationonpopulationvitalstatisticsofcoralsand especiallythosespeciesunderornamentalexploitation(Harriott2003).Nievales(1993), inanunpublishedthesis,empiricallydeterminedgrowth,reproduction,recruitmentand mortalityratesofPocillopora damicornis.Sheusedthesevitalstatisticstoconstructa sizeclassified transition matrix in predicting the population size and structure of P. damicornisforthenexttwentyfiveyearsunderdifferentscenarios.Thiscoralspeciesis collectedfortheornamentaltradeanditsvitalstatisticscanbeusedasastartingpointin modeling the effects of collection on other species until information are available for thesecorals.

MAQTRAC Data Analysis & Interpretation Manual II 2006 37 The monitoring subgroup in the “Proceedings of the International Workshop on the TradeinStonyCorals:DevelopmentofSustainableManagementGuidelines(April9to 12, 2001 in Jakarta, Indonesia)” (Bruckner 2002) formulated the following guidelines concerningquotas: 1.) Quotasaremeanttobeconservative; 2.) Quotasareideallysetforparticularspecies; 3.) Any type of disturbance (e.g. bleaching) should trigger a new stock assessmentthatwillmodifyquotasifappropriate; 4.) Quotasaresetforwholecolonycollectionnotjusttheremovaloffragments; and 5.) There is a need to track wastage and rejections as well since these affect estimatesofcurrentcollectionlevels. Setting ‘sustainable’ collection limits should be only a part of suite of management strategiesforcoralcollection.Sustainablecollectionalsoimpliesprotectingsitesfrom thetradethroughtheestablishmentofnotakezones.Thismaintainsasourceofadult corals that can provide larvae for replenishing the area’s collection sites. Coral harvestingshouldalsobesitedawayfromrecreationalareassuchasdivesiteswherea greatereconomicandsocialvaluecanbegainedthroughmaintainingthequalityofthe resource.

MAQTRAC Data Analysis & Interpretation Manual II 2006 38

MAQTRAC Data Analysis & Interpretation Manual II 2006 39