Analysis of Reelin Function in Brain Development and in Adult Neurogenesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Transcriptome Analyses of Rhesus Monkey Pre-Implantation Embryos Reveal A
Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Transcriptome analyses of rhesus monkey pre-implantation embryos reveal a reduced capacity for DNA double strand break (DSB) repair in primate oocytes and early embryos Xinyi Wang 1,3,4,5*, Denghui Liu 2,4*, Dajian He 1,3,4,5, Shengbao Suo 2,4, Xian Xia 2,4, Xiechao He1,3,6, Jing-Dong J. Han2#, Ping Zheng1,3,6# Running title: reduced DNA DSB repair in monkey early embryos Affiliations: 1 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 2 Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China 3 Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China 4 University of Chinese Academy of Sciences, Beijing, China 5 Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China 6 Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China * Xinyi Wang and Denghui Liu contributed equally to this work 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press # Correspondence: Jing-Dong J. Han, Email: [email protected]; Ping Zheng, Email: [email protected] Key words: rhesus monkey, pre-implantation embryo, DNA damage 2 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Pre-implantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA) and cell fate commitment. -
IN the NEWS Down Syndrome Cell Adhesion Molecule
0031-3998/07/6201-0001 Vol. 62, No. 1, 2007 PEDIATRIC RESEARCH Printed in U.S.A. SCIENCE – IN THE NEWS Down Syndrome Cell Adhesion Molecule – A Common Determinant of Brain and Heart Wiring the murine model, Drosophila Dscam has been shown to play own Syndrome (DS), the most common cause of mental a role in axon guidance (4) The brains of Dscam1 and Dscam2 D retardation, is a genetic disorder caused by the presence mutants show regional patterns of disorganization most likely of either all or part of an extra human chromosome 21 due to defective neural wiring during development (4,5). (HSA21) (1). Phenotypic traits commonly associated with DS Collectively, these investigations provide evidence for a include congenital heart disease, short stature, decreased mus- common factor involved in disruption of brain and heart cle tone, and hearing loss. DS patients also show an increased wiring. Understanding the mechanisms and factors that link risk of developing leukemia or early onset Alzheimer disease. these genetic defects to their ultimate phenotype will help Down Syndrome Cell Adhesion Molecule (DSCAM) is an scientists develop targeted therapies that prevent the disorders HSA21 axon guidance molecule involved in the development associated with DS. This line of investigation, spanning from of the nervous system (2). Drosophila to mouse and ultimately to humans, provides the In murine models of DS, the DSCAM homologue is ex- promise of novel treatment strategies in the future. – Julia pressed in adult and embryonic brain and heart where it Baumann modulates inter-cell connections (1). In mouse brain, three copies of DSCAM result in an overexpression of the protein, which contributes to a severe disorganization of dendritic REFERENCES spines. -
Containing Interneurons in Hippocampus of a Murine
RESEARCH ARTICLE Emergence of non-canonical parvalbumin- containing interneurons in hippocampus of a murine model of type I lissencephaly Tyler G Ekins1,2, Vivek Mahadevan1, Yajun Zhang1, James A D’Amour1,3, Gu¨ lcan Akgu¨ l1, Timothy J Petros1, Chris J McBain1* 1Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States; 2NIH-Brown University Graduate Partnership Program, Providence, United States; 3Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, Bethesda, United States Abstract Type I lissencephaly is a neuronal migration disorder caused by haploinsuffiency of the PAFAH1B1 (mouse: Pafah1b1) gene and is characterized by brain malformation, developmental delays, and epilepsy. Here, we investigate the impact of Pafah1b1 mutation on the cellular migration, morphophysiology, microcircuitry, and transcriptomics of mouse hippocampal CA1 parvalbumin-containing inhibitory interneurons (PV+INTs). We find that WT PV+INTs consist of two physiological subtypes (80% fast-spiking (FS), 20% non-fast-spiking (NFS)) and four morphological subtypes. We find that cell-autonomous mutations within interneurons disrupts morphophysiological development of PV+INTs and results in the emergence of a non-canonical ‘intermediate spiking (IS)’ subset of PV+INTs. We also find that now dominant IS/NFS cells are prone to entering depolarization block, causing them to temporarily lose the ability to initiate action potentials and control network excitation, potentially promoting seizures. Finally, single-cell nuclear RNAsequencing of PV+INTs revealed several misregulated genes related to morphogenesis, cellular excitability, and synapse formation. *For correspondence: [email protected] Competing interests: The Introduction authors declare that no Excitation in neocortical and hippocampal circuits is balanced by a relatively small (10–15%) yet competing interests exist. -
De Novo POGZ Mutations in Sporadic
Matsumura et al. Journal of Molecular Psychiatry (2016) 4:1 DOI 10.1186/s40303-016-0016-x SHORT REPORT Open Access De novo POGZ mutations in sporadic autism disrupt the DNA-binding activity of POGZ Kensuke Matsumura1, Takanobu Nakazawa2*, Kazuki Nagayasu2, Nanaka Gotoda-Nishimura1, Atsushi Kasai1, Atsuko Hayata-Takano1, Norihito Shintani1, Hidenaga Yamamori3, Yuka Yasuda3, Ryota Hashimoto3,4 and Hitoshi Hashimoto1,2,4 Abstract Background: A spontaneous de novo mutation is a new mutation appeared in a child that neither the parent carries. Recent studies suggest that recurrent de novo loss-of-function mutations identified in patients with sporadic autism spectrum disorder (ASD) play a key role in the etiology of the disorder. POGZ is one of the most recurrently mutated genes in ASD patients. Our laboratory and other groups have recently found that POGZ has at least 18 independent de novo possible loss-of-function mutations. Despite the apparent importance, these mutations have never previously been assessed via functional analysis. Methods: Using wild-type, the Q1042R-mutated, and R1008X-mutated POGZ, we performed DNA-binding experiments for proteins that used the CENP-B box sequence in vitro. Data were statistically analyzed by one-way ANOVA followed by Tukey-Kramer post hoc tests. Results: This study reveals that ASD-associated de novo mutations (Q1042R and R1008X) in the POGZ disrupt its DNA-binding activity. Conclusions: Here, we report the first functional characterization of de novo POGZ mutations identified in sporadic ASD cases. These findings provide important insights into the cellular basis of ASD. Keywords: Autism spectrum disorder, Recurrent mutation, De novo mutation, POGZ, DNA-binding activity Background including CHD8, ARID1B, SYNGAP1, DYRK1A, SCN2A, The genetic etiology of autism spectrum disorder (ASD) ANK2, ADNP, DSCAM, CHD2, KDM5B, SUV420H1, remains poorly understood. -
Filamins but Not Janus Kinases Are Substrates of the Asb2a Cullin-Ring E3 Ubiquitin Ligase in Hematopoietic Cells
Filamins but Not Janus Kinases Are Substrates of the ASB2a Cullin-Ring E3 Ubiquitin Ligase in Hematopoietic Cells Isabelle Lamsoul1,2, Monique Erard1,2, Peter F. M. van der Ven3, Pierre G. Lutz1,2* 1 CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), 205 route de Narbonne BP64182, F-31077 Toulouse, France, 2 Universite´ de Toulouse, UPS, IPBS, F- 31077 Toulouse, France, 3 Department of Molecular Cell Biology, Institute of Cell Biology, University of Bonn, Bonn, Germany Abstract The ASB2a protein is the specificity subunit of an E3 ubiquitin ligase complex involved in hematopoietic differentiation and is proposed to exert its effects by regulating the turnover of specific proteins. Three ASB2a substrates have been described so far: the actin-binding protein filamins, the Mixed Lineage Leukemia protein, and the Janus kinases 2 and 3. To determine the degradation of which substrate drives ASB2a biological effects is crucial for the understanding of ASB2a functions in hematopoiesis. Here, we show that neither endogenous nor exogenously expressed ASB2a induces degradation of JAK proteins in hematopoietic cells. Furthermore, we performed molecular modeling to generate the first structural model of an E3 ubiquitin ligase complex of an ASB protein bound to one of its substrates. Citation: Lamsoul I, Erard M, van der Ven PFM, Lutz PG (2012) Filamins but Not Janus Kinases Are Substrates of the ASB2a Cullin-Ring E3 Ubiquitin Ligase in Hematopoietic Cells. PLoS ONE 7(8): e43798. doi:10.1371/journal.pone.0043798 Editor: Zhengqi Wang, Emory University, United States of America Received March 21, 2012; Accepted July 26, 2012; Published August 20, 2012 Copyright: ß 2012 Lamsoul et al. -
Cullin 5 Regulates Cortical Layering by Modulating the Speed and Duration of Dab1-Dependent Neuronal Migration
5668 • The Journal of Neuroscience, April 21, 2010 • 30(16):5668–5676 Cellular/Molecular Cullin 5 Regulates Cortical Layering by Modulating the Speed and Duration of Dab1-Dependent Neuronal Migration Sergi Simó, Yves Jossin, and Jonathan A. Cooper Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109 Themultilayeredmammalianneocortexdevelopsbythecoordinatedimmigrationanddifferentiationofcellsthatareproducedatdistant sites. Correct layering requires an extracellular protein, Reelin (Reln), an intracellular signaling molecule, Disabled-1 (Dab1), and an E3 ubiquitinligase,Cullin-5(Cul5).RelnactivatesDab1,whichisthendegradedbyCul5.HerewetestwhetherCul5regulatesneuronlayering by affecting Dab1 stability or other mechanisms. We find that a stabilized mutant Dab1, which resists Cul5-dependent degradation, causes a similar phenotype to Cul5 deficiency. Moreover, Cul5 has no effect when Dab1 is absent. The effects of Cul5 and Dab1 are cell autonomous, and Cul5 regulates movement of early as well as late cortical neurons. Removing Cul5 increases the speed at which neurons migrate through the cortical plate by reducing the time spent stationary and increasing the speed of individual steps. These results show thatCul5regulatesneuronlayeringbystimulatingDab1degradationandthatCul5controlsmigrationspeedandstoppingpoint,andthey demonstrate the importance of negative feedback in signaling during cortical development. Introduction (Pinto-Lord et al., 1982; Dulabon et al., 2000; Sanada et al., 2004). The mammalian -
Temporal Proteomic Analysis of HIV Infection Reveals Remodelling of The
1 1 Temporal proteomic analysis of HIV infection reveals 2 remodelling of the host phosphoproteome 3 by lentiviral Vif variants 4 5 Edward JD Greenwood 1,2,*, Nicholas J Matheson1,2,*, Kim Wals1, Dick JH van den Boomen1, 6 Robin Antrobus1, James C Williamson1, Paul J Lehner1,* 7 1. Cambridge Institute for Medical Research, Department of Medicine, University of 8 Cambridge, Cambridge, CB2 0XY, UK. 9 2. These authors contributed equally to this work. 10 *Correspondence: [email protected]; [email protected]; [email protected] 11 12 Abstract 13 Viruses manipulate host factors to enhance their replication and evade cellular restriction. 14 We used multiplex tandem mass tag (TMT)-based whole cell proteomics to perform a 15 comprehensive time course analysis of >6,500 viral and cellular proteins during HIV 16 infection. To enable specific functional predictions, we categorized cellular proteins regulated 17 by HIV according to their patterns of temporal expression. We focussed on proteins depleted 18 with similar kinetics to APOBEC3C, and found the viral accessory protein Vif to be 19 necessary and sufficient for CUL5-dependent proteasomal degradation of all members of the 20 B56 family of regulatory subunits of the key cellular phosphatase PP2A (PPP2R5A-E). 21 Quantitative phosphoproteomic analysis of HIV-infected cells confirmed Vif-dependent 22 hyperphosphorylation of >200 cellular proteins, particularly substrates of the aurora kinases. 23 The ability of Vif to target PPP2R5 subunits is found in primate and non-primate lentiviral 2 24 lineages, and remodeling of the cellular phosphoproteome is therefore a second ancient and 25 conserved Vif function. -
HHS Public Access Author Manuscript
HHS Public Access Author manuscript Author Manuscript Author ManuscriptBiol Psychiatry Author Manuscript. Author Author Manuscript manuscript; available in PMC 2017 March 15. Published in final edited form as: Biol Psychiatry. 2016 March 15; 79(6): 430–442. doi:10.1016/j.biopsych.2014.10.020. Moderate Alcohol Drinking and the Amygdala Proteome: Identification and Validation of Calcium/Calmodulin Dependent Kinase II and AMPA Receptor Activity as Novel Molecular Mechanisms of the Positive Reinforcing Effects of Alcohol Michael C. Salling, Sara P. Faccidomo, Chia Li, Kelly Psilos, Christina Galunas, Marina Spanos, Abigail E. Agoglia, Thomas L. Kash, and Clyde W. Hodge Department of Psychiatry (CWH), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Pharmacology (TLK, CWH), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Bowles Center for Alcohol Studies (SPF, KP, CG, TLK, CWH), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and Department of Curriculum in Neurobiology (MCS, CL, MS, AEA, TLK, CWH), University of North Carolina at Chapel Hill, Chapel Hill, North Carolina Abstract BACKGROUND—Despite worldwide consumption of moderate amounts of alcohol, the neural mechanisms that mediate the transition from use to abuse are not fully understood. METHODS—Here, we conducted a high-through put screen of the amygdala proteome in mice after moderate alcohol drinking (n = 12/group) followed by behavioral studies (n = 6–8/group) to uncover novel molecular mechanisms of the positive reinforcing properties of alcohol that strongly influence the development of addiction. RESULTS—Two-dimensional difference in-gel electrophoresis with matrix assisted laser desorption ionization tandem time-of-flight identified 29 differentially expressed proteins in the amygdala of nondependent C57BL/6J mice following 24 days of alcohol drinking. -
E3 Ubiquitin Ligase Cullin-5 Modulates Multiple Molecular and Cellular Responses to Heat Shock Protein 90 Inhibition in Human Cancer Cells
E3 ubiquitin ligase Cullin-5 modulates multiple molecular and cellular responses to heat shock protein 90 inhibition in human cancer cells Rahul S. Samant, Paul A. Clarke, and Paul Workman1 Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK Edited by Melanie H. Cobb, University of Texas Southwestern Medical Center, Dallas, TX, and approved April 3, 2014 (received for review December 24, 2013) The molecular chaperone heat shock protein 90 (HSP90) is required Given the link between CUL5 and the HSP90 inhibitor- for the activity and stability of its client proteins. Pharmacologic induced degradation of ERBB2 (12), we have investigated the inhibition of HSP90 leads to the ubiquitin-mediated degradation of role of Cullin-RING ligases with respect to HSP90’s protein kinase clients, particularly activated or mutant oncogenic protein kinases. clients in human cancer cell lines. Our initial focused siRNA Client ubiquitination occurs via the action of one or more E3 screen of 28 Cullin-RING ligase family members identified five ubiquitin ligases. We sought to identify the role of Cullin-RING fam- genes, including CUL5, that were required for ERBB2 degra- ily E3 ubiquitin ligases in the cellular response to HSP90 inhibition. dation following treatment with 17-AAG—which we use here as Through a focused siRNA screen of 28 Cullin-RING ligase family a representative HSP90 inhibitor and chemical tool to promote members, we found that CUL5 and RBX2 were required for degra- client protein turnover. We go on to show for the first time to our dation of several HSP90 clients upon treatment of human cancer knowledge that RNAi silencing of CUL5 reduces the 17-AAG– cells with the clinical HSP90 inhibitor 17-AAG. -
The Genetic Architecture of Down Syndrome Phenotypes Revealed by High-Resolution Analysis of Human Segmental Trisomies
The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies Jan O. Korbela,b,c,1, Tal Tirosh-Wagnerd,1, Alexander Eckehart Urbane,f,1, Xiao-Ning Chend, Maya Kasowskie, Li Daid, Fabian Grubertf, Chandra Erdmang, Michael C. Gaod, Ken Langeh,i, Eric M. Sobelh, Gillian M. Barlowd, Arthur S. Aylsworthj,k, Nancy J. Carpenterl, Robin Dawn Clarkm, Monika Y. Cohenn, Eric Dorano, Tzipora Falik-Zaccaip, Susan O. Lewinq, Ira T. Lotto, Barbara C. McGillivrayr, John B. Moeschlers, Mark J. Pettenatit, Siegfried M. Pueschelu, Kathleen W. Raoj,k,v, Lisa G. Shafferw, Mordechai Shohatx, Alexander J. Van Ripery, Dorothy Warburtonz,aa, Sherman Weissmanf, Mark B. Gersteina, Michael Snydera,e,2, and Julie R. Korenbergd,h,bb,2 Departments of aMolecular Biophysics and Biochemistry, eMolecular, Cellular, and Developmental Biology, and fGenetics, Yale University School of Medicine, New Haven, CT 06520; bEuropean Molecular Biology Laboratory, 69117 Heidelberg, Germany; cEuropean Molecular Biology Laboratory (EMBL) Outstation Hinxton, EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom; dMedical Genetics Institute, Cedars–Sinai Medical Center, Los Angeles, CA 90048; gDepartment of Statistics, Yale University, New Haven, CT 06520; Departments of hHuman Genetics, and iBiomathematics, University of California, Los Angeles, CA 90095; Departments of jPediatrics and kGenetics, University of North Carolina, Chapel Hill, NC 27599; lCenter for Genetic Testing, -
"The Genecards Suite: from Gene Data Mining to Disease Genome Sequence Analyses". In: Current Protocols in Bioinformat
The GeneCards Suite: From Gene Data UNIT 1.30 Mining to Disease Genome Sequence Analyses Gil Stelzer,1,5 Naomi Rosen,1,5 Inbar Plaschkes,1,2 Shahar Zimmerman,1 Michal Twik,1 Simon Fishilevich,1 Tsippi Iny Stein,1 Ron Nudel,1 Iris Lieder,2 Yaron Mazor,2 Sergey Kaplan,2 Dvir Dahary,2,4 David Warshawsky,3 Yaron Guan-Golan,3 Asher Kohn,3 Noa Rappaport,1 Marilyn Safran,1 and Doron Lancet1,6 1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 2LifeMap Sciences Ltd., Tel Aviv, Israel 3LifeMap Sciences Inc., Marshfield, Massachusetts 4Toldot Genetics Ltd., Hod Hasharon, Israel 5These authors contributed equally to the paper 6Corresponding author GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It au- tomatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. Var- Elect’s capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses. -
CRL5-Dependent Regulation of the Small Gtpases ARL4C and ARF6 Controls Hippocampal Morphogenesis
CRL5-dependent regulation of the small GTPases ARL4C and ARF6 controls hippocampal morphogenesis Jisoo S. Hana,1, Keiko Hinoa,1, Wenzhe Lia, Raenier V. Reyesa, Cesar P. Canalesa,2, Adam M. Miltnera, Yasmin Haddadia, Junqing Sunb, Chao-Yin Chenb, Anna La Torrea, and Sergi Simóa,3 aDepartment of Cell Biology and Human Anatomy, University of California, Davis, CA 95616; and bDepartment of Pharmacology, University of California, Davis, CA 95616 Edited by Mary E. Hatten, Rockefeller University, New York, NY, and approved August 3, 2020 (received for review February 14, 2020) The small GTPase ARL4C participates in the regulation of cell migra- Importantly, CRL5 substrate adaptors are dynamically regulated tion, cytoskeletal rearrangements, and vesicular trafficking in epithe- during development, directing CRL5 activity to specific substrates lial cells. The ARL4C signaling cascade starts by the recruitment of the at different times and areas in the CNS (19). In the neocortex, ARF–GEF cytohesins to the plasma membrane, which, in turn, bind CRL5 opposes projection neuron migration by down-regulating and activate the small GTPase ARF6. However, the role of ARL4C– the Reelin/DAB1 signaling pathway as migrating projection neu- cytohesin–ARF6 signaling during hippocampal development remains rons reach the top of the cortical plate (18, 20, 21). In the CNS, elusive. Here, we report that the E3 ubiquitin ligase Cullin 5/RBX2 Reelin/DAB1 signaling participates in several developmental (CRL5) controls the stability of ARL4C and its signaling effectors to processes, including neuron migration, dendritogenesis, axo- regulate hippocampal morphogenesis. Both RBX2 knockout and genesis, and synaptogenesis (22–24). Moreover, CRL5 also con- Cullin 5 knockdown cause hippocampal pyramidal neuron mislocali- trols levels of the tyrosine kinase FYN, which exerts important zation and development of multiple apical dendrites.