1. Lecture 1 Invariant Theory All Rings Are Commutative and Have an Identity 1 Unless Otherwise Stated

Total Page:16

File Type:pdf, Size:1020Kb

1. Lecture 1 Invariant Theory All Rings Are Commutative and Have an Identity 1 Unless Otherwise Stated 2 RICHARD BORCHERDS 1. Lecture 1 Invariant theory All rings are commutative and have an identity 1 unless otherwise stated. The text is Eisenbud [1]. The fundamental examples of commutative rings are: • Rings of algebraic integers, such as Z or the Gaussian integers Z[i]. A typical result is that Z[i] is a unique factorization domain. More generally in algebraic number theory we want to know how far a ring of algebraic integers is from a unique factorization domain: this is measured by the ideal class group, a special case of the Picard group of a commutative ring. • Coordinate rings of algebraic varieties For example, the polynomial ring k[x; y; z] or the coordinate ring k[x; y]=(y2 − x3 + x) of the affine elliptic curve y2 = x3 − x. Is it a unique factorization domain? The coordinate ring captures the affine elliptic curve completely: for example, the points of the elliptic curve can be recovered as homomorphisms to k. More generally commutative rings correspond to affine schemes. • Rings of invariants. For example, the group of rotations of an icosahedron acts on 3-dimensional space and therefore on the polynomial ring R[x; y; z]. What is the ring of polynomials fixed by this action? It obviously contains R[x2 + y2 + z2], but also contains some less obvious polynomials. In fact it is a polynomial ring on generators of degrees 2, 6, 10. The fundamental problem of invariant theory is the following: given a group acting on a vector space, is the ring of invariants finitely generated? This was solved by Hilbert in the case when the group is a reductive group in characteristic 0. We will give his solution (cleaned up a little) Example. Distance in Euclidean space is invariant under rotations and reflec- tions. We can rephrase this as saying the polynomial x2 +y2 +z2 is invariant under the orthogonal group. Moreover any polynomial invariant under this group is a polynomial in x2 + y2 + z2. n Example. Suppose G is the symmetric group Sn acting on C by permuting the coordinates. Then an invariant is a symmetric polynomial. The ring of symmetric polynomials is the ring of polynomials in the elementary symmetric polynomials Q Σixi,Σi<jxixj, ... , the coefficients of the polynomial (x − xi). This example is misleadingly simple: in general the rings of invariants are much more complicated and the generators are hard to describe explicitly. (The group Sn happens to be a reflection group, and these have particularly simple invariant rings.) n Example. Suppose G is the group SLn(k) acting on a sum on n copies of k (so on a space of dimension n2). Then an invariant is given by the determinant of an n by n matrix. n Example. Suppose G is that alternating group An acing on C as above. Then the ring of invariants not only contains the symmetric polynomials, but the poly- Q nomial ∆ = i<j(xi − xj) which changes sign under any odd permutation. The square ∆2 is symmetric, so can be written as a rather complicated polynomial in the elementary symmetric functions, called the discriminant. For example, when n = 2 we have ∆2 = b2 − 4c, the discriminant of a quadratic polynomial with leading term 1. Example. Suppose G is a cyclic group of order n > 1 generated by g acting on C2 as multiplication by a primitive nth root of 1. Then the ring of invariants MATH 250B: COMMUTATIVE ALGEBRA 3 i n−i is not a polynomial ring. It is generated by the elements zi = x y . There are many relations between these generators: zizj = zkzl whenever i + j = k + l. These relations are called SYZYGIES. Example. Suppose G is the orthogonal group of V = Rn. Then it acts on V m, and has invariants of the form (xi; xj) where xi 2 V is the i component of an m element of V . A syszygy for m = n + 1 is given by det((xi; xj)) = 0, as if m > n then the m vectors xi are linearly dependent. The second fundamental problem of invariant theory asks whether all syzygies are generated by a finite number. More generally there are second-order syzygies giving relations between first-order syzygies, third order syzygies, and so on, and one can ask if the syzygies of given order are finitely generated. Finally one can ask if there is a bound to the orders of syzygies. These questions were all answered by Hilbert. Example. Binary quantics. Here the group is SL2(C) acting on the n + 1- n 0 0 n dimensional space of coefficients of the binary quantic anx y + ··· a0x y . (This is the nth symmetric power of the 2-dimensional representation of SL2(C).) One invariant is the discriminant of the form, which vanishes exactly when the form has 2 2 2 two equal roots. For example, the discriminant of a2x + a1xy + a0y is a1 − 4a0a2. In one of the triumphs of invariant theory before Hilbert, Paul Gordan was able to prove that the ring of invariants of binary quantics are finitely generated. Example. Ternary cubics. These are degree 3 polynomials in 3 variables, so they have 10 coefficients. The ring of invariants in generated by 2 polynomials of degrees 4 and 6, that take a couple of pages to write out explicitly. Ternary cubics give elliptic curves, so these invariants are closely related to the problem of finding the moduli space of elliptic curves. (In fact invariants of ternary cubics correspond to level 1 modular forms, and these two invariants correspond to the 2 Eisenstein series E4 and E6.) Invariants can be very complicated to write out explicitly in all but the simplest cases. Salmon's book given an explicit example of an invariant taking 13 pages to write out explicitly. (Reading 19th century invariant theory papers before Hilbert sometimes gives one the impression that they were competing with each other to produce the most horrendously complicated formulas. They were very good at this: more than one mathematician computing invariants with a long computer calculation has been embarrassed to discover that their results were already known in the 19th century.) It might seem that showing finite generation of syzygies is much harder that showing finite generation of invariants: after all, one first has to find the invariants before one can find the syzygies. Hilbert's first discovery was that if one can show the invariants are finitely generated, then it automatically follows that the syzygies are finitely generated. The key point is that the invariants form a ring, while the syzygies form an ideal: we have (polynomial ring) ! (invariants) where the polynomial ring is generated by our basic invariants, and the syzygies are the kernel of this map. Hilbert's theorem states: Theorem 1.1. Any ideal of a polynomial ring in a finite number of variables is finitely generated. Note the difference between being finitely generated as an ideal or as a ring (without 1): the ideal (x) of k[x; y] is finitely generated as an ideal, but not as a ring without 1: a set of ring generators is x, xy, xy2, .... As this example suggests, 4 RICHARD BORCHERDS it is often much easier to show something is finitely generated as an ideal than to show something is finitely generated as a ring. A ring such that all ideals are finitely generated is called Noetherian, after Emmy Noether. Example. The ring of polynomials k[x1; x2;:::] in infinitely many variables is not Noetherian, as the ideal (x1; x2;:::) is not finitely generated. Addendum to lecture 1: how does a group acting on a vector space act on polynomials? Theoretical answer: Suppose G acts on sets X and Y . Then it acts on functions f from X to Y by gf(gx) = g(f(x)). In other words any formula remains true when acted on by g 2 G. 2 Practical answer: suppose G is SL2(C) acting on C with coords x and y. How n n−1 does it act on binary quantics anx + an−1x y + ··· ? Answer: Change x to ax + by, y to cx + dy. We get n n−1 (1.1) an(ax + by) + an−1(ax + by) (cx + dy) n n−1 n n−1 (1.2) = (ana + an−1na + ··· )x + (something even worse)x y + ··· which will in principle give some explicit but rather horrible matrix describing the action of SL2 on the n + 1 dimensional vector space spanned by an; an−1;:::..
Recommended publications
  • The Invariant Theory of Matrices
    UNIVERSITY LECTURE SERIES VOLUME 69 The Invariant Theory of Matrices Corrado De Concini Claudio Procesi American Mathematical Society The Invariant Theory of Matrices 10.1090/ulect/069 UNIVERSITY LECTURE SERIES VOLUME 69 The Invariant Theory of Matrices Corrado De Concini Claudio Procesi American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Jordan S. Ellenberg Robert Guralnick William P. Minicozzi II (Chair) Tatiana Toro 2010 Mathematics Subject Classification. Primary 15A72, 14L99, 20G20, 20G05. For additional information and updates on this book, visit www.ams.org/bookpages/ulect-69 Library of Congress Cataloging-in-Publication Data Names: De Concini, Corrado, author. | Procesi, Claudio, author. Title: The invariant theory of matrices / Corrado De Concini, Claudio Procesi. Description: Providence, Rhode Island : American Mathematical Society, [2017] | Series: Univer- sity lecture series ; volume 69 | Includes bibliographical references and index. Identifiers: LCCN 2017041943 | ISBN 9781470441876 (alk. paper) Subjects: LCSH: Matrices. | Invariants. | AMS: Linear and multilinear algebra; matrix theory – Basic linear algebra – Vector and tensor algebra, theory of invariants. msc | Algebraic geometry – Algebraic groups – None of the above, but in this section. msc | Group theory and generalizations – Linear algebraic groups and related topics – Linear algebraic groups over the reals, the complexes, the quaternions. msc | Group theory and generalizations – Linear algebraic groups and related topics – Representation theory. msc Classification: LCC QA188 .D425 2017 | DDC 512.9/434–dc23 LC record available at https://lccn. loc.gov/2017041943 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research.
    [Show full text]
  • An Elementary Proof of the First Fundamental Theorem of Vector Invariant Theory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNAL OF ALGEBRA 102, 556-563 (1986) An Elementary Proof of the First Fundamental Theorem of Vector Invariant Theory MARILENA BARNABEI AND ANDREA BRINI Dipariimento di Matematica, Universitri di Bologna, Piazza di Porta S. Donato, 5, 40127 Bologna, Italy Communicated by D. A. Buchsbaum Received March 11, 1985 1. INTRODUCTION For a long time, the problem of extending to arbitrary characteristic the Fundamental Theorems of classical invariant theory remained untouched. The technique of Young bitableaux, introduced by Doubilet, Rota, and Stein, succeeded in providing a simple combinatorial proof of the First Fundamental Theorem valid over every infinite field. Since then, it was generally thought that the use of bitableaux, or some equivalent device-as the cancellation lemma proved by Hodge after a suggestion of D. E. LittlewoodPwould be indispensable in any such proof, and that single tableaux would not suffice. In this note, we provide a simple combinatorial proof of the First Fun- damental Theorem of invariant theory, valid in any characteristic, which uses only single tableaux or “brackets,” as they were named by Cayley. We believe the main combinatorial lemma (Theorem 2.2) used in our proof can be fruitfully put to use in other invariant-theoretic settings, as we hope to show elsewhere. 2. A COMBINATORIAL LEMMA Let K be a commutative integral domain, with unity. Given an alphabet of d symbols x1, x2,..., xd and a positive integer n, consider the d. n variables (xi\ j), i= 1, 2 ,..., d, j = 1, 2 ,..., n, which are supposed to be algebraically independent.
    [Show full text]
  • Arxiv:1810.05857V3 [Math.AG] 11 Jun 2020
    HYPERDETERMINANTS FROM THE E8 DISCRIMINANT FRED´ ERIC´ HOLWECK AND LUKE OEDING Abstract. We find expressions of the polynomials defining the dual varieties of Grass- mannians Gr(3, 9) and Gr(4, 8) both in terms of the fundamental invariants and in terms of a generic semi-simple element. We restrict the polynomial defining the dual of the ad- joint orbit of E8 and obtain the polynomials of interest as factors. To find an expression of the Gr(4, 8) discriminant in terms of fundamental invariants, which has 15, 942 terms, we perform interpolation with mod-p reductions and rational reconstruction. From these expressions for the discriminants of Gr(3, 9) and Gr(4, 8) we also obtain expressions for well-known hyperdeterminants of formats 3 × 3 × 3 and 2 × 2 × 2 × 2. 1. Introduction Cayley’s 2 × 2 × 2 hyperdeterminant is the well-known polynomial 2 2 2 2 2 2 2 2 ∆222 = x000x111 + x001x110 + x010x101 + x100x011 + 4(x000x011x101x110 + x001x010x100x111) − 2(x000x001x110x111 + x000x010x101x111 + x000x100x011x111+ x001x010x101x110 + x001x100x011x110 + x010x100x011x101). ×3 It generates the ring of invariants for the group SL(2) ⋉S3 acting on the tensor space C2×2×2. It is well-studied in Algebraic Geometry. Its vanishing defines the projective dual of the Segre embedding of three copies of the projective line (a toric variety) [13], and also coincides with the tangential variety of the same Segre product [24, 28, 33]. On real tensors it separates real ranks 2 and 3 [9]. It is the unique relation among the principal minors of a general 3 × 3 symmetric matrix [18].
    [Show full text]
  • Emmy Noether, Greatest Woman Mathematician Clark Kimberling
    Emmy Noether, Greatest Woman Mathematician Clark Kimberling Mathematics Teacher, March 1982, Volume 84, Number 3, pp. 246–249. Mathematics Teacher is a publication of the National Council of Teachers of Mathematics (NCTM). With more than 100,000 members, NCTM is the largest organization dedicated to the improvement of mathematics education and to the needs of teachers of mathematics. Founded in 1920 as a not-for-profit professional and educational association, NCTM has opened doors to vast sources of publications, products, and services to help teachers do a better job in the classroom. For more information on membership in the NCTM, call or write: NCTM Headquarters Office 1906 Association Drive Reston, Virginia 20191-9988 Phone: (703) 620-9840 Fax: (703) 476-2970 Internet: http://www.nctm.org E-mail: [email protected] Article reprinted with permission from Mathematics Teacher, copyright March 1982 by the National Council of Teachers of Mathematics. All rights reserved. mmy Noether was born over one hundred years ago in the German university town of Erlangen, where her father, Max Noether, was a professor of Emathematics. At that time it was very unusual for a woman to seek a university education. In fact, a leading historian of the day wrote that talk of “surrendering our universities to the invasion of women . is a shameful display of moral weakness.”1 At the University of Erlangen, the Academic Senate in 1898 declared that the admission of women students would “overthrow all academic order.”2 In spite of all this, Emmy Noether was able to attend lectures at Erlangen in 1900 and to matriculate there officially in 1904.
    [Show full text]
  • The Invariant Theory of Binary Forms
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 10, Number 1, January 1984 THE INVARIANT THEORY OF BINARY FORMS BY JOSEPH P. S. KUNG1 AND GIAN-CARLO ROTA2 Dedicated to Mark Kac on his seventieth birthday Table of Contents 1. Introduction 2. Umbral Notation 2.1 Binary forms and their covariants 2.2 Umbral notation 2.3 Changes of variables 3. The Fundamental Theorems 3.1 Bracket polynomials 3.2 The straightening algorithm 3.3 The second fundamental theorem 3.4 The first fundamental theorem 4. Covariants in Terms of the Roots 4.1 Homogenized roots 4.2 Tableaux in terms of roots 4.3 Covariants and differences 4.4 Hermite's reciprocity law 5. Apolarity 5.1 The apolar covariant 5.2 Forms apolar to a given form 5.3 Sylvester's theorem 5.4 The Hessian and the cubic 6. The Finiteness Theorem 6.1 Generating sets of covariants 6.2 Circular straightening 6.3 Elemental bracket monomials 6.4 Reduction of degree 6.5 Gordan's lemma 6.6 The binary cubic 7. Further Work References 1. Introduction. Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics. During its long eclipse, the language of modern algebra was developed, a sharp tool now at long last being applied to the very Received by the editors May 26, 1983. 1980 Mathematics Subject Classification. Primary 05-02, 13-02, 14-02, 15-02. 1 Supported by a North Texas State University Faculty Research Grant.
    [Show full text]
  • GEOMETRIC INVARIANT THEORY and FLIPS Ever Since the Invention
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 9, Number 3, July 1996 GEOMETRIC INVARIANT THEORY AND FLIPS MICHAEL THADDEUS Ever since the invention of geometric invariant theory, it has been understood that the quotient it constructs is not entirely canonical, but depends on a choice: the choice of a linearization of the group action. However, the founders of the subject never made a systematic study of this dependence. In light of its fundamental and elementary nature, this is a rather surprising gap, and this paper will attempt to fill it. In one sense, the question can be answered almost completely. Roughly, the space of all possible linearizations is divided into finitely many polyhedral chambers within which the quotient is constant (2.3), (2.4), and when a wall between two chambers is crossed, the quotient undergoes a birational transformation which, under mild conditions, is a flip in the sense of Mori (3.3). Moreover, there are sheaves of ideals on the two quotients whose blow-ups are both isomorphic to a component of the fibred product of the two quotients over the quotient on the wall (3.5). Thus the two quotients are related by a blow-up followed by a blow-down. The ideal sheaves cannot always be described very explicitly, but there is not much more to say in complete generality. To obtain more concrete results, we require smoothness, and certain conditions on the stabilizers which, though fairly strong, still include many interesting examples. The heart of the paper, 4and 5, is devoted to describing the birational transformations between quotients§§ as explicitly as possible under these hypotheses.
    [Show full text]
  • CONSTRUCTIVE INVARIANT THEORY Contents 1. Hilbert's First
    CONSTRUCTIVE INVARIANT THEORY HARM DERKSEN* Contents 1. Hilbert's first approach 1 1.1. Hilbert's Basissatz 2 1.2. Algebraic groups 3 1.3. Hilbert's Finiteness Theorem 5 1.4. An algorithm for computing generating invariants 8 2. Hilbert's second approach 12 2.1. Geometry of Invariant Rings 12 2.2. Hilbert's Nullcone 15 2.3. Homogeneous Systems of Parameters 16 3. The Cohen-Macaulay property 17 4. Hilbert series 20 4.1. Basic properties of Hilbert series 20 4.2. Computing Hilbert series a priori 23 4.3. Degree bounds 27 References 28 In these lecture notes, we will discuss the constructive aspects of modern invariant theory. A detailed discussion on the computational aspect of invariant theory can be found in the books [38, 9]. The invariant theory of the nineteenth century was very constructive in nature. Many invariant rings for classical groups (and SL2 in particular) were explicitly computed. However, we will not discuss this classical approach here, but we will refer to [32, 25] instead. Our starting point will be a general theory of invariant rings. The foundations of this theory were built by Hilbert. For more on invariant theory, see for example [23, 35, 24]. 1. Hilbert's first approach Among the most important papers in invariant theory are Hilbert's papers of 1890 and 1893 (see [15, 16]). Both papers had an enormous influence, not only on invariant theory but also on commutative algebra and algebraic geometry. Much of the lectures *The author was partially supported by NSF, grant DMS 0102193.
    [Show full text]
  • Invariant(Theory- A(Gentle(Introduction For(Computer(Scientists (Optimization(And(Complexity)
    Invariant(theory- a(gentle(introduction for(computer(scientists (optimization(and(complexity) Avi$Wigderson,$IAS,$Princeton Ankit$Garg,$Rafael$Oliveira Zeyuan Allen=Zhu,$Peter$Burgisser,$Cole$Franks,$ Leonid$Gurvits,$Yuanzhi Li,$Michael$Walter Prehistory Linial,'Samorodnitsky,'W'2000'''Cool'algorithm Discovered'many'times'before' Kruithof 1937''in'telephone'forecasting,' DemingDStephan'1940'in'transportation'science, Brown'1959''in'engineering,' Wilkinson'1959'in'numerical'analysis, Friedlander'1961,'Sinkhorn 1964 in'statistics. Stone'1964'in'economics,' Matrix'Scaling'algorithm A non1negative'matrix.'Try'making'it'doubly'stochastic. Alternating'scaling'rows'and'columns 1 1 1 1 1 0 1 0 0 Matrix'Scaling'algorithm A non1negative'matrix.'Try'making'it'doubly'stochastic. Alternating'scaling'rows'and'columns 1/3 1/3 1/3 1/2 1/2 0 1 0 0 Matrix'Scaling'algorithm A non1negative'matrix.'Try'making'it'doubly'stochastic. Alternating'scaling'rows'and'columns 2/11 2/5 1 3/11 3/5 0 6/11 0 0 Matrix'Scaling'algorithm A non1negative'matrix.'Try'making'it'doubly'stochastic. Alternating'scaling'rows'and'columns 10/87 22/87 55/87 15/48 33/48 0 1 0 0 Matrix'Scaling'algorithm A non1negative'matrix.'Try'making'it'doubly'stochastic. 0 0 1 Alternating'scaling'rows'and'columns A+very+different+efficient+ 0 1 0 Perfect+matching+algorithm+ 1 0 0 We’ll+understand+it+much+ better+with+Invariant+Theory Converges+(fast)+iff Per(A)+>0 Outline Main%motivations,%questions,%results,%structure • Algebraic%Invariant%theory% • Geometric%invariant%theory% • Optimization%&%Duality • Moment%polytopes • Algorithms • Conclusions%&%Open%problems R = Energy Invariant(Theory = Momentum symmetries,(group(actions, orbits,(invariants 1 Physics,(Math,(CS 5 2 S5 4 3 1 5 2 ??? 4 3 Area Linear'actions'of'groups Group&! acts&linearly on&vector&space&" (= %&).&&&[% =&(] Action:&Matrix7Vector&multiplication ! reductive.
    [Show full text]
  • Lectures on Representation Theory and Invariant Theory
    LECTURES ON REPRESENTATION THEORY AND INVARIANT THEORY These are the notes for a lecture course on the symmetric group, the general linear group and invariant theory. The aim of the course was to cover as much of the beautiful classical theory as time allowed, so, for example, I have always restricted to working over the complex numbers. The result is a course which requires no previous knowledge beyond a smattering of rings and modules, character theory, and affine varieties. These are certainly not the first notes on this topic, but I hope they may still be useful, for [Dieudonné and Carrell] has a number of flaws, and [Weyl], although beautifully written, requires a lot of hard work to read. The only new part of these notes is our treatment of Gordan's Theorem in §13: the only reference I found for this was [Grace and Young] where it was proved using the symbolic method. The lectures were given at Bielefeld University in the winter semester 1989-90, and this is a more or less faithful copy of the notes I prepared for that course. I have, however, reordered some of the parts, and rewritten the section on semisimple algebras. The references I found most useful were: [H. Boerner] "Darstellungen von Gruppen" (1955). English translation "Representations of groups" (North-Holland, 1962,1969). [J. A. Dieudonné and J. B. Carrell] "Invariant Theory, Old and New," Advances in Mathematics 4 (1970) 1-80. Also published as a book (1971). [J. H. Grace and A. Young] "The algebra of invariants" (1903, Reprinted by Chelsea).
    [Show full text]
  • The Fundamental Theorem of Invariant Theory
    The Fundamental Theorem of Invariant Theory Will Traves USNA Colloquium 15 NOV 2006 Invariant Theory V: Complex n-dimensional vector space, Cn G: group acting linearly on V Question: How can we understand the quotient space V/G? 2 Example: G = Z2 acting on V = C via (x,y) (-x, -y). The ring of (polynomial) functions on V is C[V] = C[x,y]. The functions on V/G ought to be polynomials invariant under the action of G = C[V/G] = C[V]G = { f(x,y): f(x,y) = f(-x,-y)} = C[x2, y2, xy] = C[X, Y, Z] / (XY-Z2) = C[X’, Y’, Z] / (X’2 + Y’2 – Z2) π V/G V Geometric Examples G = C* acts on V = C2 via scaling g•(x,y) = (gx, gy) C[V]G = C so V//G is a point. If we first remove the origin then we get V* // G = the projective line P1 In general, we need to remove a locus of bad points (non-semi-stable points) and only then quotient. This GIT quotient is useful in constructing moduli spaces. Example: moduli space of degree d rational plane curves Parameterization: P1 P2 [s: t] [F1(s,t): F2(s,t): F3(s,t)] So curves parameterized by P3d+2 but some of these are the same curve! 3d+2 M = P // PGL2C. This space is not compact; its compactification plays a key role in string theory and enumerative geometry. Classical Invariant Theory 1800’s: Many mathematicians (Cayley, Sylvester, Gordan, Clebsh, etc) worked hard to compute invariant functions (particularly of SL2 actions).
    [Show full text]
  • Hyperdeterminants As Integrable 3D Difference Equations (Joint Project with Sergey Tsarev, Krasnoyarsk State Pedagogical University)
    Hyperdeterminants as integrable 3D difference equations (joint project with Sergey Tsarev, Krasnoyarsk State Pedagogical University) Thomas Wolf Brock University, Ontario Ste-Adèle, June 26, 2008 Thomas Wolf Hyperdeterminants: a CA challenge I Modern applications of hyperdeterminants I The classical heritage: A.Cayley et al. I The definition of hyperdeterminants and its variations I The next step: the (a?) 2 × 2 × 2 × 2 hyperdeterminant (B.Sturmfels et al., 2006) I FORM computations: how far can we reach now? I Principal Minor Assignment Problem (O.Holtz, B.Sturmfels, 2006) I Hyperdeterminants as discrete integrable systems: 2 × 2 and 2 × 2 × 2. I Is 2 × 2 × 2 × 2 hyperdeterminant integrable?? Plan: I The simplest (hyper)determinants: 2 × 2 and 2 × 2 × 2. Thomas Wolf Hyperdeterminants: a CA challenge I The classical heritage: A.Cayley et al. I The definition of hyperdeterminants and its variations I The next step: the (a?) 2 × 2 × 2 × 2 hyperdeterminant (B.Sturmfels et al., 2006) I FORM computations: how far can we reach now? I Principal Minor Assignment Problem (O.Holtz, B.Sturmfels, 2006) I Hyperdeterminants as discrete integrable systems: 2 × 2 and 2 × 2 × 2. I Is 2 × 2 × 2 × 2 hyperdeterminant integrable?? Plan: I The simplest (hyper)determinants: 2 × 2 and 2 × 2 × 2. I Modern applications of hyperdeterminants Thomas Wolf Hyperdeterminants: a CA challenge I The definition of hyperdeterminants and its variations I The next step: the (a?) 2 × 2 × 2 × 2 hyperdeterminant (B.Sturmfels et al., 2006) I FORM computations: how far can we reach now? I Principal Minor Assignment Problem (O.Holtz, B.Sturmfels, 2006) I Hyperdeterminants as discrete integrable systems: 2 × 2 and 2 × 2 × 2.
    [Show full text]
  • Constructive Invariant Theory Astérisque, Tome 87-88 (1981), P
    Astérisque V. L. POPOV Constructive invariant theory Astérisque, tome 87-88 (1981), p. 303-334 <http://www.numdam.org/item?id=AST_1981__87-88__303_0> © Société mathématique de France, 1981, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CONSTRUCTIVE INVARIANT THEORY V.L. Popov - Moscow 1. Let k be an algebraically closed field, char k = 0. We denote by V an n-dimensional coordinate linear space (of columns) over k, by Matn the space of all n><n-matrices with its coefficients in k and by GLn the subgroup of all nondegenerate matrices in Mat . We use the notation (a..) for n x j an element of Mat : this is the matrix with the coefficient a.. n 13 situated in its i-th row and j-th column, 1 < i,j < n. Let us denote also by , 1 < i < n, and resp. by x^^, 1 < i,j < n, the coordinate functions on V, resp. Mat^, with respect to the canonical basis (i.e. x^1 ) = a. and x..((a )) = a..). a 1 13 pq 13 n Let G be a reductive algebraic subgroup of GL^. The group GL^ (and hence also G) acts in a natural way on V (by means of a multiplication of a matrix by a column).
    [Show full text]