Diversity, Dynamics and Activity of Epsilonproteobacteria in a Stratified Karstic Lake
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
BD-CS-057, REV 0 | AUGUST 2017 | Page 1
EXPLIFY RESPIRATORY PATHOGENS BY NEXT GENERATION SEQUENCING Limitations Negative results do not rule out viral, bacterial, or fungal infections. Targeted, PCR-based tests are generally more sensitive and are preferred when specific pathogens are suspected, especially for DNA viruses (Adenovirus, CMV, HHV6, HSV, and VZV), mycobacteria, and fungi. The analytical sensitivity of this test depends on the cellularity of the sample and the concentration of all microbes present. Analytical sensitivity is assessed using Internal Controls that are added to each sample. Sequencing data for Internal Controls is quantified. Samples with Internal Control values below the validated minimum may have reduced analytical sensitivity or contain inhibitors and are reported as ‘Reduced Analytical Sensitivity’. Additional respiratory pathogens to those reported cannot be excluded in samples with ‘Reduced Analytical Sensitivity’. Due to the complexity of next generation sequencing methodologies, there may be a risk of false-positive results. Contamination with organisms from the upper respiratory tract during specimen collection can also occur. The detection of viral, bacterial, and fungal nucleic acid does not imply organisms causing invasive infection. Results from this test need to be interpreted in conjunction with the clinical history, results of other laboratory tests, epidemiologic information, and other available data. Confirmation of positive results by an alternate method may be indicated in select cases. Validated Organisms BACTERIA Achromobacter -
Studies on Oral Colonization of Periodontopathogenic Bacterium
Studies on oral colonization of periodontopathogenic bacterium Eikenella corrodens 㸦ṑ࿘ཎᛶ⣽⳦ (LNHQHOODFRUURGHQV ࡢཱྀ⭍ෆᐃ╔㛵ࡍࡿ◊✲㸧 㻌 㻌 FARIHA JASIN MANSUR 2017 㻌 㻌 DEDICATED TO MY BELOVED PARENTS CONTENTS CONTENTS…………………………………………………………. 1 LIST OF ABBREVIATIONS ……………………………………. 2 CHAPTER 1: GENERAL INTRODUCTION …………………………………... 4 CHAPTER 2 .………………………………………………………. 11 2.1 ABSTRACT ……………………………………………………. 12 2.2 INTRODUCTION ……………………………………………... 13 2.3 MATERIALS AND METHODS ……………………………… 16 2.4 RESULTS AND DISCUSSION ……………………………….. 21 CHAPTER 3 ………………………………………………………... 31 3.1 ABSTRACT …………………………………………………….. 32 3.2 INTRODUCTION ……………………………………………… 33 3.3 MATERIALS AND METHODS ………………………………. 35 3.4 RESULTS AND DISCUSSION ………………………………... 38 CHAPTER 4: GENERAL CONCLUSION ………………………………………... 44 SUMMARY ………………………………………………………….. 50 JAPANESE SUMMARY ……………………………………………. 52 ACKNOWLEDGEMENTS …………………………………………. 54 REFERENCES ……………………………………………………….. 56 LIST OF PUBLICATIONS ………………………………………….. 65 㻝㻌 㻌 LIST OF ABBREVIATIONS CE Cell envelope GalNAc㻌㻌㻌㻌㻌㻌 N-acetyl-D-galactosamine g Gram g/L Gram/litre HA㻌㻌㻌㻌㻌㻌㻌㻌 Hemagglutination ∆hlyA hlyA-deficient strain H hour IL Interleukin IPTG Isopropyl β-D-1-thiogalactopyranoside LB㻌 㻌 㻌 㻌 Luria broth M Molar mM Milimolar min Minute mL Mililitre mg/mL Milligram/mililitre NaCl Sodium chloride ORF Open reading frame PBS Phosphate-buffered saline㻌 PCR Polymerase chain reaction pH㻌㻌 㻌 㻌㻌㻌㻌㻌㻌㻌Potential of hydrogen SDS–PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis TSB Tryptic soy broth 㻞㻌 㻌 μL Microlitre μM Micromolar -
Reclassification of Agrobacterium Ferrugineum LMG 128 As Hoeflea
International Journal of Systematic and Evolutionary Microbiology (2005), 55, 1163–1166 DOI 10.1099/ijs.0.63291-0 Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov. Alvaro Peix,1 Rau´l Rivas,2 Martha E. Trujillo,2 Marc Vancanneyt,3 Encarna Vela´zquez2 and Anne Willems3 Correspondence 1Departamento de Produccio´n Vegetal, Instituto de Recursos Naturales y Agrobiologı´a, Encarna Vela´zquez IRNA-CSIC, Spain [email protected] 2Departamento de Microbiologı´a y Gene´tica, Lab. 209, Edificio Departamental, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain 3Laboratory of Microbiology, Dept Biochemistry, Physiology and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium Members of the species Agrobacterium ferrugineum were isolated from marine environments. The type strain of this species (=LMG 22047T=ATCC 25652T) was recently reclassified in the new genus Pseudorhodobacter, in the order ‘Rhodobacterales’ of the class ‘Alphaproteobacteria’. Strain LMG 128 (=ATCC 25654) was also initially classified as belonging to the species Agrobacterium ferrugineum; however, the nearly complete 16S rRNA gene sequence of this strain indicated that it does not belong within the genus Agrobacterium or within the genus Pseudorhodobacter. The closest related organism, with 95?5 % 16S rRNA gene similarity, was Aquamicrobium defluvii from the family ‘Phyllobacteriaceae’ in the order ‘Rhizobiales’. The remaining genera from this order had 16S rRNA gene sequence similarities that were lower than 95?1 % with respect to strain LMG 128. These phylogenetic distances suggested that strain LMG 128 belonged to a different genus. The major fatty acid present in strain LMG 128 was mono-unsaturated straight chain 18 : 1v7c. -
Identification of Pasteurella Species and Morphologically Similar Organisms
UK Standards for Microbiology Investigations Identification of Pasteurella species and Morphologically Similar Organisms Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 13 | Issue no: 3 | Issue date: 04.02.15 | Page: 1 of 28 © Crown copyright 2015 Identification of Pasteurella species and Morphologically Similar Organisms Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website https://www.gov.uk/uk- standards-for-microbiology-investigations-smi-quality-and-consistency-in-clinical- laboratories. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see https://www.gov.uk/government/groups/standards-for-microbiology-investigations- steering-committee). The contributions of many individuals in clinical, specialist and reference laboratories who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: Standards Unit Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ E-mail: [email protected] Website: https://www.gov.uk/uk-standards-for-microbiology-investigations-smi-quality- and-consistency-in-clinical-laboratories UK Standards for Microbiology Investigations are produced in association with: Logos correct at time of publishing. Bacteriology – Identification | ID 13 | Issue no: 3 | Issue date: 04.02.15 | Page: 2 of 28 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Identification of Pasteurella species and Morphologically Similar Organisms Contents ACKNOWLEDGMENTS ......................................................................................................... -
( Eikenella Corrodens のクオラムセンシングと バイオフィルム形成の関連性に関する研究)
Studies on the relationship between quorum sensing and biofilm formation of Eikenella corrodens ( Eikenella corrodens のクオラムセンシングと バイオフィルム形成の関連性に関する研究) by MOHAMMAD MINNATUL KARIM Thesis Submitted to the United Graduate School of Agricultural Sciences Tottori University, Japan In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY (PhD) The United Graduate School of Agricultural Sciences Tottori University, Japan September, 2013 1 DEDICATED TO MY BELOVED PARENTS 2 CONTENTS CONTENTS...............................................................................................ⅰ LIST OF ABBREVIATIONS...................................................................ⅱ GENERAL INTRODUCTION................................................................. 1 OBJECTIVES........................................................................................... 10 CHAPTER 1 ............................................................................................. 11 The Periodontopathogenic Bacterium Eikenella corrodens Produces an Autoinducer-2-Inactivating Enzyme 1.1 ABSTRACT ………………………………………………………… 12 1.2 INTRODUCTION …………………………………………………....13 1.3 MATERIALS AND METHODS ……………………………………..15 1.4 RESULTS …………………………………………………………… 19 1.5 DISCUSSION ………………………………………………………. 22 1.6 FIGURES …………………………………………………………….25 CHAPTER 2 …………………………………………………………… 32 LuxS affects biofilm maturation and detachment of the periodontopathogenic bacterium Eikenella corrodens 2.1 ABSTRACT …………………………………………………………. 33 2.2 INTRODUCTION …………………………………………………....34 -
Digestive Tract Infections •Skin & Soft Tissue Infections(SSTI)
EU Conference: Workshop #6 Macrolide Indications: •Ocular Infections •Stomatologic Infections •Digestive tract Infections •Skin & Soft Tissue Infections(SSTI) Dr. S. Simonian (NL) © CBG-MEB 1 Introduction • Problem statement: – What is the (un-)labelled use of individual macrolides in ocular, stomatologic, GI and SSTI infections? – What is the ultimate list of practical indications in these areas? • Approach: – Review information documented in data sheets & clinical literature. – From current global situation to agreed ----> by reconciliation of clinical experience with regulatory process----> state of the art indications. Focus will be primarily on systemic macrolides. © CBG-MEB 2 General Indications Ocular infections 1 ? Conjunctivitis (neonatal) C. trachomatis 2 ? Blepharitis Staphylococcal Stomatologic infections Eikenella corrodens? ? Periodontal disease3 Streptococci spp. Digestive tract infections HP peptic ulcer H. pylori* CJ Acute enteritis4 C. jejuni Cholecystitis5 SSTI Acne P. acnes Impetigo, erysipelas Streptococci spp. Furuncles, abcesses S. aureus Lyme disease?? B. burgdorferi Bartonella infections in HIV-patients ? Unlabelled use Questionable * In combination with PPI and other ?? antibiotics (eg. amoxicillin) As unlabelled alternative to beta-lactams and tetracyclines in early Lyme disease. As second-line in case tetracyline is inappropriate. © CBG-MEB 3 Indication status: Labelled(!), unlabelled & in research Ery Rox Clar Azit Telit Jos Spir Ocular infections Conjunctivitis(of the newborn) ! Blepharitis ! Trachoma -
Microbial Biofilms – Veronica Lazar and Eugenia Bezirtzoglou
MEDICAL SCIENCES – Microbial Biofilms – Veronica Lazar and Eugenia Bezirtzoglou MICROBIAL BIOFILMS Veronica Lazar University of Bucharest, Faculty of Biology, Dept. of Microbiology, 060101 Aleea Portocalelor No. 1-3, Sector 6, Bucharest, Romania; Eugenia Bezirtzoglou Democritus University of Thrace - Faculty of Agricultural Development, Dept. of Microbiology, Orestiada, Greece Keywords: Microbial adherence to cellular/inert substrata, Biofilms, Intercellular communication, Quorum Sensing (QS) mechanism, Dental plaque, Tolerance to antimicrobials, Anti-biofilm strategies, Ecological and biotechnological significance of biofilms Contents 1. Introduction 2. Definition 3. Microbial Adherence 4. Development, Architecture of a Mature Biofilm and Properties 5. Intercellular Communication: Intra-, Interspecific and Interkingdom Signaling, By QS Mechanism and Implications 6. Medical Significance of Microbial Biofilms Formed on Cellular Substrata and Medical Devices 6.1. Microbial Biofilms on Medical Devices 6.2. Microorganisms - Biomaterial Interactions 6.3. Phenotypical Resistance or Tolerance to Antimicrobials; Mechanisms of Tolerance 7. New Strategies for Prevention and Treatment of Biofilm Associated Infections 8. Ecological Significance 9. Biotechnological / Industrial Applications 10. Conclusion Acknowledgments Glossary Bibliography Biographical Sketches UNESCO – EOLSS Summary A biofilm is a sessileSAMPLE microbial community coCHAPTERSmposed of cells embedded in a matrix of exopolysaccharide matrix attached to a substratum or interface. Biofilms -
Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg -
Yopb and Yopd Constitute a Novel Class of Yersinia Yop Proteins
INFECTION AND IMMUNITY, Jan. 1993, p. 71-80 Vol. 61, No. 1 0019-9567/93/010071-10$02.00/0 Copyright © 1993, American Society for Microbiology YopB and YopD Constitute a Novel Class of Yersinia Yop Proteins SEBASTIAN HAKANSSON,1 THOMAS BERGMAN,1 JEAN-CLAUDE VANOOTEGHEM, 2 GUY CORNELIS,2 AND HANS WOLF-WATZ1* Department of Cell and Molecular Biology, University of Umed, S-901 87 Umed, Sweden,' and Microbial Pathogenesis Unit, Intemnational Institute of Cellular and Molecular Pathology and Faculte6 de Medecine, Universite Catholique de Louvain, B-1200 Brussels, Belgium2 Received 21 May 1992/Accepted 21 October 1992 Virulent Yersinia species harbor a common plasmid that encodes essential virulence determinants (Yersinia outer proteins [Yops]), which are regulated by the extracellular stimuli Ca2" and temperature. The V-antigen-encoding operon has been shown to be involved in the Ca2 -regulated negative pathway. The genetic organization of the V-antigen operon and the sequence of the krGVH genes were recently presented. The V-antigen operon was shown to be a polycistronic operon having the gene order kcrGVH-yopBD (T. Bergman, S. Hakansson, A. Forsberg, L. Norlander, A. Maceliaro, A. Backman, I. Bolin, and H. Wolf-Watz, J. Bacteriol. 173:1607-1616, 1991; S. B. Price, K. Y. Leung, S. S. Barve, and S. C. Straley, J. Bacteriol. 171:5646-5653, 1989). We present here the sequence of the distal part of the V-antigen operons of Yersinia pseudotuberculosis and Yersinia enterocolitica. The sequence information encompasses theyopB andyopD genes and a downstream region in both species. We conclude that the V-antigen operon ends with theyopD gene. -
The Gut Microbiome of the Sea Urchin, Lytechinus Variegatus, from Its Natural Habitat Demonstrates Selective Attributes of Micro
FEMS Microbiology Ecology, 92, 2016, fiw146 doi: 10.1093/femsec/fiw146 Advance Access Publication Date: 1 July 2016 Research Article RESEARCH ARTICLE The gut microbiome of the sea urchin, Lytechinus variegatus, from its natural habitat demonstrates selective attributes of microbial taxa and predictive metabolic profiles Joseph A. Hakim1,†, Hyunmin Koo1,†, Ranjit Kumar2, Elliot J. Lefkowitz2,3, Casey D. Morrow4, Mickie L. Powell1, Stephen A. Watts1,∗ and Asim K. Bej1,∗ 1Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL 35294, USA, 2Center for Clinical and Translational Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA, 3Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA and 4Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd., Birmingham, AL 35294, USA ∗Corresponding authors: Department of Biology, University of Alabama at Birmingham, 1300 University Blvd, CH464, Birmingham, AL 35294-1170, USA. Tel: +1-(205)-934-8308; Fax: +1-(205)-975-6097; E-mail: [email protected]; [email protected] †These authors contributed equally to this work. One sentence summary: This study describes the distribution of microbiota, and their predicted functional attributes, in the gut ecosystem of sea urchin, Lytechinus variegatus, from its natural habitat of Gulf of Mexico. Editor: Julian Marchesi ABSTRACT In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities. -
Niche Differentiation Among Sulfur-Oxidizing Bacterial Populations in Cave Waters
The ISME Journal (2008) 2, 590–601 & 2008 International Society for Microbial Ecology All rights reserved 1751-7362/08 $30.00 www.nature.com/ismej ORIGINAL ARTICLE Niche differentiation among sulfur-oxidizing bacterial populations in cave waters Jennifer L Macalady1, Sharmishtha Dattagupta1, Irene Schaperdoth1, Daniel S Jones1, Greg K Druschel2 and Danielle Eastman2 1Department of Geosciences, Pennsylvania State University, Pennsylvania, PA, USA and 2Department of Geology, University of Vermont, Burlington, VT, USA The sulfidic Frasassi cave system affords a unique opportunity to investigate niche relationships among sulfur-oxidizing bacteria, including epsilonproteobacterial clades with no cultivated representatives. Oxygen and sulfide concentrations in the cave waters range over more than two orders of magnitude as a result of seasonally and spatially variable dilution of the sulfidic groundwater. A full-cycle rRNA approach was used to quantify dominant populations in biofilms collected in both diluted and undiluted zones. Sulfide concentration profiles within biofilms were obtained in situ using microelectrode voltammetry. Populations in rock-attached streamers depended on the sulfide/oxygen supply ratio of bulk water (r ¼ 0.97; Po0.0001). Filamentous epsilonproteobacteria dominated at high sulfide to oxygen ratios (4150), whereas Thiothrix dominated at low ratios (o75). In contrast, Beggiatoa was the dominant group in biofilms at the sediment–water interface regardless of sulfide and oxygen concentrations or supply ratio. Our results -
Detection of Helicobacter Pylori Microevolution and Multiple Infection, and Genomic Analysis of Helicobacter Pylori Strains
Detection of Helicobacter pylori Microevolution and Multiple Infection, and Genomic Analysis of Helicobacter pylori Strains Montserrat Palau de Miguel Aquesta tesi doctoral està subjecta a la llicència Reconeixement 4.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento 4.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution 4.0. Spain License. UNIVERSITAT DE BARCELONA FACULTAT DE FARMÀCIA I CIÈNCIES DE L’ALIMENTACIÓ DEPARTAMENT DE BIOLOGIA, SANITAT I MEDI AMBIENT SECCIÓ DE MICROBIOLOGIA Detection of Helicobacter pylori Microevolution and Multiple Infection, and Genomic Analysis of Helicobacter pylori Strains MONTSERRAT PALAU DE MIGUEL Setembre 2019 UNIVERSITAT DE BARCELONA FACULTAT DE FARMÀCIA I CIÈNCIES DE L’ALIMENTACIÓ PROGRAMA DE DOCTORAT DE BIOTECNOLOGIA Detection of Helicobacter pylori Microevolution and Multiple Infection, and Genomic Analysis of Helicobacter pylori Strains Memòria presentada per Montserrat Palau de Miguel per optar al títol de doctor per la Universitat de Barcelona Director i Tutor Doctoranda David Miñana i Galbis Montserrat Palau de Miguel MONTSERRAT PALAU DE MIGUEL Setembre 2019 “If you go immunosuppressed for a little bit, they’ll kill you. When you die, they’ll eat you. They don’t care. It’s not a relationship. It’s just biology.” Ed Yong. I contain multitudes "Science is not only a discipline of reason but also one of romance and passion." Stephen Hawking ACKNOWLEDGMENTS Necessitaria moltes pàgines per poder agrair a tothom aquests 5 anys de doctorat... Primer que res al David, gràcies per creure en mi des del primer moment. Amb tu vaig començar aquesta aventura quan només feia segon de carrera i vaig atendre les teves classes de Microbiologia I.