The Holy Grail: a Road Map for Unlocking the Climate Record Stored Within Mars' Polar Layered Deposits

Total Page:16

File Type:pdf, Size:1020Kb

The Holy Grail: a Road Map for Unlocking the Climate Record Stored Within Mars' Polar Layered Deposits Journal Pre-proof The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits Isaac B. Smith, Paul O. Hayne, Shane Byrne, Patricio Becerra, Melinda Kahre, Wendy Calvin, Christine Hvidberg, Sarah Milkovich, Peter Buhler, Margaret Landis, Briony Horgan, Armin Kleinböhl, Matthew R. Perry, Rachel Obbard, Jennifer Stern, Sylvain Piqueux, Nicolas Thomas, Kris Zacny, Lynn Carter, Lauren Edgar, Jeremy Emmett, Thomas Navarro, Jennifer Hanley, Michelle Koutnik, Nathaniel Putzig, Bryana L. Henderson, John W. Holt, Bethany Ehlmann, Sergio Parra, Daniel Lalich, Candice Hansen, Michael Hecht, Don Banfield, Ken Herkenhoff, David A. Paige, Mark Skidmore, Robert L. Staehle, Matthew Siegler PII: S0032-0633(19)30187-4 DOI: https://doi.org/10.1016/j.pss.2020.104841 Reference: PSS 104841 To appear in: Planetary and Space Science Received Date: 1 May 2019 Revised Date: 26 December 2019 Accepted Date: 9 January 2020 Please cite this article as: Smith, I.B., Hayne, P.O., Byrne, S., Becerra, P., Kahre, M., Calvin, W., Hvidberg, C., Milkovich, S., Buhler, P., Landis, M., Horgan, B., Kleinböhl, A., Perry, M.R., Obbard, R., Stern, J., Piqueux, S., Thomas, N., Zacny, K., Carter, L., Edgar, L., Emmett, J., Navarro, T., Hanley, J., Koutnik, M., Putzig, N., Henderson, B.L., Holt, J.W., Ehlmann, B., Parra, S., Lalich, D., Hansen, C., Hecht, M., Banfield, D., Herkenhoff, K., Paige, D.A., Skidmore, M., Staehle, R.L., Siegler, M., The Holy Grail: A road map for unlocking the climate record stored within Mars' polar layered deposits, Planetary and Space Science (2020), doi: https://doi.org/10.1016/j.pss.2020.104841. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2020 Published by Elsevier Ltd. 1 The Holy Grail: A Road Map for Unlocking the Climate 2 Record Stored within Mars' Polar Layered Deposits 3 4 Authors and Affiliations 5 Isaac B. Smith 6 York University, Toronto, Ontario, Canada, M3J 1P3 7 Planetary Science Institute, Lakewood, CO 80401 8 Paul O. Hayne 9 University of Colorado Boulder, Boulder, Colorado 80309 10 Shane Byrne 11 University of Arizona, Tucson, Arizona 85721 12 Patricio Becerra 13 Universität Bern, Bern, Switzerland 14 Melinda Kahre 15 NASA Ames Research Center, Moffett Field, California 94035 16 Wendy Calvin 17 University of Nevada, Reno, Reno, Nevada 89557 18 Christine Hvidberg 19 University of Copenhagen, Copenhagen, Denmark 20 Sarah Milkovich 21 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 22 Peter Buhler 23 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 24 Margaret Landis 25 University of Colorado Boulder, Boulder, Colorado 80309 26 Briony Horgan 27 Purdue University, West Lafayette, Indiana 47907 28 Armin Kleinböhl 29 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 30 Matthew R. Perry 31 Planetary Science Institute, Lakewood, CO 80401 32 Rachel Obbard 33 SETI Institute, Mountain View, California 94043 34 Jennifer Stern 35 NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 36 Sylvain Piqueux 37 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 38 Nicolas Thomas 39 Universität Bern, Bern, Switzerland 40 Kris Zacny 41 Honeybee Robotics, Pasadena, California 91103 42 Lynn Carter Page 1 of 126 43 University of Arizona, Tucson, Arizona 85721 44 Lauren Edgar 45 U.S. Geological Survey, Flagstaff, Arizona 86001 46 Jeremy Emmett 47 New Mexico State University, Las Cruces, New Mexico 88003 48 Thomas Navarro 49 McGill Space Institute, McGill University, Montréal, Québec, Canada 50 University of California, Los Angeles, Los Angeles, California 90095 51 Jennifer Hanley 52 Lowell Observatory, Flagstaff, Arizona 86001 53 Michelle Koutnik 54 University of Washington, Seattle, Washington 98195 55 Nathaniel Putzig 56 Planetary Science Institute, Lakewood, CO 80401 57 Bryana L. Henderson 58 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 59 John W. Holt 60 University of Arizona, Tucson, Arizona 85721 61 Bethany Ehlmann 62 California Institute of Technology, Pasadena, California 91125 63 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 64 Sergio Parra 65 California Institute of Technology, Pasadena, California 91125 66 Daniel Lalich 67 Cornell University, Ithaca, New York 14853 68 Candice Hansen 69 Planetary Science Institute, Tucson, Arizona 85719 70 Michael Hecht 71 Haystack Observatory, Westford, Massachusetts 01886 72 Don Banfield 73 Cornell University, Ithaca, New York 14853 74 Ken Herkenhoff 75 U.S. Geological Survey, Flagstaff, Arizona 86001 76 David A. Paige 77 University of California, Los Angeles, Los Angeles, California 90095 78 Mark Skidmore 79 Montana State University, Bozeman, Montana 59717 80 Robert L. Staehle 81 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109 82 Matthew Siegler 83 Planetary Science Institute, Tucson, Arizona 85719 Page 2 of 126 84 0: Abstract 85 In its polar layered deposits (PLD), Mars possesses a record of its recent climate, 86 analogous to terrestrial ice sheets containing climate records on Earth. Each PLD is greater than 87 2 km thick and contains thousands of layers, each containing information on the climatic and 88 atmospheric state during its deposition, creating a climate archive. With detailed 89 measurements of layer composition, it may be possible to extract age, accumulation rates, 90 atmospheric conditions, and surface activity at the time of deposition, among other important 91 parameters; gaining the information would allow us to "read" the climate record. Because Mars 92 has fewer complicating factors than Earth (e.g. oceans, biology, and human-modified climate), 93 the planet offers a unique opportunity to study the history of a terrestrial planet’s climate, 94 which in turn can teach us about our own planet and the thousands of terrestrial exoplanets 95 waiting to be discovered. 96 During a two-part workshop, the Keck Institute for Space Studies (KISS) hosted 38 Mars 97 scientists and engineers who focused on determining the measurements needed to extract the 98 climate record contained in the PLD. The group converged on four fundamental questions that 99 must be answered with the goal of interpreting the climate record and finding its history based 100 on the climate drivers 101 102 1. What are present and past fluxes of volatiles, dust, and other materials into and out of 103 the polar regions? 104 2. How do orbital forcing and exchange with other reservoirs affect those fluxes? Page 3 of 126 105 3. What chemical and physical processes form and modify layers? 106 4. What is the timespan, completeness, and temporal resolution of the climate history 107 recorded in the PLD? 108 109 The group then proposed numerous measurements in order to answer these questions 110 and detailed a sequence of missions and architecture to complete the measurements. In all, 111 several missions are required, including an orbiter that can characterize the present climate and 112 volatile reservoirs; a static reconnaissance lander capable of characterizing near surface 113 atmospheric processes, annual accumulation, surface properties, and layer formation 114 mechanism in the upper 50 cm of the PLD; a network of SmallSat landers focused on 115 meteorology for ground truth of the low-altitude orbiter data; and finally, a second landed 116 platform to access ~500 m of layers to measure layer variability through time. This mission 117 architecture, with two landers, would meet the science goals and is designed to save costs 118 compared to a single very capable landed mission. The rationale for this plan is presented 119 below. 120 In this paper we discuss numerous aspects, including our motivation, background of 121 polar science, the climate science that drives polar layer formation, modeling of the 122 atmosphere and climate to create hypotheses for what the layers mean, and terrestrial analogs 123 to climatological studies. Finally, we present a list of measurements and missions required to 124 answer the four maJor questions and read the climate record. 125 1. Background Page 4 of 126 126 1.A Justification and Timeliness 127 From a scientific point of view, this is the opportune time to set the direction of future 128 exploration of the polar layered deposits (PLD). The Mars polar science community held a 129 conference in 2016 (Smith et al., 2018) and the Mars Amazonian Climate Workshop in 2018 130 (Diniega and Smith, this issue) that distilled and summarized many years of research performed 131 on the datasets of numerous missions. Further, the Mars Exploration Program Analysis Group 132 (MEPAG) recently completed an ice and climate study identifying the polar regions as high 133 priority destinations for future exploration (ICE-SAG 2019). Those reports outline mature 134 hypotheses and maJor themes for future work that cannot be addressed with current
Recommended publications
  • NASA's Curiosity Rover Maximizes Data Sent to Earth by Using International Space Data Communication Standards
    Press Release For immediate release NASA's Curiosity Rover Maximizes Data Sent to Earth by Using International Space Data Communication Standards WASHINGTON, 22 August 2012 (CCSDS) – NASA’s Mars Science Laboratory (MSL) mission began its planned 2-year Mars surface exploration mission on August 6 after landing its large, mobile laboratory called Curiosity. The goal of the mission is to assess whether Mars has ever had, or still has, environmental conditions favorable to microbial life. Curiosity, with its one-ton payload carrying capacity carries 10 science instruments that will gather samples of rocks and soil, and process and distribute them to onboard test chambers inside analytical instruments. Some of the rover’s scientific data, including images of the surface of Mars collected by Curiosity’s 17 onboard cameras, are sent directly to and from Earth via NASA’s Deep Space Network (DSN) of large ground antennas. However, once Curiosity becomes fully operational most of the scientific and engineering data will be transferred via relay satellites that are in orbit around Mars. These are primarily the Mars Reconnaissance Orbiter (MRO) and the Mars Odyssey (ODY) spacecraft. The MSL Mars-Earth communications systems are using internationally-agreed space data communications standards to enable reliable transmission of the expected rich data sets to be gathered by Curiosity. These standards were developed by a team of international space data communication specialists collaborating within the Consultative Committee for Space Data Systems (CCSDS). Use of internationally-agreed upon standards reduce cost and risk to space missions, and also offer rich “cross-support” capabilities to collaborate since key data interfaces are inherently interoperable.
    [Show full text]
  • Mars Reconnaissance Orbiter
    Chapter 6 Mars Reconnaissance Orbiter Jim Taylor, Dennis K. Lee, and Shervin Shambayati 6.1 Mission Overview The Mars Reconnaissance Orbiter (MRO) [1, 2] has a suite of instruments making observations at Mars, and it provides data-relay services for Mars landers and rovers. MRO was launched on August 12, 2005. The orbiter successfully went into orbit around Mars on March 10, 2006 and began reducing its orbit altitude and circularizing the orbit in preparation for the science mission. The orbit changing was accomplished through a process called aerobraking, in preparation for the “science mission” starting in November 2006, followed by the “relay mission” starting in November 2008. MRO participated in the Mars Science Laboratory touchdown and surface mission that began in August 2012 (Chapter 7). MRO communications has operated in three different frequency bands: 1) Most telecom in both directions has been with the Deep Space Network (DSN) at X-band (~8 GHz), and this band will continue to provide operational commanding, telemetry transmission, and radiometric tracking. 2) During cruise, the functional characteristics of a separate Ka-band (~32 GHz) downlink system were verified in preparation for an operational demonstration during orbit operations. After a Ka-band hardware anomaly in cruise, the project has elected not to initiate the originally planned operational demonstration (with yet-to-be­ used redundant Ka-band hardware). 201 202 Chapter 6 3) A new-generation ultra-high frequency (UHF) (~400 MHz) system was verified with the Mars Exploration Rovers in preparation for the successful relay communications with the Phoenix lander in 2008 and the later Mars Science Laboratory relay operations.
    [Show full text]
  • Variability of Mars' North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data
    Icarus 144, 382–396 (2000) doi:10.1006/icar.1999.6300, available online at http://www.idealibrary.com on Variability of Mars’ North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data Deborah S. Bass Instrumentation and Space Research Division, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510 E-mail: [email protected] Kenneth E. Herkenhoff U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001 and David A. Paige Department of Earth and Space Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1567 Received May 15, 1998; revised November 17, 1999 1. INTRODUCTION Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars’ north residual Like Earth, Mars has perennial ice caps and an active wa- polar cap as evidence of interannual variability of ice deposition on ter cycle. The Viking Orbiter determined that the surface of the the cap. However,these investigators did not consider the possibility northern residual cap is water ice (Kieffer et al. 1976, Farmer that there could be significant changes in the ice coverage within et al. 1976). At the south residual polar cap, both Mariner 9 the northern residual cap over the course of the summer season. and Viking Orbiter observed carbon dioxide ice throughout the Our more comprehensive analysis of Mariner 9 and Viking Orbiter summer. Many have related observed atmospheric water vapor imaging data shows that the appearance of the residual cap does not abundances to seasonal exchange between reservoirs such as show large-scale variance on an interannual basis.
    [Show full text]
  • Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
    Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY ..........................................................................................................................
    [Show full text]
  • Long-Range Rovers for Mars Exploration and Sample Return
    2001-01-2138 Long-Range Rovers for Mars Exploration and Sample Return Joe C. Parrish NASA Headquarters ABSTRACT This paper discusses long-range rovers to be flown as part of NASA’s newly reformulated Mars Exploration Program (MEP). These rovers are currently scheduled for launch first in 2007 as part of a joint science and technology mission, and then again in 2011 as part of a planned Mars Sample Return (MSR) mission. These rovers are characterized by substantially longer range capability than their predecessors in the 1997 Mars Pathfinder and 2003 Mars Exploration Rover (MER) missions. Topics addressed in this paper include the rover mission objectives, key design features, and Figure 1: Rover Size Comparison (Mars Pathfinder, Mars Exploration technologies. Rover, ’07 Smart Lander/Mobile Laboratory) INTRODUCTION NASA is leading a multinational program to explore above, below, and on the surface of Mars. A new The first of these rovers, the Smart Lander/Mobile architecture for the Mars Exploration Program has Laboratory (SLML) is scheduled for launch in 2007. The recently been announced [1], and it incorporates a current program baseline is to use this mission as a joint number of missions through the rest of this decade and science and technology mission that will contribute into the next. Among those missions are ambitious plans directly toward sample return missions planned for the to land rovers on the surface of Mars, with several turn of the decade. These sample return missions may purposes: (1) perform scientific explorations of the involve a rover of almost identical architecture to the surface; (2) demonstrate critical technologies for 2007 rover, except for the need to cache samples and collection, caching, and return of samples to Earth; (3) support their delivery into orbit for subsequent return to evaluate the suitability of the planet for potential manned Earth.
    [Show full text]
  • GRAIL Twins Toast New Year from Lunar Orbit
    Jet JANUARY Propulsion 2012 Laboratory VOLUME 42 NUMBER 1 GRAIL twins toast new year from Three-month ‘formation flying’ mission will By Mark Whalen lunar orbit study the moon from crust to core Above: The GRAIL team celebrates with cake and apple cider. Right: Celebrating said. “So it does take a lot of planning, a lot of test- the other spacecraft will accelerate towards that moun- GRAIL-A’s Jan. 1 lunar orbit insertion are, from left, Maria Zuber, GRAIL principal ing and then a lot of small maneuvers in order to get tain to measure it. The change in the distance between investigator, Massachusetts Institute of Technology; Charles Elachi, JPL director; ready to set up to get into this big maneuver when we the two is noted, from which gravity can be inferred. Jim Green, NASA director of planetary science. go into orbit around the moon.” One of the things that make GRAIL unique, Hoffman JPL’s Gravity Recovery and Interior Laboratory (GRAIL) A series of engine burns is planned to circularize said, is that it’s the first formation flying of two spacecraft mission celebrated the new year with successful main the twins’ orbit, reducing their orbital period to a little around any body other than Earth. “That’s one of the engine burns to place its twin spacecraft in a perfectly more than two hours before beginning the mission’s biggest challenges we have, and it’s what makes this an synchronized orbit around the moon. 82-day science phase. “If these all go as planned, we exciting mission,” he said.
    [Show full text]
  • Jjmonl 1603.Pmd
    alactic Observer GJohn J. McCarthy Observatory Volume 9, No. 3 March 2016 GRAIL - On the Trail of the Moon's Missing Mass GRAIL (Gravity Recovery and Interior Laboratory) was a NASA scientific mission in 2011/12 to map the surface of the moon and collect data on gravitational anomalies. The image here is an artist's impres- sion of the twin satellites (Ebb and Flow) orbiting in tandem above a gravitational image of the moon. See inside, page 4 for information on gravitational anomalies (mascons) or visit http://solarsystem. nasa.gov/grail. The John J. McCarthy Observatory Galactic Observer New Milford High School Editorial Committee 388 Danbury Road Managing Editor New Milford, CT 06776 Bill Cloutier Phone/Voice: (860) 210-4117 Production & Design Phone/Fax: (860) 354-1595 www.mccarthyobservatory.org Allan Ostergren Website Development JJMO Staff Marc Polansky It is through their efforts that the McCarthy Observatory Technical Support has established itself as a significant educational and Bob Lambert recreational resource within the western Connecticut Dr. Parker Moreland community. Steve Barone Jim Johnstone Colin Campbell Carly KleinStern Dennis Cartolano Bob Lambert Mike Chiarella Roger Moore Route Jeff Chodak Parker Moreland, PhD Bill Cloutier Allan Ostergren Cecilia Dietrich Marc Polansky Dirk Feather Joe Privitera Randy Fender Monty Robson Randy Finden Don Ross John Gebauer Gene Schilling Elaine Green Katie Shusdock Tina Hartzell Paul Woodell Tom Heydenburg Amy Ziffer In This Issue "OUT THE WINDOW ON YOUR LEFT" ............................... 4 SUNRISE AND SUNSET ...................................................... 13 MARE HUMBOLDTIANIUM AND THE NORTHEAST LIMB ......... 5 JUPITER AND ITS MOONS ................................................. 13 ONE YEAR IN SPACE ....................................................... 6 TRANSIT OF JUPITER'S RED SPOT ....................................
    [Show full text]
  • Grail): Extended Mission and Endgame Status
    44th Lunar and Planetary Science Conference (2013) 1777.pdf GRAVITY RECOVERY AND INTERIOR LABORATORY (GRAIL): EXTENDED MISSION AND ENDGAME STATUS. Maria T. Zuber1, David E. Smith1, Sami W. Asmar2, Alexander S. Konopliv2, Frank G. Lemoine3, H. Jay Melosh4, Gregory A. Neumann3, Roger J. Phillips5, Sean C. Solomon6,7, Michael M. Watkins2, Mark A. Wieczorek8, James G. Williams2, Jeffrey C. Andrews-Hanna9, James W. Head10, Wal- ter S. Kiefer11, Isamu Matsuyama12, Patrick J. McGovern11, Francis Nimmo13, G. Jeffrey Taylor14, Renee C. Weber15, Sander J. Goossens16, Gerhard L. Kruizinga2, Erwan Mazarico3, Ryan S. Park2 and Dah-Ning Yuan2. 1Dept. of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02129, USA ([email protected]); 2Jet Propulsion Laboratory, California Institute of Technol- ogy, Pasadena, CA 91109, USA; 3NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; 4Dept. of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907, USA; 5Planetary Science Directorate, Southwest Research Institute, Boulder, CO 80302, USA; 6 Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA; 7Dept. of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015, USA; 8Institut de Physique du Globe de Paris, 94100 Saint Maur des Fossés, France; 9Dept. of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, CO 80401, USA; 10Dept. of Geological Sciences, Brown University, Providence, RI 02912, USA; 11Lunar and Planetary Institute, Houston, TX 77058, USA; 12Lunar and Planetary Laborato- ry, University of Arizona, Tucson, AZ 85721, USA; 13Dept. of Earth and Planetary Sciences, University of California, Santa Cruz, CA 95064, USA; 14Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA; 15NASA Marshall Space Flight Center, Huntsville, AL 35805, USA, 16University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
    [Show full text]
  • Polar Ice in the Solar System
    Recommended Reading List for Polar Ice in the Inner Solar System Compiled by: Shane Byrne Lunar and Planetary Laboratory, University of Arizona. April 23rd, 2007 Polar Ice on Airless Bodies................................................................................................. 2 Initial theories and modeling results for these ice deposits: ........................................... 2 Observational evidence (or lack of) for polar ice on airless bodies:............................... 3 Martian Polar Ice................................................................................................................. 4 Good (although dated) introductory material ................................................................. 4 Polar Layered Deposits:...................................................................................................... 5 Ice-flow (or lack thereof) and internal structure in the polar layered deposits............... 5 North polar basal-unit ..................................................................................................... 6 Geologic Mapping and impact cratering......................................................................... 6 Connection of polar layered deposits (PLD) to climate.................................................. 7 Formation of troughs, scarps and chasmata.................................................................... 7 Surface Properties of the PLD ........................................................................................ 8 Eolian Processes
    [Show full text]
  • Space Sector Brochure
    SPACE SPACE REVOLUTIONIZING THE WAY TO SPACE SPACECRAFT TECHNOLOGIES PROPULSION Moog provides components and subsystems for cold gas, chemical, and electric Moog is a proven leader in components, subsystems, and systems propulsion and designs, develops, and manufactures complete chemical propulsion for spacecraft of all sizes, from smallsats to GEO spacecraft. systems, including tanks, to accelerate the spacecraft for orbit-insertion, station Moog has been successfully providing spacecraft controls, in- keeping, or attitude control. Moog makes thrusters from <1N to 500N to support the space propulsion, and major subsystems for science, military, propulsion requirements for small to large spacecraft. and commercial operations for more than 60 years. AVIONICS Moog is a proven provider of high performance and reliable space-rated avionics hardware and software for command and data handling, power distribution, payload processing, memory, GPS receivers, motor controllers, and onboard computing. POWER SYSTEMS Moog leverages its proven spacecraft avionics and high-power control systems to supply hardware for telemetry, as well as solar array and battery power management and switching. Applications include bus line power to valves, motors, torque rods, and other end effectors. Moog has developed products for Power Management and Distribution (PMAD) Systems, such as high power DC converters, switching, and power stabilization. MECHANISMS Moog has produced spacecraft motion control products for more than 50 years, dating back to the historic Apollo and Pioneer programs. Today, we offer rotary, linear, and specialized mechanisms for spacecraft motion control needs. Moog is a world-class manufacturer of solar array drives, propulsion positioning gimbals, electric propulsion gimbals, antenna positioner mechanisms, docking and release mechanisms, and specialty payload positioners.
    [Show full text]
  • Reviewing the Contribution of GRAIL to Lunar Science and Planetary Missions Maria T
    EPSC Abstracts Vol. 12, EPSC2018-575, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Reviewing the contribution of GRAIL to lunar science and planetary missions Maria T. Zuber and David E. Smith Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139- 4307, USA. ([email protected], [email protected]) Abstract Q of the Moon determined to be 41±4 at the monthly frequency. The GRAIL Discovery mission to the Moon in 2011 provided an unprecedentedly accurate gravity field model for the Moon. The goal of the mission was to provide insight into the structure of the Moon from its interior to the surface but it also made significant contributions to lunar spacecraft operations for all future lunar missions to the Moon. We discuss the science and the broader contributions from this mission that completed its objectives in December 2012 when the spacecraft impacted the lunar surface. 1. Introduction Figure 1: Free-air gravity of the Moon from GRAIL. GRAIL was a mission designed to measure the Full uniform resolution spherical harmonic models gravity field of the Moon with both high accuracy were obtained out to degree & order 1200 with and high resolution. The measurement goal was to special fields with higher resolutions over certain obtain the gravity at resolutions that would enable areas to degree and order 1800. interpretation of the crust at fractions of its thickness, estimated at the time of launch to be about 45 km. To 3. Mission Operations obtain a surface resolution of less than 10 km required the spacecraft to orbit the Moon at less than The significant improvement in our knowledge of the 20 km, an altitude that was considered dangerous at gravity field of the Moon by GRAIL enabled the re- that time without an accurate gravity field model.
    [Show full text]
  • Dragon Con Progress Report 2021 | Published by Dragon Con All Material, Unless Otherwise Noted, Is © 2021 Dragon Con, Inc
    WWW.DRAGONCON.ORG INSIDE SEPT. 2 - 6, 2021 • ATLANTA, GEORGIA • WWW.DRAGONCON.ORG Announcements .......................................................................... 2 Guests ................................................................................... 4 Featured Guests .......................................................................... 4 4 FEATURED GUESTS Places to go, things to do, and Attending Pros ......................................................................... 26 people to see! Vendors ....................................................................................... 28 Special 35th Anniversary Insert .......................................... 31 Fan Tracks .................................................................................. 36 Special Events & Contests ............................................... 46 36 FAN TRACKS Art Show ................................................................................... 46 Choose your own adventure with one (or all) of our fan-run tracks. Blood Drive ................................................................................47 Comic & Pop Artist Alley ....................................................... 47 Friday Night Costume Contest ........................................... 48 Hallway Costume Contest .................................................. 48 Puppet Slam ............................................................................ 48 46 SPECIAL EVENTS Moments you won’t want to miss Masquerade Costume Contest ........................................
    [Show full text]