Butomus Umbellatus) on Lake Erie Wetland Restoration

Total Page:16

File Type:pdf, Size:1020Kb

Butomus Umbellatus) on Lake Erie Wetland Restoration SOIL AND LITTER LEGACY EFFECTS OF INVASIVE FLOWERING RUSH (BUTOMUS UMBELLATUS) ON LAKE ERIE WETLAND RESTORATION Alyssa Dietz A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2015 Committee: Helen Michaels, Advisor Enrique Gomezdelcampo C. Eric Hellquist Jeffrey Miner ii ABSTRACT Helen Michaels, Advisor The Great Lakes region has been impacted by the invasion of over 180 different alien species. As invasives have reduced wetland habitat availability and altered community structure, managers have developed extensive eradication programs. However, even following the removal of dense monocultures, invasive plants can influence native ecosystems through long-term chemical and biological changes, known as legacy effects. My research investigates the potential for these legacy effects following the removal of Flowering Rush (Butomus umbellatus), an understudied emergent in Lake Erie wetlands. This research focuses on how legacy effects of B. umbellatus may influence restoration of native communities and investigates whether the presence of remnant stands of B. umbellatus propagules or litter alters the success of native reestablishment. A seed mix of 25 native species was sown into flats with soil from either native dominated soils, areas with formerly moderate invasions, or areas with persistent Butomus monocultures. These sown plant communities were then subjected to single and combined treatments of living B. umbellatus vegetative propagules and litter alongside unsown flats that examined the response of seedbank communities. The presence of propagules greatly reduced the growth of native seedlings developing in experimental plantings by 69%. While there was no difference in biomass between native seedlings grown in univaded soils and those from areas of B. umbellatus monocultures, native diversity and community evenness were lower. Contrary to initial predictions, B. umbellatus litter increased native biomass and taxon diversity. Planted propagules also reduced applied iii invasive litter decomposition. Nutrient analysis of soils from sites of monocultures had elevated levels of phosphorus and nitrogen release. This work documents specific negative impacts of this understudied invasive emergent plant on Great Lakes wetland communities. My results demonstrate the importance of controlling vegetative propagules and emphasizes their potential role in inhibiting restoration efforts that are costly and time consuming endeavors for management partners. This work also suggests that there may be possible changes to microbial communities and related ecosystem nutrient cycles once monocultures have developed. My research suggests the presence of legacy effects of B. umbellatus that alter community composition and soil conditions that warrant further investigation. iv ACKNOWLEDGMENTS First and foremost I would like to thank my advisor Dr. Helen Michaels for her help and guidance on my thesis. I would also like to thank my committee members Dr. Jeffrey Miner, Dr. Enrique Gomezdelcampo, and Dr. C. Eric Hellquist for their help and willingness to answer endless questions throughout my project. I also thank Ron and Kathy Huffman of US Fish and Wildlife who provided key background information about ONWR and whose discussions played a central part in the creation of my thesis. Many thanks go to my labmates Paige Arnold and Jacob Sublett for not only their help in hours upon hours of harvesting but also their friendship and support every day in the office. I’m also thankful for the help that I received from the graduated members of the lab Mike Plenzler, Jennifer Shimola, and Ryan Walsh in their guidance and advice in the development of my thesis. My research could have never been accomplished without the help of multiple people in the field. I am extremely grateful for the help I received from the Miner lab (Jake Miller, Dani McNeil, Jamie Russell, Kevin Bland, Jordan Pharris) for their help in collecting soils and the setup of my mesocosms. I’m also thankful for the help of Rachel Schirra, without whom the native species mix may have never been finished. I am eternally grateful for the help of Dylan Jacobs, who not only labored away at the collection of my field soils and harvest but who also served as a great friend and supporter throughout my masters. Last, and certainly not least I would also like to thank my family and friends for their kind words and support throughout not only my research but my whole college career. I want to thank my parents for encouraging me to take on projects that challenged me and for helping me in my times of need including hours spent looking at the radar. To my friends Ashlee Thomas, Mike Fashinpaur, Addie Bagford, Jessica LaHurd, and Meredith Barnes, thank you for being the much needed escape from the lab and for always getting me through even the toughest times. v TABLE OF CONTENTS Page INTRODUCTION... .............................................................................................................. 1 MATERIALS AND METHODS ........................................................................................... 5 Site Description .......................................................................................................... 5 Experimental Design .................................................................................................. 5 Environmental Factors ............................................................................................... 9 Soil, Leaf Tissue, and Litter Collection ..................................................................... 10 Statistical Analyses .................................................................................................... 11 Environmental Variables ............................................................................... 11 Native Seedling Response Measures ............................................................. 12 B. umbellatus Growth and Litter Decomposition .......................................... 12 RESULTS ............................................................................................................ 14 Environmental Conditions ......................................................................................... 14 Seed Bank Community ............................................................................................. 15 Native Monocultures .................................................................................................. 16 Taxon Richness of Seeded Treatments ...................................................................... 16 Total Biomass ........................................................................................................... 17 Community Attributes: Diversity, Evenness, and Similarity .................................... 18 B. umbellatus Responses .......................................................................................... 19 Litter Decomposition and Tissue Quality .................................................................. 19 DISCUSSION ............................................................................................................ 21 Implications for Managers and Further Areas of Research ....................................... 26 vi REFERENCES ...................................................................................................................... 28 APPENDIX A. STATISTICAL TABLES ............................................................................ 49 vii LIST OF TABLES Table Page 1 Applied Seed Mix Composition ................................................................................. 33 2 Average Recorded Nutrients of Soils ........................................................................ 34 3 Common Emerged Species and Responses to Applied B. umbellatus Treatments ... 35 4 Ungerminated Applied Seed Species ......................................................................... 36 viii LIST OF FIGURES Figure Page 1 National Distribution of B. umbellatus ...................................................................... 37 2 Map of Ottawa National Wildlife Refuge .................................................................. 38 3 Butomus umbellatus nodules ..................................................................................... 39 4 Vegetation of Common Seedbank Taxa .................................................................... 40 5 Effect of Soil Invasion History on Native Response Measures ................................. 42 6 Effect of Applied Nodules and Litter on Native Response Measures ...................... 44 7 B. umbellatus Litter and Nodule Responses to Soil Invasion History ....................... 45 8 Effect of Nodules on the Decomposition of Litter..................................................... 46 9 Effect of Soil and Nodule Interactions on the Decomposition of Litter .................... 47 10 B. umbellatus Tissue Nutrients .................................................................................. 48 1 INTRODUCTION Although wetlands provide nearly 40% of renewable ecosystem services (Costanza et al. 1997, Zedler 2000), the United States is annually losing 60,000 acres (24,281 hectares) of these important ecosystems (EPA 2015). Given that less than 5% of the original wetlands of some Great Lakes states still remain (Zedler 2003), understanding major causes of destruction and hindrances
Recommended publications
  • A Checklist of the Vascular Flora of the Mary K. Oxley Nature Center, Tulsa County, Oklahoma
    Oklahoma Native Plant Record 29 Volume 13, December 2013 A CHECKLIST OF THE VASCULAR FLORA OF THE MARY K. OXLEY NATURE CENTER, TULSA COUNTY, OKLAHOMA Amy K. Buthod Oklahoma Biological Survey Oklahoma Natural Heritage Inventory Robert Bebb Herbarium University of Oklahoma Norman, OK 73019-0575 (405) 325-4034 Email: [email protected] Keywords: flora, exotics, inventory ABSTRACT This paper reports the results of an inventory of the vascular flora of the Mary K. Oxley Nature Center in Tulsa, Oklahoma. A total of 342 taxa from 75 families and 237 genera were collected from four main vegetation types. The families Asteraceae and Poaceae were the largest, with 49 and 42 taxa, respectively. Fifty-eight exotic taxa were found, representing 17% of the total flora. Twelve taxa tracked by the Oklahoma Natural Heritage Inventory were present. INTRODUCTION clayey sediment (USDA Soil Conservation Service 1977). Climate is Subtropical The objective of this study was to Humid, and summers are humid and warm inventory the vascular plants of the Mary K. with a mean July temperature of 27.5° C Oxley Nature Center (ONC) and to prepare (81.5° F). Winters are mild and short with a a list and voucher specimens for Oxley mean January temperature of 1.5° C personnel to use in education and outreach. (34.7° F) (Trewartha 1968). Mean annual Located within the 1,165.0 ha (2878 ac) precipitation is 106.5 cm (41.929 in), with Mohawk Park in northwestern Tulsa most occurring in the spring and fall County (ONC headquarters located at (Oklahoma Climatological Survey 2013).
    [Show full text]
  • Introduction to Common Native & Invasive Freshwater Plants in Alaska
    Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska Cover photographs by (top to bottom, left to right): Tara Chestnut/Hannah E. Anderson, Jamie Fenneman, Vanessa Morgan, Dana Visalli, Jamie Fenneman, Lynda K. Moore and Denny Lassuy. Introduction to Common Native & Potential Invasive Freshwater Plants in Alaska This document is based on An Aquatic Plant Identification Manual for Washington’s Freshwater Plants, which was modified with permission from the Washington State Department of Ecology, by the Center for Lakes and Reservoirs at Portland State University for Alaska Department of Fish and Game US Fish & Wildlife Service - Coastal Program US Fish & Wildlife Service - Aquatic Invasive Species Program December 2009 TABLE OF CONTENTS TABLE OF CONTENTS Acknowledgments ............................................................................ x Introduction Overview ............................................................................. xvi How to Use This Manual .................................................... xvi Categories of Special Interest Imperiled, Rare and Uncommon Aquatic Species ..................... xx Indigenous Peoples Use of Aquatic Plants .............................. xxi Invasive Aquatic Plants Impacts ................................................................................. xxi Vectors ................................................................................. xxii Prevention Tips .................................................... xxii Early Detection and Reporting
    [Show full text]
  • Aquatic Vascular Plant Species Distribution Maps
    Appendix 11.5.1: Aquatic Vascular Plant Species Distribution Maps These distribution maps are for 116 aquatic vascular macrophyte species (Table 1). Aquatic designation follows habitat descriptions in Haines and Vining (1998), and includes submergent, floating and some emergent species. See Appendix 11.4 for list of species. Also included in Appendix 11.4 is the number of HUC-10 watersheds from which each taxon has been recorded, and the county-level distributions. Data are from nine sources, as compiled in the MABP database (plus a few additional records derived from ancilliary information contained in reports from two fisheries surveys in the Upper St. John basin organized by The Nature Conservancy). With the exception of the University of Maine herbarium records, most locations represent point samples (coordinates were provided in data sources or derived by MABP from site descriptions in data sources). The herbarium data are identified only to township. In the species distribution maps, town-level records are indicated by center-points (centroids). Figure 1 on this page shows as polygons the towns where taxon records are identified only at the town level. Data Sources: MABP ID MABP DataSet Name Provider 7 Rare taxa from MNAP lake plant surveys D. Cameron, MNAP 8 Lake plant surveys D. Cameron, MNAP 35 Acadia National Park plant survey C. Greene et al. 63 Lake plant surveys A. Dieffenbacher-Krall 71 Natural Heritage Database (rare plants) MNAP 91 University of Maine herbarium database C. Campbell 183 Natural Heritage Database (delisted species) MNAP 194 Rapid bioassessment surveys D. Cameron, MNAP 207 Invasive aquatic plant records MDEP Maps are in alphabetical order by species name.
    [Show full text]
  • Principles of Plant Taxonomy, V.*
    THE OHIO JOURNAL OF SCIENCE VOL. XXVIII MARCH, 1928 No. 2 PRINCIPLES OF PLANT TAXONOMY, V.* JOHN H. SCHAFFNER, Ohio State University. After studying the taxonomy of plants for twenty-five years the very remarkable fact became evident that there is no general correspondence of the taxonomic system with the environment, but as the great paleontologist, Williams, said in 1895: "environmental conditions are but the medium through which organic evolution has been determinately ploughing its way." Of course, the very fact that there is a system of phylogenetic relationships of classes, orders, families, and genera and that these commonly have no general correspondence to environment shows that, in classifying the plant material, we must discard all notions of teleological, utilitarian, and selective factors as causative agents of evolution. The general progressive movement has been carried on along quite definite lines. The broader and more fundamental changes appeared first and are practically constant, and on top of these, .potentialities or properties of smaller and smaller value have been introduced, until at the end new factors of little general importance alone are evolved. These small potentialities are commonly much less stable than the more fundamental ones and thus great variability in subordinate characters is often present in the highest groups. We must then think of the highest groups as being full of hereditary potentialities while the lower groups have comparatively few. As stated above, there is a profound non-correspondence of the .taxonomic system and the various orthogenetic series with the environment. The system of plants, from the taxonomic point of view, is non-utilitarian.
    [Show full text]
  • Status and Strategy for Flowering Rush (Butomus Umbellatus L.) Management
    State of Michigan’s Status and Strategy for Flowering Rush (Butomus umbellatus L.) Management Scope Invasive flowering rush (Butomus umbellatus L., hereafter FR) has invaded the shores of Michigan waterways since the early 1900’s (Core 1941; Stuckey 1968; Anderson et al. 1974). This document was developed by Central Michigan University and reviewed by Michigan Departments of Environmental Quality and Natural Resources for the purposes of: • Summarizing the current level of understanding on the biology and ecology of FR. • Summarizing current management options for FR in Michigan. • Identifying possible future directions of FR management in Michigan. This document used the current information available in journals, publications, presentations, and experiences of leading researchers and managers to meet its goals. Any chemical, company, or organization that is mentioned was included for its involvement in published, presented, or publically shared information, not to imply endorsement of the chemical, company, or organization. Biology and Ecology I. Identification Flowering rush is an emergent aquatic perennial plant with linear, sword-like leaves, triangular in cross-section, and a showy umble of pink flowers (Figure 1). Rhizomes (i.e. horizonal root-like stems) are fleshy, and leaves have parallel veination and can be submersed or emergent. Submersed leaves are linear and limp, unlike sword-like emergent leaves. Flowering rush blooms from June to August. Flowers are arranged in terminal umbels. Flower parts are found in multiples of three (e.g. six tepals, nine stamen, six carpels) with pink to purple tepals 0.25 – 0.5 in (6 - 11.5 mm) long (eFloras 2008). Each flower produces up to six beaked fruits.
    [Show full text]
  • Columbia Basin Flowering Rush Management Plan
    COLUMBIA BASIN COOPERATIVE WEED MANAGEMENT AREA COLUMBIA BASIN FLOWERING RUSH MANAGEMENT PLAN A regional strategy to address Butomus umbellatus throughout the Columbia Basin www.columbiabasincwma.org Statement of Collaboration: When possible, the partners of the Columbia Basin Cooperative Weed Management Area will strive to communicate and work collaboratively to develop a unified management effort for flowering rush throughout the Columbia Basin. The completion of this document was supported by funding from the National Fish and Wildlife Foundation Suggested citation: Columbia Basin Cooperative Weed Management Area. 2019. Columbia Basin Flowering Rush Management Plan: A regional strategy to address Butomus umbellatus throughout the Columbia Basin. pp 67 www.columbiabasincwma.org Pg. 1 CONTENT Tables ....................................................................................................................................... 3 Figures ..................................................................................................................................... 3 Preface ..................................................................................................................................... 5 Executive Summary .................................................................................................................. 6 Introduction ............................................................................................................................. 7 Scope and Purpose ........................................................................................................................7
    [Show full text]
  • Aquatic Vascular Plants of New England, Station Bulletin, No.518
    University of New Hampshire University of New Hampshire Scholars' Repository NHAES Bulletin New Hampshire Agricultural Experiment Station 4-1-1981 Aquatic vascular plants of New England, Station Bulletin, no.518 Hellquist, C. B. Crow, G. E. New Hampshire Agricultural Experiment Station Follow this and additional works at: https://scholars.unh.edu/agbulletin Recommended Citation Hellquist, C. B.; Crow, G. E.; and New Hampshire Agricultural Experiment Station, "Aquatic vascular plants of New England, Station Bulletin, no.518" (1981). NHAES Bulletin. 479. https://scholars.unh.edu/agbulletin/479 This Text is brought to you for free and open access by the New Hampshire Agricultural Experiment Station at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in NHAES Bulletin by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. S lTION bulletin 518 April, 1981 Aquatic Vascular Plants of New England: Part 3. Alismataceae BIO SCI by LIBRARY C. B. Hellquist and G. E. Crow NEW HAMPSHIRE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF NEW HAMPSHIRE DURHAM, NEW HAMPSHIRE 03824 S lTION bulletin 518 April, 1981 Aquatic Vascular Plants of New England: Part 3. Alismataceae BIO SCI by LIBRARY C. B. Hellquist and G. E. Crow NEW HAMPSHIRE AGRICULTURAL EXPERIMENT STATION UNIVERSITY OF NEW HAMPSHIRE DURHAM, NEW HAMPSHIRE 03824 S ?1Hi ACKNOWLEDGEMENTS '^^ ^l<^ We wish to thank Drs. Robert K. Godfrey, Robert R. Haynes, and Arthur C. Mathieson for their helpful comments on the manuscript. Bruce Sorrie kindly supplied locality data not documented in herbaria for some of the rarer taxa occurring in southeastern Massachusetts.
    [Show full text]
  • Ecology and Phenology of Flowering Rush in the Detroit Lakes Chain of Lakes, Minnesota
    J. Aquat. Plant Manage. 53: 54–63 Ecology and phenology of flowering rush in the Detroit Lakes chain of lakes, Minnesota MICHELLE D. MARKO, JOHN D. MADSEN, R. A. SMITH, B. SARTAIN, AND C. L. OLSON* ABSTRACT al. 1974, Boutwell 1990, Brown and Eckert 2005). Flowering rush can form monotypic stands that crowd out native Flowering rush, Butomus umbellatus L., has been an plants and interfere with recreational water use and water increasing problem in the Detroit Lakes chain of lakes for flow (Boutwell 1990, Jacobs et al. 2011). In the St. Lawrence more than 40 yr. Flowering rush dominates ecosystems by River region, it was found to be more invasive than purple crowding out native species, including hardstem bulrush, loosestrife (Lythrum salicaria L.; Lavoie 2003). The spread of Schoenoplectus acutus (Muhl. ex Bigelow) A & D Love,¨ a vital flowering rush in irrigation ditches has affected water flow part of native ecosystems. Furthermore, flowering rush and become a management concern for native fish species, creates boating hazards and hampers recreational activities such as cutthroat and bull trout (Jacobs et al. 2011). One on the lakes. The phenological differences between flower- region in Minnesota, the Pelican River Watershed, has been ing rush and the native hardstem bulrush were examined as struggling with flowering rush for over 40 yr as it has spread part of a project to determine best management practices through the Detroit Lakes chain of lakes since the 1960s (T. for controlling this invasive species. Biomass allocation, Guetter, Pelican River Watershed District, pers. comm.). plant height, carbohydrate allocation, and reproductive Since its introduction as an ornamental species in Lake structures of flowering rush were examined in the Detroit Sallie (Becker County, Minnesota), different methods of Lakes system.
    [Show full text]
  • Flowering Rush
    IPANE - Catalog of Species Search Results http://www.lib.uconn.edu/webapps/ipane/browsing.cfm?descriptionid=16 Home | Early Detection | IPANE Species | Data & Maps | Volunteers | About the Project | Related Information Catalog of Species Search Results Butomus umbellatus (Flowering rush ) :: Catalog of Species Search Common Name(s) | Full Scientific Name | Family Name Common | Family Scientific Name | Images | Synonyms | Description | Similar Species | Reproductive/Dispersal Mechanisms | Distribution | History of Introduction in New England | Habitats in New England | Threats | Early Warning Notes | Management Links | Documentation Needs | Additional Information | References | Data Retrieval | Maps of New England Plant Distribution COMMON NAME Flowering rush FULL SCIENTIFIC NAME Butomus umbellatus L. FAMILY NAME COMMON Flowering rush family FAMILY SCIENTIFIC NAME Butomaceae IMAGES Flowers Habit Flowers Fruit Incursion Roots 1 of 5 9/24/2007 3:36 PM IPANE - Catalog of Species Search Results http://www.lib.uconn.edu/webapps/ipane/browsing.cfm?descriptionid=16 Habitat NOMENCLATURE/SYNONYMS Synonyms: Butomus umbellatus f. vallisneriifolius (Sagorski) Gluck DESCRIPTION Botanical Glossary Butomus umbellatus is a perennial, aquatic herb that grows from a fleshy rhizome on freshwater shorelines. It can be found in water several meters deep, and its flowering stem can reach up to 1 m (3.3 ft.) above the surface of the water. The 0.6-0.9 m (2-3 ft.) long ensiform leaves can be erect or floating on the water's surface. The leaves are three angled, fleshy and have twisted ends. The plants flower from the summer to the fall depending on the depth of the water. The flowers are arranged in a bracted umbel. The bracts are purple-tinged, and numerous flowers are on long, slender ascending pedicels.
    [Show full text]
  • Management Experiments on Lake Erie Flowering Rush
    Bowling Green State University ScholarWorks@BGSU Honors Projects Honors College Spring 4-29-2013 Management Experiments on Lake Erie Flowering Rush Alyssa Dietz Follow this and additional works at: https://scholarworks.bgsu.edu/honorsprojects Repository Citation Dietz, Alyssa, "Management Experiments on Lake Erie Flowering Rush" (2013). Honors Projects. 19. https://scholarworks.bgsu.edu/honorsprojects/19 This work is brought to you for free and open access by the Honors College at ScholarWorks@BGSU. It has been accepted for inclusion in Honors Projects by an authorized administrator of ScholarWorks@BGSU. 1 Management Experiments on Lake Erie Flowering Rush Alyssa Dietz HONORS PROJECT Submitted to the University Honors Program at Bowling Green State University in partial fulfillment of the requirements for graduation with UNIVERSITY HONORS April 29 th , 2013 Advisors: Dr. Helen J. Michaels, Department of Biological Sciences Dr. Enrique Gomezdelcampo, Department of Environment and Sustainability 2 Summary: The issue of invasive species has been a major concern for many Great Lakes ecosystems over the past several decades. Since the first noted invasive animal, the sea lamprey, these fresh water ecosystems have been invaded by over 180 different plants and animals that create over $100 million worth of damage a year (Rosaen et al . 2012). Because the five Great Lakes, along with their rivers, streams, and wetlands are such an interconnected series, the introduction of any invasive species to one of the Great Lakes, such as Lake Erie, means that invaders are likely to spread to all other freshwater ecosystems in the area (Rosaen et al . 2012). With the various ways that many introduced species can alter the nutrient availability, habitat quality, and species richness, many wildlife managers are continuing to develop management strategies that remove or greatly limit the further spread of invasive species.
    [Show full text]
  • The Herbaceous Vascular Plants of Blackacre Preserve a Preliminary List
    The Herbaceous Vascular Plants of Blackacre Preserve A Preliminary List December 3, 2010 Submitted to: Kentucky State Nature Preserves Commission Submitted by: William E. Thomas Herbarium Indiana University Southeast Photo: Spiked Crested Coralroot by Richard Lyons 1 Scope The aim of this survey was to compile a rough list of herbaceous vascular plant species on the below described tract and was conducted from July 11, 2010 through the end of the growing season. In addition any extensive populations of invasive alien species were noted. Locale Description The Blackacre Preserve website states that the property consists of 170 acres in eastern Jefferson County Kentucky. It is the authors understanding that some additional acreage (size?) was appended to the southern border of the original 170 acre tract. The property is located at 3200 Tucker Station Rd. The tract is bordered on all sides by housing and urban areas; a railroad track runs along the north border. The terrain is of mostly gentle slopes with some wooded areas and open fields formerly used for pasture or crops. There are several ponds on the property; a limestone glade area constitutes the northeast corner of the tract. A small creek flows east to west across the tract north of the center. There are numerous foot trails, some designated and some rogue. An old section of Mann’s Lick road runs northward about midway in the tract. Map #1 from the Blackacre Preserve website provides a general layout of this tract. Map #2 is a topographic map with a NAD83 UTM 16 grid superimposed and the foot trails plotted in various colors.
    [Show full text]
  • DRAFT: WRITTEN FINDINGS of the WASHINGTON STATE NOXIOUS WEED CONTROL BOARD Updated in 2020, Original Draft from 2008
    DRAFT: WRITTEN FINDINGS OF THE WASHINGTON STATE NOXIOUS WEED CONTROL BOARD Updated in 2020, original draft from 2008 Scientific Name: Butomus umbellatus L. Synonyms: Butomus junceus Turcz, Butomus umbellatus L. f. vallisneriifolius (Sagorski) Glnck Common Name: Flowering-rush (sometimes known as grass rush) Family: Butomaceae (Flowering-rush family) Legal Status: Class A noxious weed; Quarantine List (WAC 16-752) Images: left, flowering rush with emergent leaves growing along a shoreline; center, rhizome with leaf bases and developing bud; right, piece of flowering rush rhizome with leaves, all images by Greg Haubrich. Introduction: Flowering rush is an invasive aquatic perennial monocot that is able to exploit a wide range of aquatic habitats. It grows emergent along the shoreline of lakes and rivers out to water depths of 7 m (24 ft.) or more where it is fully submersed. It will grow in still water with muddy substrate to flowing water with rocky substrate and everything in between. It thrives in areas with fluctuating water levels, but also persists and spreads in stable water conditions (Hroudova ́ 1989, Hroudova ́ et al. 1996). It will invade and dominate native plant beds (Madsen et al. 2012, Harms 2020) and can also colonize habitats previously barren of plant growth (Parkinson et al. 2010). When growing submersed, the leaves are stiff relative to other submersed plants, and thus in flowing water they are present higher in the water column. It has been termed an ecosystem engineer for its ability to alter habitat by sediment accretion (Gunderson et al. 2016). These characteristics, along with the rapidly expanding population, have raised concern about potential impacts on habitat and water delivery if flowering rush becomes well established throughout its potential range in western North America.
    [Show full text]