Abstracts 0.25 S Reflectors

Total Page:16

File Type:pdf, Size:1020Kb

Abstracts 0.25 S Reflectors 175 m, or about halfway between the 0.14 and eruptions that formed the Toledo and Valles Abstracts 0.25 s reflectors. Based on this geophysical evi- calderasin the JemezMountains. Most of the dence, we believe that the gravity anomaly is eruptions over the past 5 m.y. havebeen smaller the result of brecciation along a fault passing (VEI:3-4) and mainly basaltic. Simple linear New Mexico GeologicalSociety through the 3,650-m/s layer and that shallow, regression of age vs. frequenry data seemsto The New Mexico GeologicalSociety an- lower velocity layers were draped passively over show that the eruption frequenry is increasing nual spring meeting was held at New deeper faults to form a small monocline along over time. There is an averageeruption prob- Mexico Institute of Mining and Technol- each side of the graben. Location of the fissure ability of 0.0002per year over the next million ogy (Socorro)on April 6, 1990.Following within the graben contradicts existing models years, equivalent to 200 eruptions. The poten- for the formation of fissures by concave-down- tial activity includes lava, cinder cone, maar, are abstractsthat were omitted inadvert- ward bending of thin alluvium layers over bed- dome, and plinian eruptions. All of thesehave ently from thosepublished in the August rock projections. These models predict that the capacity for minor to severeimpact on the and November 1990issues and the Feb- fissures should form by propagating down- state'seconomy, transportation, agriculhrre, and ruary 1991issue of Nno MexicoGeology. ward from the ground surface in areas of con- communications. cave-downward topography where the surface Geophysics, petrology, and is in tension. In contrast, the San Marcial fis- Lers Pnorenozorc ANDCauarunN-Onoovrcnru structural geology session sure is located in an area where topography, ALKAUCPLUTONISM INWEST TEXAS AND SOI,JTHERN seismic reflectors, and the gravity profile are Nrw Mgxtco: A REACTIvATEDsHEAR-zoNE (Continued from November 1990issue) all gently concave-upward to straight, where MoDEL,by M. H. Sandidge.Department of the ground surface should be in compression, GeologicalSciences, University of Texasat El GpopnysrceL coNsrutNTs oN A MEcHANTCAL and the fissure appears to have propagated up- Paso,El Paso,TX79924 MoDEL FoR THE oRtctN or rue Seru Menctal ward. Analysis of elastic stresses and displace- Two parallel, linear, alkalic igneous belts have EARTHFrssuRE/ by W. C. Haneberg, New Mex- ments developed in a two-dimensional gravity- been recognizedin west Texasand southwest- ico Bureau of Mines and Mineral Resources, loaded span, which we use as an analog for a ern New Mexico. The northernmost of them New Mexico Institute of Mining and Tech- soil layer lying over a bedrock graben, shows measures240 kms in length while the southem nology, Socorro, NM 87801; and C. B. Rey- that minimum principal stress (taking com- belt extends for some 100 kms. Zircon U-Pb nolds, Charles B. Reynolds and Associates, pressive stresses to be negative) will be tensile ages for the northern belt range from 970 Ma 4409 San Andres NE, Albuquerque, NM 87110 to neutral throughout the lower portion of the to 7MS Ma from east to west. However, ages The San Marcial earth fissure, which ap- span. Magnitude of the tension decreaseswith of 495-507Ma (Clemons, 1989)along the same peared during a heavy rainstorm in August 1981, layer thickness and will increase if outward- trend have been obtained. Ages for the south- crosses I-25 along the western edge of the Rio directed shear is applied to the base of the layer. ern belt range from 623 Ma to 1400Ma from Grande valley about 50 km south of Socorro For layers with length:thickness ratios greater east to west. Theseages and geochemicaldata The fissure was widened by erosion immedi- than about 10:1, which can be analyzed using point toward an anorogenic magmatic event ately upstream of an embankment for south- elementary beam theory, the absolute value of and/or events rather than an orogenic event or bound I-25, then under construction, suggesting fiber stress along the upper and lower bound- events.Three possibletectonic processes may that blockage of the arroyo may have contrib- aries will decrease with the cube of thickness. have been operating during the Proterozoic and uted to its growth. On a large scale the trace Tensile to neutral normal stress would decrease Cambrian-Ordovician; they are: 1) plutonism of the fissure is straight, following a small un- soil shear strength-as well as capacity to resist associatedwith pre-rift or pre-ridge extension, named arroyo, and is nearly 1,500 m long. Strike seepage forces-and we speculate that the San 2) plutonism associatedwith a mantle-derived of the trace, which is not affected by topogra- Marcial fissure must have originated in a zone plume, and 3) plutonismassociated with shear phy, is northwest-southeast. Closer examina- of tension at depth and grew upward by pip- zones. The fact that both belts exhibit varia- tion of 1:250 aerial photographs, taken one tng. As piping continued, layer thickness would tions in ageswould seem to rule out an exten- month after the fissure appeared, shows that have decreased continuously, thereby increas- sional process.Associated ring complexeswould the trace is composed of many short segments ing tensile stresses at shallower and shallower illustrate no disparity of ages.A plume model meters to tens of meters long. Some segments depths until the ground surface was broken also must be rejectedbecause the northern belt are crudely en echelon but with no consistent and surface runoff continued to enlarge the fis- exhibits an older-youngest<ldest east-west sense of stepping along the entire length of the sure. progression;one would expectit to be younger trace In places where erosion widened the fis- in one of the two directions. Plutonism asso- sure before the photographs were taken, non- Rpctxr AND porENTrALvoLCANlsM oF NEw ciated with shear zones appearsto be the most overlapping en echelon segments seem to have MEXIco, by E. M. Limburg, Department of viable model. Such a system may function at coalesced to form larger segments. In places Geoscience, New Mexico Institute of Mining any time when the shearzones are active and, where erosion was not as severe and finer fea- and Technology, Socorro, NM 87801 therefore, initiation of similar magmatism in The State of New Mexico has experienced the same shear zones separatedby large time more than 400 volcanic events over ihe past 5 intervals can be explained m.y., ranging from small basalt to large plinian eruptions. The eruptive vents are grouped into DtscruvnattNc pyRoclAslc sURGEoR EoLIAN volcanic fields roughly aligned with two zones CENESIS FOR CROSSBEDDED TUFFS, 'EMEZ of structural weakness that cross New Mexico: MouxrerNs, New Mexco, by G. A. Smithand the Colorado Plateau transition zone (TZ\, and D. Kntzman, Department of Geology, Uni- the Rio Grande rift (RGR). The most recent versity of New Mexico, Albuquerque, NM activity was the eruption of two relatively large 87131 (>4 km3) basalts at approximately the same time The late Miocene PeraltaTuff Member of the define layers with P-wave velocities, inferred (ca. I ka): the Carrizozo and McCarty's basalt. BearheadRhyolite, in the southeasternJemez by previous investigators using seismic refrac- Seismic and geodetic evidence suggest that volcanic field, contains crossbeddedtuffs of both tion surveys, of approximately 800 m/s from 0 magmatic activity of New Mexico has not ceased pyroclastic surge and eolian origins. Study of to 48 m in depth, 1,900 m/s from 48 to 67 m in Leveling measurements indicate an inflation rate textural characteristics,stratification, and flow depth, and 3,650 m/s below 67 m in depth. of approximately 1.8 mm/yr over the Socorro directions was undertaken to discriminate de- There is no evidence of recent fault scarps albng magma body (SMB, a sill at 19 km depth). This posits produced by these very different pro- either of the graben margins, and weak reflecl research assesses both the recent and potential cesses.Surge deposits examined in this study tors at two-way times less than 0 10 s do not volcanism of New Mexico in light of the pos- are part of a phreatomagmatic tuff-ring ex- appear to be broken by faults. The average Bou- sibility for volcanic activitv and a lack of infor- posed at the Tent Rocks; their characteristics guer gravity profile, calculated from five read- mation about future volcinism and its effects were also compared to others previously stud- ings taken over two days at each seismic here. While volcanic eruptions may not present ied by the senior author and to published tex- - shotpoint, shows a 1 mgal anomaly over the an immediate threat to the population of New tural data. Other crossbeddedtuffs are northeastern boundary of the graben, which Mexico, they clearly pose a risk that should be commonly found overlying pyroclastic-fall tuffs coincides with both an 0.04 s vertical offset (to clarified when planning long-term develop- in the Peralta Tuff. Strongest evidence for eolian 0.29 s) of the 0.25 s reflector and a topographic ment in the state. The lareest volume of ma- origin is measured paleocurrent directions in- depression within the arroyo. Half-width anal- terial was erupted between 1-2 Ma. The maiority dicating flow from the south and southwest. ysis of the anomaly gives a maximum depth of of that came from the large (VEI = 6-Z) rhyolitic All known BearheadRhyolite vents are located May 1991 Nm Merico Geology to the north and the fluvial paleoslopewas in- of high accretion rates and fast-moving cur- tures include: sandwave, planat and massive clined to the southeast.Although theie is some rents and are rarely observedin the eolianites.
Recommended publications
  • Crystal Chemistry of the Monazite and Xenotime Structures Yuxxnnc Nr
    American Mineralogist, Volume 80, pages2I-26, 1995 Crystal chemistry of the monazite and xenotime structures YuxxnNc Nr, JonN M. Hucnns Department of Geology, Miami University, Oxford, Ohio 45056' U.S.A. ANrrrotvv N. M.q'nr,lNo 48 PageBrook Road, Carlisle, Massachusetts01741' U.S.A. Arsrnlcr Monazite and xenotime, the RE(PO,) dimorphs, are the most ubiquitous rare earth (RE) minerals, yet accuratestructure studiesof the natural phaseshave not been reported. Here we report the results of high-precision structure studies of both the natural phasesand the synthetic RE(PO4)phases for all individual stable rare earth elements. Monazite is monoclinic, P2r/n, and xenotime is isostructural with zircon (spacegroup 14r/amd)- Both atomic arrangementsare basedon [001] chains of intervening phosphate tetrahedra and RE polyhedra, with a REO, polyhedron in xenotime that accommodates the heavy lanthanides(Tb-Lu in the synthetic phases)and a REO, polyhedron in monazite that preferentially incorporatesthe larger light rare earth elements(Ia-Gd). As the struc- ture "transforms" from xenotime to monazite, the crystallographic properties are com- parable along the [001] chains, with structural adjustments to the different sizes of RE atoms occurring principally in (001). There are distinct similarities betweenthe structuresthat are evident when their atomic arrangementsare projected down [001]. In that projection, the chains exist i! (100) planes, with two planes per unit cell. In monazite the planes are offset by 2.2 A along [010], relative to those in xenotime, in order to accommodate the larger light RE atoms. The shift of the planes in monazite allows the RE atom in that phaseto bond to an additional 02' atom to complete the REO' polyhedron.
    [Show full text]
  • NEW MINERALS It Is Proposed Hereafter to Indicate In.A General Way the Classification of All New Minerals Recoided in This Department
    JOURNAL MINERALOGICAL SOCIETY OF AMENICA 63 Dr. Kunz then spoke of the various city localities and the minerals found therein. He stated that the East Side, from 37 to 110 St., probably afforded the most specimens. The various tunnels and their minerals were spoken of. Capt. Miller called attention to the fine collection of Brooklyn Drift Minerals and Rocks in the collection of the Long Island Historical Society. Ife abo mentioned the occurrence of monazite and xenotime crystals, on the Speedway,Harlem River. Dr. Kunz emphasizedthe irnportance of complete records being kept of all finds. Tnou,q,s L Mrr,r,nn, SecretaryPro, Tem. NEW MINERALS It is proposed hereafter to indicate in.a general way the classification of all new minerals recoided in this department. Subdivision will be first into "families," of which nine may be recognized,as listed in the January number (Am. Min.6 (1), 12,1921). Eachfamilywillbe separatedinto "subfamilies " based on special features of composition. This arrangement is tentative and open to modification, and criticism of it will be welcome, [Eo.] FAMILY 2. SULFIDES, ETC. SosreMrr,v 3. Doust,u suLFrDEs oF METALSAND sEMr-METAr,s. I'LTRABASITE V. Rosrcxf and J. Srnnse-Btinu. Ultrabasit, ein neues Mineral aus Freiberg in Sachsen. (Ultrabasite, a new mineral from Freiberg, Saxony). Rozpr.Eeslcd Ako,il. Prag,25, No. 45, 1916;Z. Krgst. Min., 55,43H39, 1920, Neun: From its extremely basic chemical composition. Pnrsrcar, Pnopnnrrus Color black, somewhat grayish; luster metallic; streak black; cleavage none; fracture scaly, with somewhat greasy luster on the surface. H. : 5; sp. gr.
    [Show full text]
  • Monazite, Rhabdophane, Xenotime & Churchite
    Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs Nicolas Clavier, Adel Mesbah, Stephanie Szenknect, N. Dacheux To cite this version: Nicolas Clavier, Adel Mesbah, Stephanie Szenknect, N. Dacheux. Monazite, rhabdophane, xenotime & churchite: Vibrational spectroscopy of gadolinium phosphate polymorphs. Spec- trochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Elsevier, 2018, 205, pp.85-94. 10.1016/j.saa.2018.07.016. hal-02045615 HAL Id: hal-02045615 https://hal.archives-ouvertes.fr/hal-02045615 Submitted on 26 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Monazite, rhabdophane, xenotime & churchite : vibrational spectroscopy of gadolinium phosphate polymorphs N. Clavier 1,*, A. Mesbah 1, S. Szenknect 1, N. Dacheux 1 1 ICSM, CEA, CNRS, ENSCM, Univ Montpellier, Site de Marcoule, BP 17171, 30207 Bagnols/Cèze cedex, France * Corresponding author: Dr. Nicolas CLAVIER ICSM, CEA, CNRS, ENSCM, Univ Montpellier Site de Marcoule BP 17171 30207 Bagnols sur Cèze France Phone : + 33 4 66 33 92 08 Fax : + 33 4 66 79 76 11 [email protected] - 1 - Abstract : Rare-earth phosphates with the general formula REEPO4·nH2O belong to four distinct structural types: monazite, rhabdophane, churchite, and xenotime.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Roscherite-Group Minerals from Brazil
    ■ ■ Roscherite-Group Minerals yÜÉÅ UÜté|Ä Daniel Atencio* and José M.V. Coutinho Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. *e-mail: [email protected] Luiz A.D. Menezes Filho Rua Esmeralda, 534 – Prado, 30410-080 - Belo Horizonte, MG, Brazil. INTRODUCTION The three currently recognized members of the roscherite group are roscherite (Mn2+ analog), zanazziite (Mg analog), and greifensteinite (Fe2+ analog). These three species are monoclinic but triclinic variations have also been described (Fanfani et al. 1977, Leavens et al. 1990). Previously reported Brazilian occurrences of roscherite-group minerals include the Sapucaia mine, Lavra do Ênio, Alto Serra Branca, the Córrego Frio pegmatite, the Lavra da Ilha pegmatite, and the Pirineus mine. We report here the following three additional occurrences: the Pomarolli farm, Lavra do Telírio, and São Geraldo do Baixio. We also note the existence of a fourth member of the group, an as-yet undescribed monoclinic Fe3+-dominant species with higher refractive indices. The formulas are as follows, including a possible formula for the new species: Roscherite Ca2Mn5Be4(PO4)6(OH)4 • 6H2O Zanazziite Ca2Mg5Be4(PO4)6(OH)4 • 6H2O 2+ Greifensteinite Ca2Fe 5Be4(PO4)6(OH)4 • 6H2O 3+ 3+ Fe -dominant Ca2Fe 3.33Be4(PO4)6(OH)4 • 6H2O ■ 1 ■ Axis, Volume 1, Number 6 (2005) www.MineralogicalRecord.com ■ ■ THE OCCURRENCES Alto Serra Branca, Pedra Lavrada, Paraíba Unanalyzed “roscherite” was reported by Farias and Silva (1986) from the Alto Serra Branca granite pegmatite, 11 km southwest of Pedra Lavrada, Paraíba state, associated with several other phosphates including triphylite, lithiophilite, amblygonite, tavorite, zwieselite, rockbridgeite, huréaulite, phosphosiderite, variscite, cyrilovite and mitridatite.
    [Show full text]
  • Life Cycle Assessment of Separation Methods of Cerium Oxide
    907 A publication of CHEMICAL ENGINEERING TRANSACTIONS VOL. 74, 2019 The Italian Association of Chemical Engineering Online at www.cetjournal.it Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš, Laura Piazza Copyright © 2019, AIDIC Servizi S.r.l. ISBN 978-88-95608-71-6; ISSN 2283-9216 DOI: 10.3303/CET1974152 Life Cycle Assessment of Separation Methods of Cerium Oxide from Monazite Ore a b Dussadee. Ratthanapra , Unchalee. Suwanmanee* aResearch and Development Division, Thailand Institute and Nuclear Technology, Nakhon Nayok 26120, Thailand. b Department of Chemical Engineering, Faculty of Engineering, Srinakharinwirot University, Nakhon Nayok 26120, Thailand. [email protected] Life cycle assessment was applied to evaluate the environmental impact of cerium oxide (CeO2) production systems from monazite ore using integrating and excluding liquid-liquid extraction methods. It is a heterogeneous rare earths oxides catalyst which can be utilized for catalysed transesterification to produce biodiesel. The impact assessment methodology used for characterization was the midpoint CML baseline method in terms the potentials of abiotic depletion, global warming, ozone layer depletion, human toxicity, freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, photochemical oxidation, acidification, and eutrophication. The Eco-indicator 99 method was performed an endpoint approach: human health, ecosystem quality, and resources. The data on process was available from a field study conducted in Thailand Institute of Nuclear Technology and applied into SimaPro 8.2.5. The LCA results showed that the removal of solvent extraction process can achievable the higher purity of CeO2 concentration and presented the most attractive process for cerium oxide from monazite ore in term of environmental impact assessment.
    [Show full text]
  • Production of Rare Earth Elements from Malaysian Monazite by Selective Precipitation
    Malaysian Journal of Analytical Sciences, Vol 20 No 1 (2016): 44 - 50 MALAYSIAN JOURNAL OF ANALYTICAL SCIENCES ISSN 1394 - 2506 Published by The Malaysian Analytical Sciences Society PRODUCTION OF RARE EARTH ELEMENTS FROM MALAYSIAN MONAZITE BY SELECTIVE PRECIPITATION (Penghasilan Unsur Nadir Bumi daripada Mineral Monazit Menggunakan Pemendakan Terpilih) Che Nor Aniza Che Zainul Bahri*, Wadeeah M. Al- Areqi, Amran Ab. Majid, Mohd Izzat Fahmi Mohd Ruf Nuclear Science Program, School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia *Corresponding author: [email protected] Received: 2 November 2015; Accepted: 31 December 2015 Abstract Rare earth elements (REEs) are very valuable and have high demands for advanced technology nowadays. REEs can be classified to light rare earth elements (LREEs) and heavy rare earth elements (HREEs). Malaysian rare earth ore especially monazite, is rich with LREEs compared to HREEs. Therefore a study was carried out to extract the REE from Malaysian monazite. The objectives of this study are to determine the content of REEs in Malaysian monazite leach solution, as well as to produce high grade of REEs. Concentrated sulphuric acid was used in digestion process and the filtrate containing the REEs was determined using Inductively Coupled Plasma- Mass Spectrometry (ICP-MS). Ammonia solution was used for REEs precipitation from monazite leach solution. The result indicated that REEs was successfully separated from monazite leach solution through selective precipitation using ammonia at pH 2.34 and the percentage of REEs that successfully separated was 70.03 – 81.85%. The percentage of REEs which successfully separated from final solution was 96.05 – 99.10%.
    [Show full text]
  • Rethinking Rare Earths Monazite
    TSX-V: MDL TSX-V: MDL OTCQX: MLLOF FSE: MRD Issued and Outstanding 44.6 M Rethinking Rare Earths Warrants 9.2 M Medallion is rethinking accepted rare-earth exploration and development strategies under the leadership of veteran geologist and rare-earth expert Dr. Bill Bird. With the accelerated need Options 4.0 M to relaunch the rare-earth exploration and development industry, most company strategies Fully Diluted 57.8 M focused on the portfolio of hard-rock occurrences that were discovered in the mid-20th Century, Market Capitalization approx. $8 M before China’s dominance. Most of these occurrences require complex metallurgy, huge investments for infrastructure and years to get to production. Medallion recognized in 2010 that there was no company or REE-project, with the possible The Medallion strategy, producing rare earths exception of Molycorp’s Mountain Pass Mine, that could solve the most critical REE-supply issues: from heavy-mineral-sands monazite, is a 1. a near-term shortage of rare-earth elements, and great idea. I have worked with mineral-sands 2. a lack of low-production-cost projects. producers for many years and, generally, Over the past two years, solving these issues has been the driving force of Medallion’s they have just discarded their monazite. The exploration and project-acquisition strategy. Rather than focusing on properties with producers are always keen to maximize value complicated, expensive and untested metallurgy, Medallion is pursuing monazite processing partnerships and purchase-agreements. Monazite is a rare-earth phosphate mineral that is from their resources, and Medallion is offering a major source of rare earths.
    [Show full text]
  • Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals
    metals Review Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals Adrián Carrillo García 1, Mohammad Latifi 1,2, Ahmadreza Amini 1 and Jamal Chaouki 1,* 1 Process Development Advanced Research Lab (PEARL), Chemical Engineering Department, Ecole Polytechnique de Montreal, C.P. 6079, Succ. Centre-ville, Montreal, QC H3C 3A7, Canada; [email protected] (A.C.G.); mohammad.latifi@polymtl.ca (M.L.); [email protected] (A.A.) 2 NeoCtech Corp., Montreal, QC H3G 2N7, Canada * Correspondence: [email protected] Received: 8 October 2020; Accepted: 13 November 2020; Published: 17 November 2020 Abstract: Rare earth elements (REE), originally found in various low-grade deposits in the form of different minerals, are associated with gangues that have similar physicochemical properties. However, the production of REE is attractive due to their numerous applications in advanced materials and new technologies. The presence of the radioactive elements, thorium and uranium, in the REE deposits, is a production challenge. Their separation is crucial to gaining a product with minimum radioactivity in the downstream processes, and to mitigate the environmental and safety issues. In the present study, different techniques for separation of the radioactive elements from REE are reviewed, including leaching, precipitation, solvent extraction, and ion chromatography. In addition, the waste management of the separated radioactive elements is discussed with a particular conclusion that such a waste stream can be
    [Show full text]
  • Monazite Placers in the Southeastern Atlantic States
    Monazite Placers In the Southeastern Atlantic States By jOHN B. IvfERTIE, JR. GEOLOGICAL SURVEY BULLETIN 1390 A4 ountain streams need exploration) but the main placers are likely to be in the Coastal Plain UNITED STATES GOVERN~1ENT PRINTING OFFICE, WASHINGTON : 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Mertie, John Beaver, 1888- Monazite placers in the southeastern Atlantic States. (Geological Survey Bulletin 1390) Bibliography: p. Supt. of Docs. no.: I 19.3.1390 1. Monazite-Southern States. 2. Hydraulic mining. I. Title. II. Series: United States Geological Survey Bulletin 1390. QE75.B9 No. 1390 [TN948.M7) 557.3'08s [553'.4943'0975] 74-14705 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D. C. 20402 -Price 80 cents (paper cover) Stock Number 024-001-02603 CONTENTS Page Common measures and their metric equivalents _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ IV Abstract _____________________________________ ----- 1 Introduction _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 Purpose of present report _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 2 Other investigations _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 3 Rare-earth minerals and uses ____________________________ - 4 Sources of monazite _______________________________ - 4 Rare earths _________________ _ ______ _______ _____ _ 5 Alluvial monazite ___ _____
    [Show full text]
  • Mineralogy and Occurrence of Europium-Rich Dark Monazite by SAM ROSENBLUM and ELWIN L
    Mineralogy and Occurrence of Europium-Rich Dark Monazite By SAM ROSENBLUM and ELWIN L. MOSIER GEOLOGICAL SURVEY PROFESSIONAL PAPER 1181 Mineral-exploration research on Alaskan panned concentrates, resulting in recognition of a new guide to contact aureoles UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Rosenblum, Sam. Mineralogy and occurrence of europium-rich dark monazite. (Geological Survey Professional Paper 1181) Bibliography: 67 p. 1. Monazite. 2. Europium. 3. Monazite-Alaska. I. Mos~er,Elwin L. 11. Title. Ill. Series. TN948.M7R67 1983 553.4'943 82-600301 For sale by the Distribution Branch, U.S. Geological Survey 604 South Pickett Street, Alexandria, VA 22304 CONTENTS Abstract Chemical composition Introduction Analytical procedures Commercial monazite Spectrographic analysis Purpose of present study Neutron activation analysis History of dark monazite investigations Other procedures Acknowledgments - Results - Geology -- Discussion Domestic discoveries of dark monazite Review of composition of monazite Alaska --- Dark monazite and yellow monazite Montana ------ Geochemistry --- Foreign localities - Nature of the lanthanides France -- Geochemical abundances of the rareearth elements - U.S.S.R. - Chondrites -- Malagasy Republic Seawater and rocks Zaire ----- Rock-forming minerals Taiwan -- Monazite Pakistan Presentation of data on rareearth elements Bangladesh Genesis
    [Show full text]
  • Bioleaching of Rare Earth Elements from Monazite Sand
    ARTICLE Bioleaching of Rare Earth Elements from Monazite Sand Vanessa L. Brisson,1 Wei-Qin Zhuang,1,2 Lisa Alvarez-Cohen1,3 1 Department of Civil and Environmental Engineering, University of California, Berkeley, California 94720-1710 2 Department of Civil and Environmental Engineering, The University of Auckland, Aukland 1142, New Zealand 3 Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720; telephone: (510) 643-5969; fax: (510) 643-5264; e-mail: [email protected] efficiency electric lights; and a variety of consumer electronics ABSTRACT: Three fungal strains were found to be capable of (Alonso et al., 2012; Bauer et al., 2011). The REEs include the bioleaching rare earth elements from monazite, a rare earth phosphate naturally occurring lanthanides (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, mineral, utilizing the monazite as a phosphate source and releasing Ho, Er, Tm, Yb, and Lu, but not Pm) (atomic numbers 57–60 and rare earth cations into solution. These organisms include one known 62–71), as well as Sc and Y (atomic numbers 21 and 39), which have phosphate solubilizing fungus, Aspergillus niger ATCC 1015, as well as two newly isolated fungi: an Aspergillus terreus strain ML3-1 and a similar chemical behavior to lanthanides (Cotton, 2006; Gupta and Paecilomyces spp. strain WE3-F. Although monazite also contains the Krishnamurthy, 1992). The three main REE ores that are currently radioactive element Thorium, bioleaching by these fungi preferentially mined for production are bastnasite (REE-FCO3), monazite (light solubilized rare earth elements over Thorium, leaving the Thorium in REE-PO4), and xenotime (heavy REE-PO4), together representing the solid residual.
    [Show full text]