The Relationship Between Magmatism and Deformation During the Acadian Orogeny: a Case Study from Eastern-Central Vermont Samuel William Lagor University of Vermont

Total Page:16

File Type:pdf, Size:1020Kb

The Relationship Between Magmatism and Deformation During the Acadian Orogeny: a Case Study from Eastern-Central Vermont Samuel William Lagor University of Vermont University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2016 The Relationship Between Magmatism and Deformation During the Acadian Orogeny: A Case Study from Eastern-Central Vermont Samuel William Lagor University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Geology Commons, and the Tectonics and Structure Commons Recommended Citation Lagor, Samuel William, "The Relationship Between Magmatism and Deformation During the Acadian Orogeny: A Case Study from Eastern-Central Vermont" (2016). Graduate College Dissertations and Theses. 566. https://scholarworks.uvm.edu/graddis/566 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. THE RELATIONSHIP BETWEEN MAGMATISM AND DEFORMATION DURING THE ACADIAN OROGENY: A CASE STUDY FROM EASTERN-CENTRAL VERMONT A Thesis Presented by Samuel William Lagor to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Geology May, 2016 Defense Date: January 22, 2016 Thesis Examination Committee: Laura E. Webb, Ph.D., Advisor Donald S. Ross, Ph.D., Chairperson Keith A. Klepeis, Ph.D. Jon Kim, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT The Silurian–Devonian metasedimentary rocks of the Connecticut Valley-Gaspé trough (CVGT) were subjected to multiple deformational and metamorphic events during the Acadian orogeny in the Middle–Late Devonian. Plutons intruding the Devonian Waits River and Gile Mountain Formations have been considered post-tectonic, but microstructural studies of the intrusions and their metamorphic aureoles indicate some of these plutons intruded syntectonically. This study investigates the relationship between Acadian deformation and intrusion of the Knox Mountain pluton (KMP) of central Vermont. Structural and geochronological data were collected along a c. 15 km transect from the western limit of the CVGT, where the unconformable Richardson Memorial Contact coincides with the Dog River Fault Zone, into the margin of the KMP in the east. Field and microstructural observations indicate the KMP intruded syntectonically. Evidence for Acadian deformation post-dating intrusion includes folded and boudinaged granitic dikes at the margin of the KMP, and microstructures such as flame perthite, myrmekite, deformation twins, and textures associated with grain-boundary migration recrystallization in the granite. In the metamorphic aureole, biotite porphyroblasts overgrow S3, the earliest Acadian secondary foliation, and were deformed during S4 crenulation cleavage development. The KMP intruded at 377±5.2 Ma based on a U-Th- total Pb monazite crystallization age, which is concordant with the published age of the nearby Barre granite. The timing of S4 foliation development in the CVGT is constrained locally by 40Ar/39Ar geochronology at ~365 Ma, consistent with the microstructurally- inferred relative-age relationships. Plateau/weighted mean 40Ar/39Ar ages from across the transect and minimum ages from argon-loss profiles show a general trend of younging towards the east, suggesting these rocks have been affected by Alleghanian and Mesozoic deformation and exhumation. ACKNOWLEDGEMENTS I regard the completion of this thesis document and master’s program as one of the most significant mental and physical accomplishments of my life. However, seeing this document to completion was certainly not the result of my actions alone, and I remain indebted to countless indivuals (most of whom will not be named here). To my adviser, Dr. Laura Webb, as I have said before, the patience, guidance, and understanding you have shown me throughout this process will take me a lifetime to pay forward. I cannot thank you enough for sharing your wisdom, encouragement, and a laugh with me, and always I needed them most. It has been a pleasure working in the department as a teacher’s assistant under a number of other geology faculty, and I thank you all for the advice, anecdotes, and kindness you have shared with me throughout these three years. I am incredibly grateful for the guidance and passion of Dr. Jeff Chiarenzelli and Dr. Sean Regan since my time working alongside them at St. Lawrence. You gentlemen helped instill my passion for geology, and I look forward to continued collaborations. I need to thank Matt Van Brocklin, who always ensured I had a place to stay, and that the machines were running smooth any time I made it back to Canton. The results of this project would be nowhere-to-be-found were it not for Dan Jones. Thanks for everything from the good beer to the unsolicited advice. Big shout-out to all the assistants I had in the field. Jacob Vincent, Ifan Hywel, Drew Groth, Beth Pidgeon, Hannah Blatchford, and John Gilbert, your second opinions became my preliminary interpretations! Finally, I could not have done this without my friends and family backing me. Hannah, Tess, Elle, Gabe, and Ida, I love you more than words can tell. ii TABLE OF CONTENTS ACKNOWLEDGEMENTS………………………………………………………..……ii LIST OF FIGURES…………………………………………….……………….....…….v LIST OF TABLES……………………………………………………………….….…..vi LIST OF APPENDICES……………………………………………….…...….….…...vii CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW………………………1 1.1. Introduction……………………………………………….……………………...…1 1.2. The Emplacement of Granite During Collisional Orogenies.....................................2 1.2.1. Introduction…………………………………………………..…..……....…2 1.2.2. Generating Melt—Crustal Anatexis, Migmatites, and the Effect of Strain .…...………………………………………………………………………………..4 1.2.3. Melt Focus and Extraction……………………………..………...……........6 1.2.4. Magma Ascent and Emplacement.................................................................8 1.2.5. Emplacement in the Ductile Regime.............................................................9 1.2.6. Emplacement in the Brittle Regime.............................................................10 1.2.7. Construction of Plutons....….......................................................................10 1.2.8. Dikes............................................................................................................11 1.2.9. Geochronology.............................................................................................12 1.2.10. Relevance to this Study………………………………….......……...……14 1.3. Geologic Setting of the Connecticut Valley-Gaspé Trough.......................................15 1.3.1. Regional Geology…………..………………..……..……......……...…….15 1.3.2. Magmatism in the CVGT……………………………….……..….….....…19 1.3.3. Structural Geology………………………………..…...……..…….….…..21 1.4. Geochronology of the Connecticut Valley-Gaspé Trough.........................................23 1.4.1. Formation of Grenvillian Basement.............................................................24 1.4.2. Tectonic Model for the Taconic Orogeny....................................................24 1.4.3. Summary of the Taconic Orogeny in Western Vermont. .......................... 25 1.4.4. Tectonic Model for the Acadian Orogeny...................................................26 1.4.5. Acadian Overprinting on Taconian Rocks...................................................27 1.4.6. Deposition and Deformation of Devonian Rocks of the CVGT..................28 1.4.7. Timing of Magmatism in the CVGT...........................................................30 1.4.8. Summary......................................................................................................31 CHAPTER 2: ARTICLE FOR SUBMISSION.............................................................53 Abstract........................................................................................................................53 1. Introduction.............................................................................................................54 2. Geologic Background.............................................................................................55 2.1. Geologic Setting of the Connecticut Valley-Gaspé Trough……..….……...55 2.1.1. Regional Geology........................................................................................55 2.1.2. Magmatism in the CVGT……………………………………..........……..59 2.1.3. Structural Geology……………………………………………..……...…..61 2.2. Constraints on the Timing of Tectonic Events..............................................63 2.2.1. Formation of Grenvillian Basement.............................................................64 iii 2.2.2. Tectonic Model for the Taconic Orogeny....................................................64 2.2.3. Tectonic Model for the Acadian Orogeny...................................................65 2.2.4. Acadian Overprinting on Taconian Rocks...................................................66 2.2.5. Deposition and Deformation of Devonian Rocks of the CVGT..................68 2.2.6. Timing of Magmatism in the CVGT...........................................................69 3. Methods...............................................................................................................…70 3.1. Microstructural Analysis…………………………………………………...…71 3.2. Ca and K Mapping of Biotite Grains under a Scanning Electron Microscope.....................................................................................................……..72
Recommended publications
  • Poster Final
    Evidence for polyphase deformation in the mylonitic zones bounding the Chester and Athens Domes, in southeastern Vermont, from 40Ar/39Ar geochronology Schnalzer, K., Webb, L., McCarthy, K., University of Vermont Department of Geology, Burlington Vermont, USA CLM 40 39 Sample Mineral Assemblage Metamorphic Facies Abstract Microstructure and Ar/ Ar Geochronology 18CD08A Quartz, Muscovite, Biotite, Feldspar, Epidote Upper Greenschist to Lower Amphibolite The Chester and Athens Domes are a composite mantled gneiss QC Twelve samples were collected during the fall of 2018 from the shear zones bounding the Chester and Athens Domes for 18CD08B Quartz, Biotite, Feldspar, Amphibole Amphibolite Facies 18CD08C Quartz, Muscovite, Biotite, Feldspar, Epidote Upper Greenschist to Lower Amphibolite dome in southeast Vermont. While debate persists regarding Me 40 39 microstructural analysis and Ar/ Ar age dating. These samples were divided between two transects, one in the northeastern 18CD08D Quartz, Muscovite, Biotite, Feldspar, Garnet Upper Greenschist to Lower Amphibolite the mechanisms of dome formation, most workers consider the VT NH section of the Chester dome and the second in the southern section of the Athens dome. These samples were analyzed by X-ray 18CD08E Quartz, Muscovite Greenschist Facies domes to have formed during the Acadian Orogeny. This study diraction in the fall of 2018. Oriented, orthogonal thin sections were also prepared for each of the twelve samples. The thin sec- 18CD09A Quartz, Amphibole Amphib olite Facies 40 CVGT integrates the results of Ar/Ar step-heating of single mineral NY tions named with an “X” were cut parallel to the stretching lineation (X) and normal to the foliation (Z) whereas the thin sections 18CD09B Quartz, Biotite, Feldspar, Amphibole, Muscovite Amphibolite Facies grains, or small multigrain aliquots, with data from microstruc- 18CD09C Quartz, Amphibole, Feldspar Amphibolite Facies named with a “Y” have been cut perpendicular to the ‘X-Z’ thin section.
    [Show full text]
  • Deformation Mechanisms, Rheology and Tectonics Geological Society Special Publications Series Editor J
    Deformation Mechanisms, Rheology and Tectonics Geological Society Special Publications Series Editor J. BROOKS J/iLl THIS VOLUME IS DEDICATED TO THE WORK OF HENDRIK JAN ZWART GEOLOGICAL SOCIETY SPECIAL PUBLICATION NO. 54 Deformation Mechanisms, Rheology and Tectonics EDITED BY R. J. KNIPE Department of Earth Sciences Leeds University UK & E. H. RUTTER Department of Geology Manchester University UK ASSISTED BY S. M. AGAR R. D. LAW Department of Earth Sciences Department of Geological Sciences Leeds University Virginia University UK USA D. J. PRIOR R. L. M. VISSERS Department of Earth Sciences Institute of Earth Sciences Liverpool University University of Utrceht UK Netherlands 1990 Published by The Geological Society London THE GEOLOGICAL SOCIETY The Geological Society of London was founded in 1807 for the purposes of 'investigating the mineral structures of the earth'. It received its Royal Charter in 1825. The Society promotes all aspects of geological science by means of meetings, speeiat lectures and courses, discussions, specialist groups, publications and library services. It is expected that candidates for Fellowship will be graduates in geology or another earth science, or have equivalent qualifications or experience. Alt Fellows are entitled to receive for their subscription one of the Society's three journals: The Quarterly Journal of Engineering Geology, the Journal of the Geological Society or Marine and Petroleum Geology. On payment of an additional sum on the annual subscription, members may obtain copies of another journal. Membership of the specialist groups is open to all Fellows without additional charge. Enquiries concerning Fellowship of the Society and membership of the specialist groups should be directed to the Executive Secretary, The Geological Society, Burlington House, Piccadilly, London W1V 0JU.
    [Show full text]
  • And Post-Collision Calc-Alkaline Magmatism in the Qinling Orogenic Belt, Central China, As Documented by Zircon Ages on Granitoid Rocks
    Journal of the Geological Societv. London, Vol. 153, 1996, pp. 409-417. Palaeozoic pre- and post-collision calc-alkaline magmatism in the Qinling orogenic belt, central China, as documented by zircon ages on granitoid rocks F. XUE'.*,',A. KRONER', T. REISCHMANN' & F. LERCH' 'Institut fiir Geowissenschaften, Universitat Mainz, 55099 Mainz, Germany 'Department of Geology, Northwest University, 710069 Xi'an, China .'Present address: Department of Geophysical Sciences, The University of Chicago, 5734 South Ellis Avenue, Chicago, IL 60637, USA Abstract: Basedon large-scale reconnaissance mapping, we identifiedtwo calc-alkaline plutonic assemblagesfrom the northern Qinling orogenic belt.central China. The older assemblage of intrusions. closely associated and deformed coevally with their host volcanic arc sequences, seems to represent the fractionation product of basaltic arc magma. It therefore predates the collision of the North China Block with the Central Qinling island-arc system that developed in a SW Pacific-type oceanic domain south of the North China Block. Single-zircon zo7Pb/2'"Pb evaporation dating yielded early to middle Ordovician ages for this assemblage. with a relatively small range from 487.2 f 1.1 to 470.2 f 1.3 Ma. Intrusions of the younger assemblage are largely undeformed and truncate structures shown in rocks of theolder assemblage. They are interpreted as post-collisional calc-alkaline granitoids.Single zircon dating provided an age of 401.8 f 0.8 Mafor the younger assemblage. consistentwith earlier work that defines an age range from c. 420 to 395Ma. Our datafavour a tectonicmodel involving formation and amalgamation of islandarc and microcontinent terranes between ca. 490 and 470 Ma ago to create the Central Qinling Zone which subsequently collided with theNorth China Block prior to c.
    [Show full text]
  • Extrusive and Intrusive Magmatism Greatly Influence the Tectonic Mode of Earth-Like Planets
    EPSC Abstracts Vol. 11, EPSC2017-945, 2017 European Planetary Science Congress 2017 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2017 Extrusive and Intrusive Magmatism Greatly Influence the Tectonic Mode of Earth-Like Planets D. Lourenco, P. J. Tackley, A. Rozel and M. Ballmer Institute of Geophysics, Department of Earth Sciences, ETH Zurich, Switzerland ([email protected] / Fax: +41 44 633 1065) Abstract reported in [3], we use thermo-chemical global mantle convection numerical simulations to Plate tectonics on Earth-like planets is typically systematically investigate the effect of plutonism, in modelling using a strongly temperature-dependent conjugation with eruptive volcanism. Results visco-plastic rheology. Previous analyses have reproduce the three common tectonic/convective generally focussed on purely thermal convection. regimes usually obtained in simulations using a However, we have shown that the influence of visco-plastic rheology: stagnant-lid (a one-plate compositional heterogeneity in the form of planet), episodic (where the lithosphere is unstable continental [1] or oceanic [2] crust can greatly and frequently overturns into the mantle), and influence plate tectonics by making it easier (i.e. it mobile-lid (similar to plate tectonics). At high occurs at a lower yield stress or friction coefficient). intrusion efficiencies, we observe and characterise a Here we present detailed results on this topic, in new additional regime called “plutonic-squishy lid”. particular focussing on the influence of intrusive vs. This regime is characterised by a set of strong plates extrusive magmatism on the tectonic mode. separated by warm and weak regions generated by plutonism. Eclogitic drippings and lithospheric delaminations often occur around these weak regions.
    [Show full text]
  • Volcanism in a Plate Tectonics Perspective
    Appendix I Volcanism in a Plate Tectonics Perspective 1 APPENDIX I VOLCANISM IN A PLATE TECTONICS PERSPECTIVE Contributed by Tom Sisson Volcanoes and Earth’s Interior Structure (See Surrounded by Volcanoes and Magma Mash for relevant illustrations and activities.) To understand how volcanoes form, it is necessary to know something about the inner structure and dynamics of the Earth. The speed at which earthquake waves travel indicates that Earth contains a dense core composed chiefly of iron. The inner part of the core is solid metal, but the outer part is melted and can flow. Circulation (movement) of the liquid outer core probably creates Earth’s magnetic field that causes compass needles to point north and helps some animals migrate. The outer core is surrounded by hot, dense rock known as the mantle. Although the mantle is nearly everywhere completely solid, the rock is hot enough that it is soft and pliable. It flows very slowly, at speeds of inches-to-feet each year, in much the same way as solid ice flows in a glacier. Earth’s interior is hot both because of heat left over from its formation 4.56 billion years ago by meteorites crashing together (accreting due to gravity), and because of traces of natural radioactivity in rocks. As radioactive elements break down into other elements, they release heat, which warms the inside of the Earth. The outermost part of the solid Earth is the crust, which is colder and about ten percent less dense than the mantle, both because it has a different chemical composition and because of lower pressures that favor low-density minerals.
    [Show full text]
  • Faults and Joints
    133 JOINTS Joints (also termed extensional fractures) are planes of separation on which no or undetectable shear displacement has taken place. The two walls of the resulting tiny opening typically remain in tight (matching) contact. Joints may result from regional tectonics (i.e. the compressive stresses in front of a mountain belt), folding (due to curvature of bedding), faulting, or internal stress release during uplift or cooling. They often form under high fluid pressure (i.e. low effective stress), perpendicular to the smallest principal stress. The aperture of a joint is the space between its two walls measured perpendicularly to the mean plane. Apertures can be open (resulting in permeability enhancement) or occluded by mineral cement (resulting in permeability reduction). A joint with a large aperture (> few mm) is a fissure. The mechanical layer thickness of the deforming rock controls joint growth. If present in sufficient number, open joints may provide adequate porosity and permeability such that an otherwise impermeable rock may become a productive fractured reservoir. In quarrying, the largest block size depends on joint frequency; abundant fractures are desirable for quarrying crushed rock and gravel. Joint sets and systems Joints are ubiquitous features of rock exposures and often form families of straight to curviplanar fractures typically perpendicular to the layer boundaries in sedimentary rocks. A set is a group of joints with similar orientation and morphology. Several sets usually occur at the same place with no apparent interaction, giving exposures a blocky or fragmented appearance. Two or more sets of joints present together in an exposure compose a joint system.
    [Show full text]
  • Environmental Effects of Large Igneous Province Magmatism: a Siberian Perspective Benjamin A
    20 Environmental effects of large igneous province magmatism: a Siberian perspective benjamin a. black, jean-franc¸ois lamarque, christine shields, linda t. elkins-tanton and jeffrey t. kiehl 20.1 Introduction Even relatively small volcanic eruptions can have significant impacts on global climate. The eruption of El Chichón in 1982 involved only 0.38 km3 of magma (Varekamp et al., 1984); the eruption of Mount Pinatubo in 1993 involved 3–5km3 of magma (Westrich and Gerlach, 1992). Both these eruptions produced statistically significant climate signals lasting months to years. Over Earth’s his- tory, magmatism has occurred on vastly larger scales than those of the Pinatubo and El Chichón eruptions. Super-eruptions often expel thousands of cubic kilo- metres of material; large igneous provinces (LIPs) can encompass millions of cubic kilometres of magma. The environmental impact of such extraordinarily large volcanic events is controversial. In this work, we explore the unique aspects of LIP eruptions (with particular attention to the Siberian Traps), and the significance of these traits for climate and atmospheric chemistry during eruptive episodes. As defined by Bryan and Ernst (2008), LIPs host voluminous (> 100,000 km3) intraplate magmatism where the majority of the magmas are emplaced during short igneous pulses. The close temporal correlation between some LIP eruptions and mass extinction events has been taken as evidence supporting a causal relationship (Courtillot, 1994; Rampino and Stothers, 1988; Wignall, 2001); as geochronological data become increasingly precise, they have continued to indicate that this temporal association may rise above the level of coincidence (Blackburn et al., 2013). Several obstacles obscure the mechanisms that might link LIP magmatism with the degree of global environmental change sufficient to trigger mass extinction.
    [Show full text]
  • Provenance and Implication of Carboniferous–Permian Detrital
    minerals Article Provenance and Implication of Carboniferous–Permian Detrital Zircons from the Upper Paleozoic, Southern Ordos Basin, China: Evidence from U-Pb Geochronology and Hf Isotopes Ziwen Jiang 1, Jinglan Luo 1,*, Xinshe Liu 2,3, Xinyou Hu 2,3, Shangwei Ma 4, Yundong Hou 2,3, Liyong Fan 2,3 and Yuhua Hu 1 1 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China; [email protected] (Z.J.); [email protected] (Y.H.) 2 State Engineering Laboratory of Exploration and Development for Low Permeability Oil and Gas Fields, Xi’an 710018, China; [email protected] (X.L.); [email protected] (X.H.); [email protected] (Y.H.); [email protected] (L.F.) 3 Research Institute of Petroleum Exploration and Development, PetroChina Changqing Oilfield Company, Xi’an 710018, China 4 Shaanxi Mineral Resources and Geological Survey, Xi’an 710068, China; [email protected] * Correspondence: [email protected] Received: 9 February 2020; Accepted: 13 March 2020; Published: 15 March 2020 Abstract: Carboniferous–Permian detrital zircons are recognized in the Upper Paleozoic of the whole Ordos Basin. Previous studies revealed that these Carboniferous–Permian zircons occurred in the Northern Ordos Basin mainly originated from the Yinshan Block. What has not been well documented until now is where this period’s zircons in the Southern Ordos Basin came from, and very little discussion about their provenance. To identify the provenance of the detrital zircons dating from ~350 to 260 Ma, five sandstone samples from the Shan 1 Member of Shanxi Formation and eight sandstone samples from the He 8 Member of Shihezi Formation were analyzed for detrital zircon U-Pb age dating and in situ Lu-Hf isotopic compositions.
    [Show full text]
  • The Geology of the Lyndonville Area, Vermont
    THE GEOLOGY OF THE LYNDONVILLE AREA, VERMONT By JOHN G. DENNIS VERMONT GEOLOGICAL SURVEY CHARLES G. DOLL, Stale Geologist Published by VERMONT DEVELOPMENT COMMISSION MONTPELIER, VERMONT BULLETIN NO. 8 1956 Lake Willoughby, seen from its north shore. TABLE OF CONTENTS ABSTRACT ......................... 7 INTRODUCTION 8 Location 8 Geologic Setting ..................... 8 Previous Work ...................... 8 Purpose of Study ..................... 9 Method of Study 10 Acknowledgments . 11 Physiography ...................... 11 STRATIGRAPHY ....................... 16 Lithologic Descriptions .................. 16 Waits River Formation ................. 16 General Statement .................. 16 Distribution ..................... 16 Age 17 Lithological Detail .................. 17 Gile Mountain Formation ................ 19 General Statement .................. 19 Distribution ..................... 20 Lithologic Detail ................... 20 The Waits River /Gile Mountain Contact ........ 22 Age........................... 23 Preliminary Remarks .................. 23 Early Work ...................... 23 Richardson's Work in Eastern Vermont .......... 25 Recent Detailed Mapping in the Waits River Formation. 26 Detailed Work in Canada ................ 28 Relationships in the Connecticut River Valley, Vermont and New Hampshire ................... 30 Summary of Presently Held Opinions ........... 32 Discussion ....................... 32 Conclusions ...................... 33 STRUCTURE 34 Introduction and Structural Setting 34 Terminology ......................
    [Show full text]
  • Deformation at the Microscale
    Deformation at the Microscale Deformation processes occur at the microscale and lead to changes in the internal structure, shape or volume of a rock. Brittle versus Plastic deformation mechanisms is a function of: • Pressure – increasing pressure favors plastic deformation • Temperature – increasing temperature favors plastic deformation • Rheology of the deforming minerals (for example quartz vs feldspar) • Availability of fluids – favors brittle deformation • Strain rate – lower strain rate favors plastic deformation Given the different rheology of different minerals, brittle and plastic deformation mechanisms can occur in the same sample under the same conditions. The controlling deformation mechanism determines whether the deformation belongs to the brittle or plastic regime. Brittle deformation mechanisms operative at shallow depths. Crystal-plastic Deformation Mechanisms Mechanical twining – mechanical bending or kinking of the crystal structure. Mechanical twins in calcite Deformation (glide) twins in a calcite crystal. Stress is ideally at 45o to the shear In the case of calcite, the 38o angle (glide plane). Dark lamellae turns the twin plane into a mirror have been sheared (simple plane. The amount of strain shear). associated with a single kink is fixed by this angle. Crystal Defects • Point defects – due to vacancies or impurities in the crystal structure. • Line defects (dislocations) – a mobile line defect that causes intracrystalline deformation via slip. The slip plane is usually the place in a crystal that has the highest density of atoms. • Plane defects – grain boundaries, subgrain boundaries, and twin planes. Migration of vacancies Types of defects – vacancy, through a crystal structure by substitution, interstitial diffusion. The movement of dislocations occurs in the plane or direction which requires the least energy.
    [Show full text]
  • Post-Seismic Deformation Mechanism of the July 2015 MW 6.5 Pishan
    www.nature.com/scientificreports OPEN Post‑seismic deformation mechanism of the July 2015 MW 6.5 Pishan earthquake revealed by Sentinel‑1A InSAR observation Sijia Wang1*, Yongzhi Zhang1,2*, Yipeng Wang1, Jiashuang Jiao 1, Zongtong Ji1 & Ming Han1 On 3 July 2015, the Mw 6.5 Pishan earthquake occurred at the junction of the southwestern margin of the Tarim Basin and the northwestern margin of the Tibetan Plateau. To understand the seismogenic mechanism and the post‑seismic deformation behavior, we investigated the characteristics of the post‑seismic deformation felds in the seismic area, using 9 Sentinel‑1A TOPS synthetic aperture radar (SAR) images acquired from 18 July 2015 to 22 September 2016 with the Small Baseline Subset Interferometric SAR (SBAS‑InSAR) technique. Postseismic LOS deformation displayed logarithmic behavior, and the temporal evolution of the post‑seismic deformation is consistent with the aftershock sequence. The main driving mechanism of near‑feld post‑seismic displacement was most likely to be afterslip on the fault and the entire creep process consists of three creeping stages. Afterward, we used the steepest descent method to invert the afterslip evolution process and analyzed the relationship between post‑seismic afterslip and co‑seismic slip. The results witness that 447 days after the mainshock (22 September 2016), the afterslip was concentrated within one principal slip center. It was located 5–25 km along the fault strike, 0–10 km along with the fault dip, with a cumulative peak slip of 0.18 m. The 447 days afterslip seismic moment was approximately 2.65 × 1017 N m, accounting for approximately 4.1% of the co‑seismic geodetic moment.
    [Show full text]
  • LIBRO GEOLOGIA 30.Qxd:Maquetaciûn 1
    Trabajos de Geología, Universidad de Oviedo, 30 : 163-168 (2010) Peek inside the black box of calcite twinning paleostress analysis J. REZ1* AND R. MELICHAR1 1Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic. *e-mail: [email protected] Abstract: Calcite e-twinning has been used for stress inversion purposes since the fifties. The common- ly used technique is the Etchecopar method (e.g. Laurent et al., 1981), based on testing of 500-1000 randomly generated reduced stress tensors using a penalization function fL. A systematic search of all possible reduced stress tensors with a new penalization function fR double checked with a spatial dis- tribution plot is suggested. Keywords: stress inversion, paleostress analysis, calcite, mechanical twinning. Extensive research of the deformation mechanisms of sion is 10 MPa, which was experimentally determined τ calcite monocrystals and polycrystalline aggregates by Turner et al. (1954). The magnitude of c is inde- during the last century provided evidence of several pendent of normal stress σ, magnitude and tempera- glide and twinning systems present in calcite. Twelve ture (e.g. Turner et al., 1954; De Bresser and Spiers, different glide systems on five different crystallo- 1997; figure 1b). In order to cause twinning, the graphic planes and three different twinning systems stress tensor acting upon an e-plane must have appro- have been defined (Bestmann and Prior, 2003). Only priate principal direction orientation and sufficient twinning systems are suitable for stress inversion pur- differential component. The magnitude of the shear poses because they are easy to observe under an opti- stress is controlled by the Schmid criterion μ, which σ cal microscope, their orientation can be measured is a function of the orientation of the 1 vector σ using either a universal stage or EBSD and only one (Handin and Griggs, 1951; figure 1c).
    [Show full text]